Passivated Tunneling Contacts to N-Type Wafer Silicon and Their Implementation into High Performance Solar Cells

Preprint

P. Stradins, S. Essig, W. Nemeth, B.G. Lee, D. Young, A. Norman, Y. Liu, J-W. Luo, E. Warren, A. Dameron, V. LaSalvia, and M. Page
National Renewable Energy Laboratory

A. Rohatgi, A. Upadhyaya, B. Rounsaville, and Y.-W. Ok
Georgia Institute of Technology

S. Glunz, J. Benick, F. Feldmann, and M. Hermle
Fraunhofer Institute of Solar Energy Systems

Presented at WCPEC-6: 6th World Conference on Photovoltaic Energy Conversion
Kyoto, Japan
November 23–27, 2014

NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Conference Paper
NREL/CP-5J00-63259
December 2014

Contract No. DE-AC36-08GO28308
NOTICE

The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Available electronically at http://www.osti.gov/scitech

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone: 865.576.8401
fax: 865.576.5728
email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from:

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
phone: 800.553.6847
fax: 703.605.6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/help/ordermethods.aspx

Cover Photos: (left to right) photo by Pat Corkery, NREL 16416, photo from SunEdison, NREL 17423, photo by Pat Corkery, NREL 16560, photo by Dennis Schroeder, NREL 17613, photo by Dean Armstrong, NREL 17436, photo by Pat Corkery, NREL 17721.

NREL prints on paper that contains recycled content.
PASSIVATED TUNNELING CONTACTS TO N-TYPE WAFER SILICON AND THEIR IMPLEMENTATION INTO HIGH PERFORMANCE SOLAR CELLS

Paul Stradins¹, Ajeet Rohatgi², Stefan Glunz³,
Jan Benick², Frank Feldmann², Stephanie Essig², William Nemeth¹, Ajay Upadhyaya², Brian Rounsaveille²,
Young-Woo Ok², Benjamin G. Lee¹, David Young², Andrew Norman¹, Yuanyue Liu¹, Jun-Wei Luo¹, Emily Warren¹,
Arrelaine Dameron¹, Vincenzo LaSalvia¹, Matt Page¹, Martin Hermle³

ABSTRACT

We present a case that passivated contacts based on a thin tunneling oxide layer, combined with a transport layer with properly selected workfunction and band offsets, can lead to high efficiency c-Si solar cells. Passivated contacts contribute to cell efficiency as well as design flexibility, process robustness, and a simplified process flow. Material choices for the transport layer are examined, including transparent n-type oxides and n+-doped poly-Si. SiO₂/n+-poly-Si full-area, induced-junction back surface field contacts to n-FZ and n-Cz Si are incorporated into high efficiency cells with deep, passivated boron emitters.

1. INTRODUCTION

Minimizing carrier recombination at cell contacts becomes increasingly important for reaching high and ultrahigh cell efficiencies, as bulk and surface passivation quality enables photocarrier lifetimes well above 1 ms. When directly in contact with Si wafer, metals introduce very large densities of electronic states near the interface energetically within the bandgap of Si resulting in >50% recombination losses in high efficiency cells [1]. The contact recombination can be minimized either by 1) small contact areas and local doping (PERL structure) or by 2) a thin-film structure that simultaneously separates metal from Si wafer, passivates the Si wafer interface, and still serves as a conductive contact to the cell. This second approach to “passivated contacts” eliminates (i) the need for diffusion or implantation doping of the wafer and (ii) complicated patterning of selective emitter/BSF. It also simplifies the cell’s process flow and leads to very low recombination at the contact.

While a-Si:H based heterojunction passivated contacts have demonstrated spectacular performance in Panasonic’s current record 25.6% HIT® IBC cell, the passivated contact approach can be extended beyond a-Si:H to other thin-film contact structures, most notably, a stack of tunneling SiO₂ oxide layer and a heavily doped poly-Si (pc-Si) layer [2]. The latter structure is less sensitive to details of surface preparation, can tolerate a higher thermal budget, and has a lower contact resistance than the a-Si:H bilayer/TCO heterojunction contact stack. In this work, we demonstrate the excellent potential for a full-area passivated BSF contact to n-type Si cells.

2. PASSIVATED CONTACTS

As an alternative to <1% metal contact area and the associated complicated dopant patterning, the full-area passivated contacts discussed here combine excellent chemical passivation of dielectric surfaces using the Si/SiO₂ interface with field effect passivation induced by a material with the appropriate work function on the other side of the dielectric layer. As demonstrated below, this combination enables a lower surface recombination current prefactor (J₀) than is typically seen for standard thick dielectric stacks (e.g. SiO₂ + SiNₓ) on doped Si surfaces. Moreover, the passivated contact structure also serves a current-carrying contact: the dielectric layer is thin to allow carrier collection into the “transport” layer and from there into the metal contact.

Fig. 1. Band diagram schematics of full-area passivated contacts forming induced junctions to Si: a) p-n junction formed by p⁺ poly-Si to n- Si wafer, separated by a thin SiO₂ tunneling/buffer layer; b) n⁺ a-Si:H/i-a-Si:H heterojunction to n- Si wafer; c) passivated, electron-selective contact to n- Si wafer, formed by a semiconductor (such as GaP) with large valence band offset to Si for hole rejection, separated from the Si by a wide gap tunneling buffer layer.

Three types of the contacts are shown in Fig.1: (a) poly-Si/c-Si homojunction with poly-Si as a transport layer, and two heterojunctions, with transport layers of doped...
a-Si:H (b), and (c) a wide-band-gap semiconductor with a large valence band (VB) offset with Si. In all three cases, an important feature is a thin buffer/tunneling layer between the highly doped, defective transport layer and high lifetime Si wafer. Importantly, direct metal contact to Si with strong recombination due to interface states within Si gap is avoided, because the metal (not shown in Fig.1) only contacts the highly doped, defective transport layer, which is separated from the Si wafer by the buffer (tunneling) layer. In some cases, there is another interlayer such as a TCO in a-Si:H heterojunction cell. Secondly, these passivated contacts don’t require dopant diffusions and thus minimize surface and Auger recombination. Finally, no complicated contact patterning is involved.

Figure 2 shows band edge positions for a group of potential passivated contact materials. Some of them have very wide gap (e.g. SiO₂) and are suitable for buffer layers, due to their excellent interface passivation to Si.

![Dielectric and semiconductor materials as candidates for passivated contacts to Si. Their valence band maxima (VBM) and conduction band minima (CBM) energies are shown with respect to Si VBM. Data are compiled from J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265-291 (2004) and simulations at NREL.](image)

Several candidates for transport layer in n-type BSF contact to n-Si wafer can be identified from Fig. 2 (purple circles). They have energy gaps close to or wider than Si and CBM and workfunctions near the CBM of Si. P-type contact choice (red circles) is more difficult, as most metal oxides have energetically very deep valence band maxima (VBM) and cannot be p-type.

![Fig. 2. Dielectric and semiconductor materials as candidates for passivated contacts to Si. Their valence band maxima (VBM) and conduction band minima (CBM) energies are shown with respect to Si VBM. Data are compiled from J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265-291 (2004) and simulations at NREL.](image)

3. EXPERIMENTAL DETAILS

Passivated contacts were fabricated on both n-FZ and n-CZ wafers with resistivity of ~ 2-7 Ω-cm on either symmetric test structures, or on the 2x2 cm² solar cells with deep-driven in, B-emitter passivated by Al₂O₃/SiNₓ layer stack. The experimental details on cell process at Florida Solar Energy Center can be found elsewhere [1,2]. At NREL, a diffused boron emitter is formed in the furnace in 3 steps: 1) deposition of a B₂O₃ layer at 850°C; b) Diffusion of B from the B₂O₃ layer at 950°C; and c) additional high temperature oxidation at 980°C for 4.5 h to deep-drive in boron for a >1 micron deep doping profile with a B-emitter sheet resistance ~ 110 Ω/sq and surface [B] of ~10¹⁹/cm³. A concentrated KOH etch defines the mesa-isolated cells on the front and simultaneously planarizes the backside. The mesas get passivated along with the front emitter. Next, a ~ 1.5 nm thick tunneling SiO₂ is grown either thermally at 700°C or chemically in HNO₃. Then a few 10 nm thick n⁺ a-Si:H layer is deposited onto the tunneling back-oxide by PECVD. A subsequent anneal at ~ 850°C crystallizes a-Si:H into n⁺ poly-Si. FGA at 450°C or other hydrogenation further improves the contact passivation. The back poly-Si contact is metallized over its whole area. The TCO transport layers are sputter-deposited.

4. RESULTS AND DISCUSSION

Tuning the tunneling SiO₂ layer properties by fabrication and subsequent treatments strongly affect contact performance. In early NREL experiments, these SiO₂ layers were prepared by thermal oxidation to 70 nm, then chemically thinning the SiO₂. As expected, the iVoc of test structures drop from ~ 700 mV to below 600
mV as the oxide is thinned to 1 nm [7]. This is likely
due to oxide surface contamination, causing tunneling
recombination as the oxide is thinned to our target
thickness range of 1 – 2 nm. The iV_{oc} improves
dramatically by the deposition of doped a-Si:H,
providing field effect and likely passivating defects on
the SiO$_2$ surface (Fig. 3, diamond). Thermal treatment
is needed to crystallize the a-Si:H into poly-Si and
improve the oxide interfaces. Experimentally, annealing
at 850°C results in the best contact passivation.
Crystallization of poly-Si happens in just a few seconds
at 850°C, so the observed improvement after 30 min of
annealing shown in Fig. 3 is likely due to oxide/Si
interface restructuring subsequent FGA.

Fig. 3. Implied V_{oc} as function of annealing time
at 850°C of poly-Si/SiO$_2$ passivated contact on n-CZ wafer,
followed by FGA at 450°C for times indicated (squares,
circles, triangles)[5].

Implied V_{oc} well above 700 mV, J_0 below 10 fA/cm2,
and contact resistivities ~ 20 mΩ-cm2 were achieved
with our optimized passivated contact processes.
Annealing at 850°C compensates for large differences in
initial oxide quality and preparation conditions
(excluding contaminants). We observe similar contact
passivation and charge transport quality in oxides
created thermally at 700ºC in furnaces and chemically
in HNO$_3$. It is important to avoid surface contamination
that could degrade the contact and the bulk at 850°C.
With proper contamination control, chemical oxides
produced at as low as ~ 20ºC still provide excellent
passivated contacts (see Fig. 4).

Notably, this BSF passivated contact outperforms
NREL’s best dielectric surface passivation ($J_0 = 17$
fa/cm2) of the diffused BSF by an oxide/nitride stack,
while also serving as a contact. This emphasizes the
importance of an engineered combination of chemical
and field effect passivation using a multilayer structure.
Implementation of these full-area, induced BSF junction
passivated contacts into the front passivated B-emitter
cells obviates doped BSF formation, contact
 patterning, and should give lower J_0 and higher V_{oc}
of the cell.

This is confirmed by the high cell efficiency on n-type
FZ of 24.4% from FhISE [2]. In that cell, the
selective emitter structure is used in addition to low ~
150 Ω/sq uniform, deep B emitter, to further suppress
front recombination and thus take full advantage of the
BSF passivated contact with $J_0,_{back} \approx 7$ fA/cm2. FhISE’s
passivated B-emitter surface recombination $J_0,_{surf}$ is 11
fA/cm2. Excess p$^+$ doping under the front grid reduces
the front metal J_0 from 1000 fA/cm2 to 200 fA/cm2, thus
increasing the cell’s V_{oc} by 12 mV to 715 mV (Fig. 5).

Fig. 4. Implied V_{oc} of symmetric n$^+$ poly-Si/SiO$_2$
contact test structure with a chemical oxide layer
produced by HNO$_3$ at different bath temperatures (GIT).

At NREL, we have fabricated a 21.48% cell with the
structure similar to Fig. 5. The cell uses the n-FZ
diffused uniform emitter from FhISE. The back
metallization of the poly-Si/SiO$_2$ is challenging due to
the interface damage by e-beam deposition. We
mitigated this by increasing the thickness of the poly-Si
layer to 40 nm, introducing an a-Si:H interlayer between
metal and poly-Si, and using non-damaging
metallization techniques such as thermal evaporation [5].
For industrial applications, replacing dopant diffusions with clean oxidation and thin-film deposition steps not only simplifies the cell process flow, but also allows for easy dopant patterning on intrinsic poly-Si by dopant deposition or ion-implantation, followed by dopant drive-in. Since poly-Si is already defective and separated from the Si wafer by the tunneling SiO₂, it is more tolerant to defects and high doping. However, because of the high (1kΩ/sq) sheet resistance of the contact, implementation on the front requires a TCO layer as a transport layer or instead of poly-Si. Passivated contacts perform best in an IBC configuration, as demonstrated by the current ≥ 25% record cells from SunPower, Sharp, and Panasonic. ISFH team has achieved excellent results on ion-implanted, both p- and n-type poly-Si/SiO₂ contacts designed for IBC cell, with 10 fA/cm² for p-type and 1.3 fA/cm² for n-type contacts [6]. This IBC structure with n- and p-type poly Si back contacts could avoid bulk lifetime degradation in n-Cz during high quality emitter formation, if the contact annealing steps were short. However, good poly-Si/SiO₂ passivated p-type contacts are difficult to achieve, partly due to B segregation.

At NREL, ~ 120 Ω/sq, 1x10¹⁹ cm⁻² deep B emitter formation was tuned to minimize bulk lifetime degradation in n-Cz Si. Poly-Si/SiO₂ BSF cell results for the device structure in Fig. 5, but on an n-Cz Si wafer, are summarized in Table 2.

Table 2. NREL poly-Si/SiO₂ BSF cell on n-CZ Si wafer.

<table>
<thead>
<tr>
<th>n<sub>V</sub> (mV)</th>
<th>n<sub>sh</sub> (μA)</th>
<th>n<sub>0</sub> (fA/cm²)</th>
<th>S <sub>Si</sub> (mV)</th>
<th>Pseudo <sub>V</sub> (mV)</th>
<th>Pseudo <sub>n</sub> (%)</th>
<th><sub>P</sub> (m²/cm²)</th>
<th>FF (%)</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>717</td>
<td>3731</td>
<td>17.1</td>
<td>689</td>
<td>81.8</td>
<td>21.4</td>
<td>676</td>
<td>38</td>
<td>79</td>
</tr>
</tbody>
</table>

These results, especially 717 mV and 17 fA/cm² before metallization, suggest high industrial potential for passivated B-emitter, full-area poly-Si/SiO₂ BSF cells on n-Cz Si. The higher bulk lifetime (>3 ms) in the cell than that of a symmetric B-emitter (typically ~ 1.5 ms) suggests impurity gettering by n+poly-Si/SiO₂ layers.

As alternatives to poly-Si transport layers for the front of the cell, we have explored doped n-type ZnO, ITO, and SnO₂ on the tunneling SiO₂ layer. The best J₀ = 55 fA/cm² was obtained after FGA on the ITO [7]. Generally, our TCO contacts have lower ρ_c but higher J₀ than poly-Si/SiO₂. Their CBM being below CBM of Si and therefore having states inside the Si gap (Fig. 2) might contribute to this effect. Surprisingly, the ITO-based contact had low ρ_c = 11.5 mΩ-cm² despite being paired with ~ 5 nm thick SiO₂ that would block tunneling [7]. Possibly, In or Sn diffuses into the tunneling SiO₂, as suggested by the TEM micrographs (Fig. 6). The ITO/SiO₂ structures show relatively uniform, ~ 5nm thick SiO₂ layer after FGA. After few minutes exposure to the TEM electron beam one can see changes in the SiO₂ layer from the ITO side, likely due to In or Sn diffusion at elevated temperatures. Possibly, this diffusion already starts during FGA.

CONCLUSIONS

Passivated contacts eliminate 1) the need for dopant diffusions into the high quality Si wafer; 2) complicated contact patterning, selective emitter and local doping for reduced contact area; 3) direct Si/metal contact as major cause of recombination losses in the cell. The resulting combination of field effect and chemical passivation with excellent current transport makes these contacts attractive for high efficiency, low cost Si PV.

ACKNOWLEDGEMENTS

This work was supported by U.S. DOE (DE-EE0006336, FPACE-II), and DE-AC36-08GO28308 (DE-EE00025783, Si PV at NREL).

REFERENCES