High efficiency spectrum splitting prototype submodule using commercial CPV cells

Mark Keevers, Jonathan Lau, Martin Green (UNSW)
Ian Thomas, John Lasich (RayGen Resources Pty Ltd)
Richard King (Spectrolab Inc.)
Keith Emery (NREL)
Motivation 1: Record Spectrolab cell

- Excess Ge subcell response
- Divert selected wavelength band to Si cell
 - Lateral spectrum splitting \rightarrow Eff \uparrow, heat load \downarrow

King et al, EUPVSEC-24 (2009)

Keevers et al, WCPEC-6, Kyoto, 23-27 Nov 2014
Spectrum splitting: Concept

Solar spectrum

Bandpass filter

Si (1.1 eV)

GaInP (1.88 eV)

Monolithic TJ cell stack

GaInAs (1.41 eV)

Ge (0.67 eV)

Colours are indicative only

Keevers et al, WCPEC-6, Kyoto, 23-27 Nov 2014
Spectrum splitting: LIV

Keevers et al, WCPEC-6, Kyoto, 23-27 Nov 2014
Motivation 2: CPV power tower

- World first demonstration of a heliostat CPV plant in 2008 (140 kWp)

- Replace conventional receiver with spectrum splitting receiver

Keevers et al, WCPEC-6, Kyoto, 23-27 Nov 2014
CSPV power tower: RayGen

- Combines CPV with CST + storage

- First site deployment 0.2 MW (Newbridge)
 - 64 heliostats, 200 kW receiver, 1 inverter

- A$60M investment + distribution agreement with China Intense Solar
 - 0.2 MW pilot, 1.0 MW demonstration, 10 MW commercial scale by Aug 2016
Spectrum splitting prototype: Cells

- Target highest performance, using commercial (1 cm²) TJ and Si CPV cells
- 4-terminal electrical connection

Keevers et al, WCPEC-6, Kyoto, 23-27 Nov 2014
Optical design

- Zemax 3D ray tracing
 - Maximise optical Eff (96.8% for full capture), acceptable non-uniformity

Keevers et al, WCPEC-6, Kyoto, 23-27 Nov 2014
Heatsink + optional SOE (secondary optical element)

Si cell on heatsink

Optional SOE

TJ cell (at Voc)

SOE quarters

SOE installed

Keevers et al, WCPEC-6, Kyoto, 23-27 Nov 2014
Concentrating mirror

- 8-inch diameter parabolic mirror (f = 1000 mm, aperture area)
- ‘Enhanced silver’ coating by Optical Coating Associates Pty Ltd
 - Ag + 2-layer dielectric (Al₂O₃/Ta₂O₅)
Bandpass filter

- Adjust filter cut-on & cut-off to match TJ subcell currents (+ margin)
 - Input = AM1.5D spectrum, optics (mirror R, filter T & R), cell EQEs, simple LIV model
- Custom filter by Omega Optical
 - AOI 23°, HCA 6°
 - Design iterations, refine specs
 - Dielectric stack: 158 layers of Nb$_2$O$_5$ and SiO$_2$ (total 20 um)
 - Front surface ‘mirror’ on UV-grade silica (non absorbing)
Bandpass filter: Close-up

- Adjust filter cut-on & cut-off to match TJ subcell currents (+ margin)
 - Input = AM1.5D spectrum, optics (mirror R, filter T & R), cell EQEs, simple LIV model
- Custom filter by Omega Optical
 - AOI 23°, HCA 6°
 - Design iterations, refine specs
 - Dielectric stack: 158 layers of Nb_2O_5 and SiO_2 (total 20 um)
 - Front surface ‘mirror’ on UV-grade silica (non absorbing)

Keevers et al, WCPEC-6, Kyoto, 23-27 Nov 2014
Bandpass filter: Tunability

Keevers et al, WCPEC-6, Kyoto, 23-27 Nov 2014
Weighted EQEs: TJ cell alone

Keevers et al, WCPEC-6, Kyoto, 23-27 Nov 2014
Weighted EQEs: With spectrum splitting

Keevers et al, WCPEC-6, Kyoto, 23-27 Nov 2014
Outdoor testing at UNSW

UNSW 22 Oct 2014

Si cell
Filter
TJ cell
Receiver
Mirror

Prototype
Tracker
Chiller
Pyrheliometer
LIV curve tracer

Keevers et al, WCPEC-6, Kyoto, 23-27 Nov 2014
UNSW: Highest efficiency

<table>
<thead>
<tr>
<th>Cell</th>
<th>Split: TJ</th>
<th>Split: Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp</td>
<td>22/10/2014 17:02</td>
<td>22/10/2014 17:03</td>
</tr>
<tr>
<td>DNI (W/m²)</td>
<td>795</td>
<td>798</td>
</tr>
<tr>
<td>P_in (W)</td>
<td>22.8</td>
<td>22.9</td>
</tr>
<tr>
<td>T_ambient (°C)</td>
<td>21.8</td>
<td>21.9</td>
</tr>
<tr>
<td>T_heatsink (°C)</td>
<td>22.0</td>
<td>NA</td>
</tr>
<tr>
<td>T_CCA (°C)</td>
<td>23.5</td>
<td>21.7</td>
</tr>
<tr>
<td>V_oc (V)</td>
<td>3.04</td>
<td>0.78</td>
</tr>
<tr>
<td>I_sc (A)</td>
<td>3.14</td>
<td>1.59</td>
</tr>
<tr>
<td>V_mpp (V)</td>
<td>2.71</td>
<td>0.67</td>
</tr>
<tr>
<td>I_mpp (A)</td>
<td>2.99</td>
<td>1.50</td>
</tr>
<tr>
<td>FF (%)</td>
<td>85.0</td>
<td>81.1</td>
</tr>
<tr>
<td>P_mpp (W)</td>
<td>8.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>35.7</td>
<td>4.4</td>
</tr>
</tbody>
</table>

TJ cell W1-7, Si cell 333, filter AOI 21°, air mass 2.3
Independent confirmation

Keevers et al, WCPEC-6, Kyoto, 23-27 Nov 2014

\[35.7 + 4.7 = 40.4\%\]
Conclusion

- Spectrum splitting prototype submodule, using a custom bandpass filter and commercial CPV cells, has achieved an independently confirmed efficiency of 40.4%.
- Proof-of-concept that this approach improves efficiency.
- Possible application to CPV power towers.

Acknowledgements

- Australian Government: ARENA, AUSIAPV, ACAP
- UNSW: Subash Puthanveetil, Alan Yee, Nathan Tam, Jessica Yajie Jiang, Hamid Mehrvarz, Bernhard Vogl, Nick Shaw, Richard Corkish, other SPREE colleagues
- Spectrolab: Nasser Karam
- Si cells: Giorgio Graditi (ENEA), Mauro Pravetonni (SUPSI), Pierre Verlinden (Trina Solar)
- Omega Optical: Kirk Winchester; Optical Coating Associates: David Baker
- NREL: Larry Ottoson, Greg Wilson