Expressing heterologous cellulases in oleaginous yeast *Yarrowia lipolytica*: Bottlenecks and opportunities

Hui Wei, Wei Wang, Markus Alahuhta, Todd Vander Wall, Stephen R. Decker, John O. Baker, Larry E. Taylor, Min Zhang, Michael E. Himmel

1Bioscience Center, 2National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado

Outline & Introduction

Recently, *Yarrowia lipolytica* has been shown to have the potential to become one of the model oleaginous yeasts for the development of biofuels, due to the availability of its genome sequence, a reliable genetic transformation system, and the ability to use a range of substrates that include glycerol and industrial fats. However, so far only sugars and agro-industrial wastes have been used to culture these microorganisms, and the use of these carbon-sources inevitably increases the cost of biofuel production.

Initial efforts in expressing Trichoderma reesei CBHII and EGII in *Yarrowia* were successful. However, the expression of *T. reesei* CBH in *Yarrowia* only led to limited enzymatic activity. The aim of this study is to express other types of heterologous CBHs in *Y. lipolytica* and examine their activities and potential for enabling utilization of cellulose, both in vitro and *in vivo*, by the combination of *Yarrowia* CBHII, CBHII, and EGII transformants and their expressed cellulases. More importantly, the bottlenecks and opportunities for co-expressing these cellulase genes in *Yarrowia* to enable utilization of cellulosic substrates were discussed, including the possible roles of promoters and secretion in the control of the cellulase expression.

Materials and Methods

Y. lipolytica strain

Fig. 1. Morphology of *Y. lipolytica* Po1g on YPD medium (A) and after being disturbed using deionized and distilled water (B).

Approaches

Fig. 2. Diagram for experimental approaches

Transformation of Yarrowia

- Selection vector pYLSCL
- *Y. lipolytica* cells were cultured in YPD pH 4.0 broth.
- The transformation of *Y. lipolytica* with the plasmid constructs above was conducted using YLOS One step Transformation system.

CBH, CBHII and EGII expression

Constructs for expressing cellulases in Yarrowia

Fig. 3. Domain architecture of endoglucanase (EG) and cellobiohydrolases (CBH) expressed in *Y. lipolytica*.

- Western blot for CBH, CBHII and EGII transformants

Fig. 4. SDS-PAGE and Western blot analysis of *Y. lipolytica* transformants expressing the Trichoderma reesei - Talaromyces emersonii chimeric CBHII, Trichoderma reesei CBHII and EGII.

- Specific Avicelase activity & deglycosylation of purified Tr-Te chimeric CBH

Fig. 5. Specific Avicelase activity of chimeric vs. native *T. reesei* CBH.

- Deglycosylation of chimeric vs. native *T. reesei* CBH

Fig. 6. Deglycosylation of chimeric vs. native *T. reesei* CBH

Consortia culture system of *Yarrowia* transformants

Avicel cellulose utilization by co-cultures of chimeric CBH, CBHII, and EGII transformants

Fig. 7. Morphology of co-culturing *Y. lipolytica* transformants expressing heterologous cellulases on mineral medium containing Avicel (2.7% w/v) as sole C source.

Lipid production by co-culturing of *Y. lipolytica* transformants on Avicel

Table 1. Co-culturing (120-h) of *Y. lipolytica* transformants expressing heterologous cellulases in 150 mL mineral medium containing 4 g Avicel (equivalent to 2.7% w/v) as sole C source.

<table>
<thead>
<tr>
<th>Cellulose</th>
<th>Glucose</th>
<th>Ethanol</th>
<th>Lipid yield (mg/L)</th>
<th>TPH (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y. lipolytica</td>
<td>1.5</td>
<td>0.5</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>Y. lipolytica CBH</td>
<td>1.5</td>
<td>0.5</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>Y. lipolytica CBHII</td>
<td>1.5</td>
<td>0.5</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>Y. lipolytica EGII</td>
<td>1.5</td>
<td>0.5</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>Y. lipolytica CBH + CBHII</td>
<td>1.5</td>
<td>0.5</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>Y. lipolytica CBH + EGII</td>
<td>1.5</td>
<td>0.5</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>Y. lipolytica CBHII + EGII</td>
<td>1.5</td>
<td>0.5</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>Y. lipolytica CBH + CBHII + EGII</td>
<td>1.5</td>
<td>0.5</td>
<td>30</td>
<td>24</td>
</tr>
</tbody>
</table>

Challenges and opportunities

- In this study, the secretion yield for chimeric CBH, EGII, and CBHII proteins by *Yarrowia* transformants was between 20 and 40 mg/L, much lower than that in model species *T. reesei*.
- The secretion level for individual cellulases may decrease for co-expressing them.
- To further increase the expression level of CBH and CBHII, we will
 - explore the use of more efficient promoters
 - screen for more efficient signal peptides
 - test different media and growth conditions

Summary

- The results demonstrated the first case of successful expression of a chimeric CBH with essentially full native activity in *Y. lipolytica*.
- It supports the notion that *Y. lipolytica* strains can be genetically engineered, ultimately by heterologous expression of fungal cellulases and other enzymes, to directly convert lignocellulosic substrates to biofuels.