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Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and 
Travel Patterns via Advanced Simulation 

Eric Wood, Jeremy Neubauer, and Evan Burton 
National Renewable Energy Laboratory 

Abstract 

The disparate characteristics between conventional (CVs) and battery 
electric vehicles (BEVs) in terms of driving range, refill/recharge 
time, and availability of refuel/recharge infrastructure inherently limit 
the relative utility of BEVs when benchmarked against traditional 
driver travel patterns. However, given a high penetration of high-
power public charging combined with driver tolerance for rerouting 
travel to facilitate charging on long-distance trips, the difference in 
utility between CVs and BEVs could be marginalized. We quantify 
the relationships between BEV utility, the deployment of fast 
chargers, and driver tolerance for rerouting travel and extending 
travel durations by simulating BEVs operated over real-world travel 
patterns using the National Renewable Energy Laboratory’s Battery 
Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). 
With support from the U.S. Department of Energy’s Vehicle 
Technologies Office, BLAST-V has been developed to include 
algorithms for estimating the available range of BEVs prior to the 
start of trips, for rerouting baseline travel to utilize public charging 
infrastructure when necessary, and for making driver travel decisions 
for those trips in the presence of available public charging 
infrastructure, all while conducting advanced vehicle simulations that 
account for battery electrical, thermal, and degradation response. 
Results from BLAST-V simulations on vehicle utility, frequency of 
inserted stops, duration of charging events, and additional time and 
distance necessary for rerouting travel are presented to illustrate how 
BEV utility and travel patterns can be affected by various fast charge 
deployments. 

Introduction 

As automotive manufacturers continue to develop and market 
advanced technologies to satisfy consumer demand and government 
requirements for increasingly efficient vehicles, battery electric 
vehicles (BEVs) become an increasingly attractive option. By 
sourcing 100% of energy from an electric grid that becomes cleaner 
every year, BEVs are an effective option for reducing petroleum 
consumption, decreasing greenhouse gases, and improving air 
quality. While range and recharge time limitations make BEVs a 
difficult sell to many consumers, increased availability of high-power 
direct current fast charging (DCFC) is seen as one pathway to 
improving BEV utility and accelerating market adoption (utility is 
used in this paper to express the percent of travel accomplished with 
a BEV relative to a conventional vehicle or CV). 

However, DCFC presents a myriad of technical challenges to battery 
manufactures and electric utility operators. Increased cycling and 
elevated temperatures during fast charge events are cited as 
contributing factors to premature battery degradation. Battery packs 
unable to meet warranty requirements because of high DCFC 
utilization would prove mutually problematic for consumer, 
automotive, and battery stakeholders. Meanwhile, electric utilities are 
closely monitoring the impacts of residential Level 1 and 2 charging 
on distribution networks in neighborhoods with high BEV 
concentrations. Increased residential concentrations coupled with an 
evolving network of public DCFC stations leaves electric utilities 
with a high degree of uncertainty regarding future load profile 
projections. 

Recent efforts by Idaho National Laboratory as part of the EV Project 
[1] have provided real-world DCFC usage statistics for early BEV 
adopters. The data reveal that 1% to 21% of all charge events from a 
subset of Nissan Leafs occurred at DCFC stations (with usage 
varying among vehicles and through time) [2]. While illuminating, 
this data does not lend to future projections of DCFC impacts under 
various infrastructure deployment and vehicle penetration scenarios. 

Quantification of DCFC utilization relative to arbitrary combinations 
of infrastructure and travel behavior is a problem that lends itself 
nicely to a modeling and simulation approach. Researchers at the 
University of California, Davis have taken such an approach by 
linking spatial travel data with a simplified vehicle model in a 
geographic information system environment [3]. This geographic 
information system tool has been used primarily to evaluate and 
optimally locate public electric vehicle support equipment (EVSE) in 
California. Lawrence Berkeley National Laboratory has taken a 
similar approach in developing the V2G-Sim tool that, in addition to 
spatial travel data, leverages detailed powertrain simulation and 
battery life modeling to estimate impacts of various vehicle-to-grid 
communication and power flow scenarios [4]. Oak Ridge National 
Laboratory also has ongoing modeling and simulation activities 
related to assessing impacts of charging availability on electric 
vehicle utility and energy outcomes [5]. 

With support from the U.S. Department of Energy’s Vehicle 
Technologies Office, the National Renewable Energy Laboratory 
(NREL) has developed BLAST-V—the Battery Lifetime Analysis 
and Simulation Tool for Vehicles. BLAST-V has been used in 
parallel with travel data from the Seattle, Washington metropolitan 
area to quantify vehicle utility and battery life outcomes resulting 
from various levels of charging availability [6]. However, this 
analysis was constrained to travel behavior data collected in 
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conventional vehicles (CVs) with driving range and refuel time 
characteristics drastically different than those allowed by current 
BEV technology. The static nature of travel data in previous BLAST-
V studies did not allow for rerouting or impromptu stops to utilize 
fast charging and extend driving range mid-trip. 

This paper discusses updated spatial capabilities within BLAST-V for 
evaluating utilization of and incremental utility afforded by various 
public DCFC deployment scenarios. The analysis focuses on 
quantifying impacts of several distinct rollouts of publically available 
DCFC stations in the Seattle metropolitan area. Publically available 
data on existing DCFC stations are also used as an input to BLAST-V 
with the resulting vehicle utility compared to a number of mock 
rollout scenarios. The discussion focuses on the estimated number of 
DCFC stations necessary to substantially increase vehicle utility and 
how stations can be strategically sited to maximize their potential 
benefit to prospective BEV owners. 

BLAST-V for BEV Utility Estimation 

Nominal Capabilities 

BLAST-V is an electric vehicle simulator focused on computing the 
long-term effects of complex operational scenarios on vehicle utility 
and battery performance. It considers the vehicle powertrain, battery 
control strategy, driving and charging patterns, local climate, the 
vehicle-battery-environment thermal system, battery chemistry, and 
other factors in computing short-term vehicle and battery 
performance (e.g., vehicle range, battery voltage, state of charge 
(SOC), and temperature) and long-term vehicle utility and battery 
degradation. Figure 1 illustrates an approximate graphical 
representation of the key elements and flow of data within BLAST-
V. Further details on the methods employed in this simulation are 
described in [7].

 

 
Figure 1. Graphical illustration of BLAST-V simulation algorithms. 

Determination of which trips to take with a BEV and which to forgo 
is a key to BLAST-V. As input driving patterns are generally sourced 
from real-world operation of CVs, certain trips (and sequences of 
trips) will exceed the driving range of the simulated BEV and result 
in full battery depletion. Given the cost and inconvenience associated 
with stranded vehicles, BLAST-V assumes BEV drivers will rely on 
conservative estimates of vehicle range and detailed knowledge of 
travel itineraries to avoid running out of charge mid-trip. 

BLAST-V structures travel data as a sequence of tours. Each tour 
consists of consecutive trips with the first trip beginning and the last 
trip ending at the vehicle’s home location (with assumed access to 
charging). Prior to the start of each tour, BLAST-V considers the 
battery’s current SOC, distance and expected duration of pending 
trips in the tour, historical depletion rates from similar trips, and 
availability of work/public EVSE to estimate battery SOC throughout 
the potential tour. This estimation informs a go/no-go decision at the 

beginning of each tour. If the estimated SOC is maintained above a 
specified threshold for the entire tour, the simulated driver selects the 
BEV for travel and the tour is simulated in greater detail considering 
electrical, thermal, and life models of the battery pack. However, if 
the SOC is estimated to become depleted below the specified 
threshold, the driver forgoes use of the BEV and electrical, thermal, 
and life models of the battery pack are simulated with the vehicle in 
its parked mode for the duration of the tour. While BLAST-V is not 
primarily concerned with alternate travel modes in situations where 
BEV travel is dismissed, it is reasonable to assume that real-world 
drivers would coordinate use of a secondary household vehicle 
(likely a CV), arrange for a short-term rental vehicle, utilize some 
form of public transportation, plan a carpool, or potentially omit the 
tour entirely. 

BLAST-V’s go/no-go decision for determining BEV travel is 
believed to mirror the way that real-world drivers make personal 
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travel decisions. By implementing a low-order planning model prior 
to tour evaluation, BLAST-V simulates the hundreds of tour 
decisions a driver makes every year when determining whether their 
BEV is suitable for a particular tour. 

Upgrades to Consider Rerouting and DCFC Stops 

In situations where estimated battery SOC is not predicted to be 
maintained above the driver’s required threshold, BLAST-V now 
includes the capability to consider alternate paths of travel and stops 
at available DCFC stations. Tours requiring rerouting leverage the 
Google Maps API [8] (application programming interface) to 
generate one to three potential paths of travel for each trip in the 
prospective tour. BLAST-V then considers combinations of potential 
trip paths, DCFC station availability, and estimated battery SOC to 
satisfy the constraint of maintaining the minimum SOC above the 
required threshold while minimizing the number of DCFC stops. The 
rerouting algorithm employs several rules regarding driver behavior 
at DCFC stations. The following rules are employed: 

• Stations requiring more than a 1-mile excursion from the path of 
travel are not considered. 

• Drivers only dwell at stations long enough to charge their 
batteries to 95% of full capacity. 

• Dwell time at stations must be at least 5 minutes and no more 
than 60 minutes. 

• Vehicle must arrive at the station before the driver’s minimum 
allowable SOC constraint is exceeded. 

• Each rerouted trip, which may imply additional travel time and 
includes a stop at a DCFC up to 60 minutes long, must be 
completed prior to the start time of the subsequent trip from the 
original travel data. 

Of these rules, the most restrictive in terms of limiting achievable 
BEV miles is the requirement that the original trip start times remain 
intact. For example, consider a tour consisting of two 100-mile trips 
with a 75-mile BEV and DCFC stations available at tour miles 50, 
100, and 150. In theory, this tour could be rerouted into four 50-mile 
trips with DCFC stations at the end of the first three trips and home 
charging available after the fourth (home charging is available at the 
end of every tour by definition). However, if the original data 
specified a dwell time of only one minute after 100 miles of driving, 
that would only allow for one minute of dwell at the first DCFC 

station after 50 miles of driving. Not only does a one-minute DCFC 
station dwell violate another rerouting rule, but the vehicle would not 
be able to recoup enough battery SOC in one minute of fast charging 
to reach its next destination. 

The assumption that trip departure times are inelastic is likely 
inaccurate in many instances. In reality, some trips have inelastic 
departure times, arrival times, both, or neither. In the absence of 
additional travel data describing the nature of each trip requirements, 
the trip start time constraint is applied as a reasonable compromise. 
While limiting BEV utility in some scenarios, the “start on time” 
requirement is implemented to prevent egregious manipulations of 
the original travel data. 

If BLAST-V’s rerouting algorithm is able to successfully identify a 
revised travel plan that maintains estimated battery SOC above the 
driver’s minimum requirement, statistics on the rerouted tour are 
recorded (e.g., number of DCFC stops, duration of DCFC stops, 
incremental distance relative to original tour) and the rerouted tour is 
simulated in greater detail considering electrical, thermal, and life 
models of the battery pack. However, if an adequate alternate tour is 
not identified, the driver forgoes use of the BEV and electrical, 
thermal, and life models of the battery pack are simulated with the 
vehicle in its parked mode for the duration of the tour. 

Rerouting Example 1 

For illustrative purposes, consider details of the rerouted tour shown 
in Figures 2–4. Figure 2 shows the rerouted tour path of travel 
consisting of four separate trips for a total of 106 miles. When 
simulated with a 75-mile BEV, the estimated battery SOC falls below 
a driver tolerance of 15% midway through Trip 3 (see the data for the 
original tour in Figure 4). Because the estimated battery SOC does 
not stay above the driver’s required threshold, BLAST-V considers 
potential mid-trip stops at DCFC stations for charging. Figure 3 
summarizes the rerouting output by showing the rerouted path of 
travel, a one-mile buffer around the path of travel (only stations 
within this buffer are considered), all available DCFC stations in the 
simulation, and DCFC stations selected for mid-trip charging stops. 
Travel itineraries and estimated battery SOC for the original tour and 
the rerouted tour with one DCFC stop are shown in Figure 4. By 
inserting a 17-minute DCFC stop midway through Trip 3, the 
estimated battery SOC is maintained above the driver’s required 
threshold for the entire tour.
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Figure 2. Rerouting example 1:  Rerouted tour mapped by trip. Actual trip destinations in all maps have been modified as a privacy precaution. 

 
Figure 3. Rerouting example 1:  Rerouted tour overlaid with available and utilized DCFC stations. Actual trip destinations in all maps have been modified as a privacy 
precaution. 
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Figure 4. Rerouting example 1: Original and rerouted travel itineraries and estimated battery SOC. 

Rerouting Example 2 

BLAST-V’s rerouting algorithm also supports tours requiring 
multiple DCFC stops. Figure 5 shows a rerouted path of travel, 
available DCFC stations, and selected DCFC stops for a 289-mile 
tour between Tacoma, Washington, and Portland, Oregon. The 
estimated battery SOC from the rerouted tour with DCFC stops is 
shown in Figure 6. This example highlights the potential of fast 
charging both to 1) enable long-distance travel in otherwise range-
limited BEVs, and 2) accelerate battery degradation via aggressive 
cycling profiles and the resultant heat generation. A detailed analysis 
of simulated impacts of DCFC on battery life is available in a parallel 
publication [9]. 

  
Figure 5. Rerouting example 2:  Rerouted tour overlaid with available and 
utilized DCFC stations. Actual trip destinations in all maps have been 
modified as a privacy precaution. 

 
Figure 6. Estimated battery SOC for rerouting Example 2 with DCFC stops. 

Analysis 

Simulation Parameters 

Having established a methodology for estimating BEV utility that is 
sensitive to user-defined rollouts of public DCFC stations and 
dynamic tour rerouting, we now wish to investigate various 
deployments of high-power public charging infrastructure. In doing 
so, a number of simulation parameters must be defined, including 
travel profiles, driver behavior, vehicle performance, battery 
attributes, environmental conditions, and charging infrastructure. 
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Travel Profiles 

For the travel profiles, we used historical travel data from the Puget 
Sound Regional Council’s (PSRC’s) Traffic Choices Study [10], 
processed per [7] to yield 317 real-world travel histories, each 
consisting of 365 continuous days of uninterrupted data. The 
resulting histories provide trip distance, trip and park durations, and 
destination data for each trip event (including codes such as home, 
work, and public in addition to precise latitude/longitude 
coordinates). Relevant statistics for the 317 vehicle sample are shown 
in Figure 7. 

 
 
Figure 7. Trip distance, daily distance, annual distance, and trip average speed 
distributions for all 317 PSRC vehicle histories. 

We then filter these histories to those that accrued 8,000 miles or 
more over this one-year period for simulation to focus on higher-
mileage drivers. In Figure 8, we plot all 317 histories to show the 
utility factor and the annual mileage they would achieve driving a 75-
mile BEV without fast charging. The black points to the upper left of 
the diagonal line represent the 137 drivers that completed fewer than 
8,000 miles in a CV and were therefore excluded from this study. 
These profiles are of lesser interest to this study, as the low annual 
mileage implies they are unlikely to (1) benefit significantly from 
public EVSE, or (2) accumulate sufficient fuel savings to justify the 
upfront price premium of a BEV. Accordingly, they were not 
simulated. The 91 drivers boxed in the upper right corner of the plot 
represent those that both completed more than 8,000 miles and 
achieved a utility factor greater than 80% in the 75-mile BEV. 
Arguably, these drivers are well suited to such a BEV without fast 
charging. The remaining 89 drivers are high-mileage drivers that 
achieve low utility factors with a 75-mile BEV. Because Profile Set 
A has the potential to reach 100% utility with the addition of fast 
charging infrastructure, and Profile Set B has the potential for large 
absolute gains in vehicle utility, both sets will be examined.  

 

 
Figure 8. Simulated utility and achieved vehicle miles traveled (VMT) for 
PSRC travel histories in a 75-mile BEV. 

Driver Behavior 

It is assumed that all drivers in this study operate BEVs with 
“normal” levels of driver aggression (25th to 75th percentile) per 
previous BLAST-V studies [7, 11]. 

For the purposes of making a go/no-go decision prior to the start of 
each tour, it is assumed that all drivers impose a range tolerance of 
15% battery SOC (or about 11 miles) per the previous discussion of 
BLAST-V’s “Nominal Capabilities,” which is to say that drivers will 
only elect to travel with their BEV on tours where the estimated 
battery SOC is greater than 15% for the entire tour. This SOC 
tolerance provides a reasonable buffer in situations where simulated 
driving range turns out to be less than the pre-tour estimate. 

Vehicle Performance 

We employ a mid-size sedan with technology and performance levels 
anticipated for a 2020 model year vehicle. We utilize FASTSim 
(Future Automotive Systems Technology Simulator) [12] to simulate 
the vehicle response to the Urban Dynamometer Driving and 
Highway Fuel Economy Driving Schedules, the results of which are 
weighted and combined per [13] to approximate the U.S. 
Environmental Protection Agency-rated range. We further employ 
FASTSim to simulate the vehicle’s response to NREL’s DRIVE 
cycle to calculate the vehicle’s real-world efficiency [11]. Note that 
within BLAST-V simulations, auxiliary loads for the vehicle’s cabin 
heating, ventilation, and air conditioning and battery thermal 
management system are added separately and the efficiency 
computed from the DRIVE cycle is adjusted for the speed and 
distance of each trip. The vehicle parameters are given in Table 1. 
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Table 1. Vehicle Parameters. 

0-60 mph Acceleration 9 sec 

Approximated U.S. 
Environmental Protection 
Agency-rated Range 

75 miles 

Battery Energy 22.1 kWh (100% usable) 

Motor Power 106 kW 

Vehicle Curb Weight 1,576 kg 

Vehicle Efficiency 

220 Wh/mi on DRIVE cycle 
(excludes auxiliary loads 
accounted for during BLAST-V 
simulations) 

 

Battery Attributes 

All battery electrical, thermal, and life calculations in the study 
employ a single-node battery model, which assumes uniform 
response between all cells in the pack. Electrical modeling is done 
using a zero-order equivalent circuit approach with open circuit 
voltage and internal resistance parameters based on a lithium-ion cell 
with a nickel-cobalt-aluminum cathode and graphite anode. Thermal 
modeling considers battery response to ambient and cabin 
temperatures in the presence of an active battery cooling system. Life 
modeling is implemented via a physically justified and empirically fit 
system of equations for describing calendar- and cycling-induced 
resistance growth and capacity fade based on a thru-life nickel-
cobalt-aluminum data set. While battery degradation calculations are 
included in this analysis, the duration of simulations (all one-year 
long) and moderate climate (Seattle) resulted in a negligible impact 
on results. A detailed investigation of the thermal impacts of fast 
charging in more demanding climates, as well as the degradation 
response thereof, is performed in a parallel study [9]. For more 
extensive documentation on BLAST-V pack modeling approaches, 
please refer to [7]. 

Environmental Conditions 

Seattle was selected because it has ambient temperature and solar 
irradiation input data available, and it has coincident PSRC travel 
data and represents a relatively moderate climate. Typical 
meteorological year data for Seattle is taken from [14] and is 
illustrated in Figure 9. 

 
Figure 9. Ambient temperature data from Seattle, Washington. 

Charging Infrastructure 

For vehicle charging, we assume a Level 2 charger (6.6 kW AC) is 
installed at each driver’s home and used in an “opportunity” mode 
(i.e., whenever the driver is at home, the vehicle is plugged in and 
charging).  

All public charging networks in this study employ 50-kW DCFC 
stations. A public charging network representative of existing DCFC 
locations is shown in Figure 10 with three synthetic rollout scenarios. 
Location of existing DCFC stations references the U.S. Department 
of Energy’s Alternative Fuels Data Center [15] (sourced Jan 2014). 
The existing DCFC network includes 34 DCFC stations in 
Washington State in addition to 306 DCFC stations outside of 
Washington State. Synthetic infrastructure rollouts are labeled as 
NREL Methods 1–3 and have been generated using combinations of 
heuristics, systems optimization, and operations research techniques. 
Each synthetic method offers the ability to prioritize station 
deployments in terms of estimated incremental BEV utility enabled 
(only one iteration of each synthetic method is shown for mapping 
purposes). 

 
Figure 10. Existing DCFC locations shown alongside three synthetic rollout 
scenarios. 

Simulation Results 

Although some parameter uncertainties exist in the underlying 
historical drive and climate data employed in this study, the main 
source of uncertainty is structural. The principal structural 
uncertainties include our approach to modeling human tour decisions, 
our method of computing vehicle energy consumption, and the 
battery performance and life models employed. Quantifying the level 
of uncertainty present in our modeling of human tour decisions is 
challenged by the need for large amounts of data on the real-world 
tour decisions of BEV drivers. 
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The second factor, computation of vehicle energy consumption, is 
applied consistently across all scenarios. Thus, while it is expected to 
affect the absolute vehicle utilities calculated herein, it should not 
significantly affect the relative impacts of different public charging 
scenarios. Improving the accuracy of battery performance and life 
models to account for cell-to-cell variation within a pack and better 
ascertain the impacts of fast charging on battery wear is a major focus 
of a parallel study [9]. Despite these uncertainties, however, the 
following findings are telling as to the relative impact of public 
charging impact on overall BEV utility. 

Existing DCFC Infrastructure 

Simulation results using existing DCFC infrastructure reveal that the 
average BEV utilized DCFC stations fewer than 10 times per year. 
Figure 11 shows a relatively linear trend between DCFC utilization 
and incremental utility (represented in addition to vehicle miles 
traveled (VMT)). The trend line of this plot reveals that 
approximately 75 miles of additional travel are enabled by each fast 
charge event. Note that this does not imply that each DCFC event 
charged the battery from 0% to 100% SOC. For example, brief use of 
a fast charger to partially charge a battery after 50 miles of travel 
could have enabled a 75-mile tour.  

 
Figure 11. Incremental VMT afforded by existing DCFC for simulated 75-
mile BEV vs. the count of fast charge events per year for each simulated 
vehicle. 

In Figure 12, we see that it is most common for vehicles utilizing 
DCFC stations to require only one or two additional stops for 
charging per tour. This result is significant in light of a University of 
California, Davis consumer survey in which 100% of respondents 
reported finding one DCFC stop per day reasonable on an occasional 
basis (51% found two stops per day reasonable) [16]. 

 
Figure 12. Distribution of average fast charge events per tour by vehicle (for 
tours with at least one fast charge event). 

Validation to EV Project 

While identifying appropriate validation data for BLAST-V’s 
rerouting and behavior modification algorithms is difficult, some 
confidence can be gained by evaluating BLAST-V outputs from runs 
with existing DCFC infrastructure and data reported by the EV 
Project. For instance, Figure 13 shows average dwell times at DCFC 
stations as a function of average arrival battery SOC. The correlation 
between these outputs is a byproduct of BLAST-V’s tour rerouting 
algorithm determining DCFC dwell times based on estimated time 
required to charge to a specified SOC (95% in this analysis). BLAST-
V’s simulated dwell times of 11 to 22 minutes agrees well with EV 
Project data showing real-world charger connection times of 14 to 24 
minutes [17]. 

 
Figure 13. Average dwell time at DCFC station versus average arrival SOC 
(by simulated vehicle). 

Another metric comparing BLAST-V outputs and EV Project 
reported data is percent of energy sourced from DCFC stations. 
Figure 14 shows a distribution of simulated vehicles with the average 
vehicle sourcing 7.6% of total energy from fast charging. This value 
falls well within EV Project reported bounds of 1% to 21% of real-
world BEV energy originating from DCFC stations [2]. 
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Figure 14. Distribution of percent of total energy sourced from DCFC by 
vehicle. 

Synthetic DCFC Rollout Scenarios 

BEV utility with respect to existing DCFC infrastructure is now 
compared to multiple iterations of the three NREL-developed 
deployment methods. Figure 15 shows average achieved VMT in a 
75-mile BEV from 180 year-long driving profiles (the union of 
Profile Sets A and B) in the Seattle metropolitan area. Average utility 
is plotted against the number of available DCFC stations in each 
simulation (i.e., NREL Method 3 at the 40-station level resulted in an 
average annual VMT of 10,000 miles achieved). Considering the 
incremental utility afforded by existing DCFC stations alongside that 
of multiple distinct synthetic rollouts provides context for the 
effectiveness of existing infrastructure. The 34 existing stations in 
Washington State resulted in a simulated average utility of 10,090 
miles per year, which compares favorably with synthetic rollouts of 
similar volume. While simulated utility from various segmentations 
of travel histories (e.g., all profiles, set A, set B, set A+B) was found 
to impact baseline utility values, relative benefit of DCFC availability 
was largely insensitive to travel history segmentation. 

Also included in Figure 15 are reference lines for utility afforded by 
no DCFC stations (9,310 miles per year) and VMT of original CV 
travel profiles (11,830 miles per year). The reference line at 10,500 
miles per year reflects average annual VMT from a simulation where 
DCFC stations are made available at every gasoline refueling station 
in the United States (123,703 unique locations [18]). The “existing 
gas station” scenario provides an upper bound for the potential utility 
of our simulated 75-mile BEV. By densely populating a BLAST-V 
simulation with DCFC stations, we ensure that unachieved tours are 
not a result of public charging availability. Instead, unachieved tours 
in the “existing gas station” scenario are attributed to the 
aforementioned original trip start time constraint. By enforcing the 
condition that all trips start “on time” relative to the original travel 
data, we find that the final increment of BEV utility is potentially 
constrained by human behavioral norms. 

 
Figure 15. Average achieved VMT in a 75-mile BEV from 180 year-long 
driving profiles in the Seattle metropolitan area relative to various DCFC 
deployments. 

Additional Battery Sizes 

It is also of interest to explore the effects of installed battery size on 
utility when fast charging is available. To study this, we employed 
the existing DCFC deployment for simulation of six vehicles with 
different size batteries. The baseline data of Table 1 were applied in 
all cases, with the exception that the battery energy was changed 
from a low of 16 kWh (corresponding to approximately 58 miles of 
range) to a high of 60 kWh (approximately 218 miles of range). 
Vehicle efficiency was not altered to accommodate the changes in 
mass expected from the different battery sizes. The 60-kWh case 
would add 380 kg of battery mass (assuming 100 Wh/kg technology) 
to our baseline vehicle, which is anticipated to affect energy 
consumption by less than 10%, which was judged to be acceptable 
for the purposes of this investigation. 

Looking first at results for the largest range vehicle, we see that 
increasing the battery size encourages BEVs to arrive at DCFCs with 
lower SOC and dwell there for a longer period of time. This can be 
observed by comparing Figures 16 and 13. The longer vehicle range 
effectively presents more options for fast charging within a given 
tour, enabling drivers to wait to charge until the battery is further 
depleted, ultimately making fewer additional stops. 

Figure 17 compares the simulated utility across all travel histories 
(driver sets A and B), battery sizes (16 to 60 kWh), and charging 
options (with and without fast charging). The box plot for each 
combination of battery size and charging option provides the 
maximum, 75th percentile, median, 25th percentile, and minimum 
utility simulated across the set A and B travel histories. The data 
show that the added utility of fast charging diminishes as battery size 
is increased. It also enables comparison of the merits of additional 
battery capacity and additional infrastructure. For example, the utility 
provided by adding accesses to the elected DCFC infrastructure 
deployment to our baseline 22-kWh BEV is approximately equivalent 
to increasing the battery size to 38 kWh in the absence of DCFC 
infrastructure. Similarly, operation of a 60-kWh BEV without fast 
charging is approximately equivalent to operating a 30-kWh BEV 
with fast charging. In all cases, however, the median and 25th 
percentile drivers achieve significantly less than 100% utility. 
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Figure 16. Average dwell time at DCFC station versus average arrival SOC 
(by simulated vehicle). Data from simulation of 60kWh battery size. 

 
Figure 17. Simulated utility factor distributions with and without fast charging 
for a range of battery sizes. 

Figure 18 shows the absolute annual mileage enabled by the addition 
of fast charging. Again, the benefits of adding fast charging are seen 
to diminish as installed battery size increases. This plot better 
illustrates the immense value that fast charging can have for select 
drivers: for our smallest battery case, fast charging enables more than 
11,000 miles of additional BEV travel each year for the most 
benefitted driving profile. As battery capacity increases, however, 
this benefit falls sharply. It also shows that the benefit of fast 
charging to our median driver becomes largely insensitive to installed 
battery capacity at and above 38 kWh, at which point 25% of our 
investigated travel patterns achieve no benefit from fast charging. 

 
Figure 18. Simulated VMT enabled by fast charging for a range of battery 
sizes. 

Summary 

A novel method for estimating real-world utilization of DCFC has 
been developed in BLAST-V, allowing rerouting of original travel 
data to facilitate mid-trip stops for charging at predetermined DCFC 
locations as necessary. Simulated utilization rates of DCFCs have 
been shown to agree well with real-world data from the EV Project, 
suggesting the employed rerouting algorithms adequately reflect real-
world driver behavior. This tool has been applied to study both the 
effect of different fast charger deployments and the additional vehicle 
utility afforded thereby for BEVs of different ranges. 

We found that Seattle’s existing public DCFC infrastructure was 
shown to compare favorably with various synthetic rollouts of DCFC 
stations. Under Seattle’s existing DCFC deployment, we have found 
that use of fast charging can greatly increase the achieved annual 
mileage of select drivers operating BEVs. However, the vast majority 
of travel patterns we studied observed a benefit of less than 1,000 
DCFC-enabled miles per year, decreasing as the installed range of the 
vehicle is increased.  

Where much larger deployments of DCFCs are available (e.g., 
approaching the prevalence of gas stations), we find that our imposed 
constraints on adjusting travel timing becomes the limiting factor for 
utility improvements. This implies that more flexible adjustments to 
travel profiles (e.g., moving trips between tours, altering the 
destinations of trips, or adjusting travel times, as real drivers may be 
prone to do when operating a range-limited BEV) could reveal 
greater benefits of fast charging. Analyzing the effects of such 
behavior will require a greater understanding of both the nature of 
individual trips and human travel behavior. 
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Definitions/Abbreviations 

BEV battery electric vehicle 

BLAST-V Battery Lifetime Analysis 
and Simulation Tool for 
Vehicles 

CV conventional vehicle 

DCFC direct current fast charging 

DRIVE Drive-Cycle Rapid 
Investigation, Visualization, 
and Evaluation Analysis 

EVSE electric vehicle support 
equipment 

FASTSim Future Automotive Systems 
Technology Simulator 

FC fast charge 

NREL National Renewable Energy 
Laboratory 

PSRC Puget Sound Regional 
Council 

SOC state of charge 

VMT vehicle miles traveled 
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