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1 Introduction 
The deployment and use of lithium-ion (Li-ion) batteries in automotive and stationary energy 
storage applications must be optimized to justify their high up-front costs. Given that batteries 
degrade with use and storage, such optimizations must evaluate many years of operation. As the 
degradation mechanisms are sensitive to temperature, state-of-charge (SOC) histories, current 
levels, and cycle depth and frequency, it is important to model both the battery and the 
application to a high level of detail to ensure battery response is accurately predicted. 

To address these issues, the National Renewable Energy Laboratory (NREL) has developed the 
Battery Lifetime Analysis and Simulation Tool (BLAST) suite. This suite of tools pairs NREL’s 
high-fidelity battery degradation model with a battery electrical and thermal performance model, 
application-specific electrical and thermal performance models of the larger system (e.g., an 
electric vehicle), application-specific system use data (e.g., vehicle travel patterns and driving 
data), and historic climate data from cities across the United States. This provides highly realistic 
long-term predictions of battery response and thereby enables quantitative comparisons of varied 
battery use strategies.  

1.1 BLAST for Vehicles (BLAST-V) 
BLAST-V is specifically designed to evaluate electric vehicles, inclusive of hybrid electric 
vehicles, plug-in hybrid electric vehicles, and battery electric vehicles. It employs historical year-
long travel histories along with travel routing logic to enable evaluation of vehicle and battery 
responses to infrastructure deployments (e.g., fast chargers, electrified roadway networks, battery 
swapping stations), as well as the ability to optimize infrastructure deployments. These 
capabilities have supported numerous analyses of electric vehicle use strategies, including: 

• Identifying the requirements fast charging places on battery electric vehicle batteries and 
the possible improvements to vehicle utility under realistic conditions 

• Evaluation of home, public, and workplace charging on vehicle utility and battery life 

• Quantifying effects of climate and vehicle and battery thermal management on vehicle 
utility and battery life. 

The results of BLAST-V simulations can be used in NREL’s Battery Ownership Model to 
evaluate the economic and greenhouse gas impacts of electric vehicle scenarios as well. 

1.2 BLAST for Stationary Applications (BLAST-S) 
BLAST-S is intended for evaluating storage in stationary applications. Users can enter their own 
battery duty cycles for direct simulation to evaluate the impacts of different battery sizes, thermal 
configurations, climates, etc. This approach has been applied in the past to study Li-ion battery 
degradation and lifetime in Community Energy Storage applications. Alternatively, users can 
apply NREL’s optimal peak-shaving control algorithm to a load profile (e.g., for a building, 
transformer, or substation) for simulations of specified batteries. This pathway has been 
employed to evaluate the effectiveness of batteries providing demand charge mitigation in 
commercial facilities.  
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1.3 BLAST for Behind-the-Meter Applications (BLAST-BTM Lite) 
BLAST-BTM Lite has been developed as a quick, user-friendly means of sizing energy storage 
devices for behind-the-meter demand charge management applications. It trades simplified 
battery performance models for computational efficiency, but includes a built-in optimization 
algorithm to identify cost-optimal storage configurations.  

BLAST-BTM allows users to supply their own demand and photovoltaic (PV) generation power 
profiles, but also interfaces with EnerNOC’s historic commercial building load database and 
NREL’s PVWatts tool to supply this data if necessary. A generic utility rate structure framework 
allows for the calculation of electricity costs under a broad array of utility rate structures with 
minimal user input.  

1.4 Accessing and Using BLAST Tools 
NREL welcomes the use of its BLAST tools by industry, academia, and others interested in 
applying their capabilities to the study of long-term battery use and optimization. Accordingly, 
BLAST-BTM Lite is freely available for download at the following site: 

http://www.nrel.gov/transportation/energystorage/blast.html 

Please note that NREL does not provide user support for BLAST-BTM Lite beyond this 
document.  

Due to their complexity and anticipated need for user support, BLAST-V and BLAST-S are only 
accessible via specific agreements with NREL. Such agreements may include, but are not limited 
to, collaborative research efforts resulting in publishable papers, licensing of the models with 
contracted user support for proprietary studies, etc. Please contact Eric Wood 
(Eric.Wood@nrel.gov) to learn more.  

http://www.nrel.gov/transportation/energystorage/blast.html
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2 Modelling Approach 
As the purpose of BLAST is generally to run long-duration simulations (e.g., years), and often to 
perform numerous iterations across different inputs (e.g., hundreds), BLAST models are 
designed to favor efficiency. Accordingly, some aspects of battery performance are not 
accounted for (e.g., fast transient voltage response). However, the models are still sufficiently 
detailed as to provide the metrics necessary for assessing the performance of long term 
installations. The model includes three primary components, as illustrated in Figure 2.1:  an 
electrical model, a thermal model, and a degradation model. 

 
Figure 2.1. Illustration of BLAST battery modeling components 
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2.1 Battery Electrical Modeling 
BLAST includes two options for battery electrical modeling:  a simple energy accounting model, 
and a zero-order equivalent circuit model. The energy accounting model requires specification of 
available battery energy, maximum power limits, and direct current (DC) efficiency (all user 
specified), then computes battery SOC by integrating power flows. Allowable power is 
calculated from the specified power limits and SOC, and heat generation is computed using the 
DC efficiency value. 

The equivalent circuit model calculates battery voltage and heat generation as a function of 
current. This model assumes a voltage source, representative of the open circuit voltage (OCV) 
of the electrochemistry, in series with a resistor, representative of the combined electrically and 
electrochemically resistive elements of the cell. The value of the voltage source is determined by 
a look-up table using battery SOC, while the value of the resistor is determined by a look-up 
table using both the battery SOC and temperature. BLAST’s baseline relationships were 
determined by laboratory testing of a single Li-ion cell incorporating a nickel-cobalt-aluminum 
cathode and a graphite anode with a 41-Ah capacity. Note that in BLAST-S and BLAST-V, the 
user may provide their own OCV and resistance look-up tables to simulate cells of a different 
chemistry. 

BLAST allows for adjusting the capacity and voltage of the cell to represent larger systems with 
a single electrical node. When cell capacity is increased, cell resistance is decreased via an 
inverse relationship, and vice versa. When voltage is increased, resistance is increased 
proportionately, and vice versa. This is similar to adding more cells in parallel or series, 
respectively, but forgoes the added complexity of modeling additional cells. Figures 2.2 and 2.3 
show the baseline BLAST OCV and resistance values as a function of SOC and temperature 
when scaled to a 400V, 60.6-Ah pack.  

Alternatively, user-specified OCV and resistance tables may be entered to represent different cell 
chemistries. BLAST also allows the number of cells modeled in series to be selected by the user 
rather than (or in conjunction with) scaling the voltage of the cell. As such, the user has the 
option to model a 400V pack as one 400-V cell, 100 4-V cells, or any other whole number of 
cells to yield the desired compromise of fidelity and computational efficiency. BLAST’s 
equivalent circuit model is only single string, however; it does not allow the simulation of 
multiple cells or strings of cells in parallel. 
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Figure 2.2. Pack OCV vs. SOC for a 400-V (max), 60.6-Ah pack 

 
Figure 2.3. Resistance vs. SOC and temperature for a 400-V (max), 60.6-Ah pack 

Due to the nature of the tests performed to acquire the resistance data, data points below 20% 
SOC at 0°C and 30% SOC at -15°C were unavailable. For these conditions, we have elected to 
hold resistance constant over low SOCs rather than extrapolate resistance trends to higher values. 
Similarly, for temperatures below -15°C, we apply the -15°C resistance data directly. 

The terminal voltage of each cell is then given by Equation 2.1 for any arbitrary current, I, and 
the delivered power can then be calculated using Equation 2.2. Equation 2.3 is applied to 
calculate the change in SOC over time, which is in turn used to look up cell resistance and OCV 
from the relationships established in Figures 2.2 and 2.3. Note that this method assumes a 100% 
coulombic efficiency (a reasonable assumption for modern Li-ion batteries). However, inclusion 
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of the resistance term insures accurate condition-specific accommodation of the battery’s energy 
efficiency. Such energy losses are translated to heat generated by the cell in Equation 2.4. 

𝑉 = 𝑂𝑂𝑉 + 𝐼 × 𝑅 Equation 2.1 

𝑃 = (𝑂𝑂𝑉 + 𝐼 × 𝑅) × 𝐼 Equation 2.2 

𝑑
𝑑𝑑
𝑆𝑂𝑂 = 𝐼/𝑂 Equation 2.3 

𝑄 = 𝐼2 × 𝑅 Equation 2.4 

 
Where: 

I Battery current 

OCV Open circuit voltage of battery 

P Power at the battery terminals 

Q Heat generated by the battery 

R Resistance of battery 

SOC State of charge of battery 

V Terminal voltage of battery 

2.2 Battery Thermal Modeling 
The capability to simulate battery temperature is included in the BLAST model using the 
generated heat value from the electrical model, the thermal mass of the battery, thermal 
connections to a system container and the ambient environment, and consideration of active 
cooling and heating systems. Equations 2.5–2.7 define the lumped capacitance thermal network 
of the battery and its environment. Representations of how this model is applied to vehicular and 
stationary applications are shown in Figures 2.4 and 2.5. Effective heat transfer, irradiance, and 
thermal mass coefficients can be supplied by the user to make this model representative of a 
wide range of battery systems. Ambient temperature (Ta), soil temperature (Ts), and sky 
temperature (Tsky, for calculating radiation) are sourced from historical databases. 

𝑀𝑐
𝑑
𝑑𝑑
𝑇𝑐 = 𝐾𝑎𝑐(𝑇𝑎 − 𝑇𝑐) + 𝐾𝑏𝑐(𝑇𝑏 − 𝑇𝑐) + 𝐾𝑠𝑐(𝑇𝑠 − 𝑇𝑐) + 𝑞𝑟𝑎𝑟 + 𝑞ℎ𝑣𝑎𝑐 Equation 2.5 

𝑀𝑏
𝑑
𝑑𝑑
𝑇𝑏 = 𝐾𝑎𝑏(𝑇𝑎 − 𝑇𝑏) + 𝐾𝑏𝑐(𝑇𝑐 − 𝑇𝑏) + 𝑞𝑏𝑏𝑏𝑠 + 𝑄 Equation 2.6 

𝑞𝑟𝑎𝑟 = 𝜀𝜀𝜀�𝑇𝑠𝑠𝑠4 − 𝑇𝑐4� Equation 2.7 
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Where: 

ε Effective emissivity 

σ Stefan-Boltzmann constant 

A Effective area 

Kab Heat transfer coefficient from ambient to battery 

Kac  Heat transfer coefficient from ambient to container 

Kbc  Heat transfer coefficient from battery to container 

Ksc  Heat transfer coefficient from soil to container 

Mb Thermal mass of battery 

Mc Thermal mass of container 

Q Heat generated by the battery 

qbtms Heat delivered to battery from battery thermal management system 

qhvac Heat delivered to container from heating, ventilation, and air conditioning 

qrad Heat radiated to container from environment 

Ta Ambient Temperature 

Tb Battery Temperature 

Tc Container Temperature 

Ts Soil Temperature 

Tsky Sky Temperature 
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Figure 2.4. Lumped capacitance thermal model for vehicular applications in BLAST 

 

 
Figure 2.5. Lumped Capacitance Thermal Model for stationary applications in BLAST 

Active heating and cooling of the battery and container (qb and qc, respectively) are available for 
simulation as well. The first method allows the effective heat transfer coefficient between 
different elements (e.g., battery and container, container and environment, etc.) to be 
thermostatically changed and associated with an increased electrical auxiliary load. This can be 
used to represent, for example, an electric fan used to move air between the environment and 
container. The second method allows the thermostatic removal (addition) of heat directly from 
(to) the battery or container, again associated with an increased electrical auxiliary load via the 
definition of a coefficient of performance. This method can be used to represent, for example, 
refrigerant-based cooling systems. 

The user can also select the number of nodes to represent the battery itself from one to the 
number of modeled cells. Equations 2.5 and 2.6 are expanded to accommodate the number of 
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selected nodes. Care must be taken in specifying the effective heat transfer coefficients between 
battery thermal nodes. 

2.3 Battery Wear Model 
Electrical and thermal histories of the battery calculated by the aforementioned models are 
passed to the battery wear model. This model is described in detail in [1]. This physically 
justified, empirically fit model captures sensitivity to voltage, SOC, temperature, depth of 
discharge, and cycling frequency to forecast irreversible reductions in battery capacity and 
increases in battery resistance due to loss of active sites, solid electrolyte interface layer growth, 
and other electrochemical degradation processes that occur within Li-ion batteries. The baseline 
model included in BLAST has been created from publically available data sets for a NCA 
chemistry. At present BLAST does not include the capability for user-defined battery life 
models. However, this capability is planned for the future. 
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3 BLAST-V 
BLAST-V is the original development of BLAST designed to investigate the long-term 
performance of Li-ion batteries in electric vehicle applications. In addition to the models 
discussed in Section 2, BLAST-V includes numerous additional features to accurately simulate 
the long-term interaction of a battery with the vehicle in the presence of various charging 
infrastructure deployments. Vehicle efficiency and driver behavior are considered in detail, with 
integrated algorithms for tour election and rerouting travel to employ available infrastructure that 
accurately emulate real-world driver decisions. The ability to simulate the effects of vehicle and 
grid interactions (managed charging and bidirectional power flow) has also been incorporated. 

Complete details on BLAST-V will be available in a future release of this document. 
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4 BLAST-S 
BLAST-S is a variant of BLAST originally developed to investigate the long-term performance 
of Li-ion batteries in Community Energy Storage applications. The simulator has since been 
expanded to be more broadly applicable to an array of stationary applications. It builds upon the 
models discussed in Section 2 with additional inputs, battery control algorithms, and other 
features to allow analysis of peak-shaving applications as discussed below. 

An intelligent, model-predictive battery controller has been developed and is included in 
BLAST-S for optimal peak-shaving simulations. The objective of this controller is to minimize 
the peak net demand for an input load profile over a specified time frame as measured over 15-
minute intervals. The calculation of battery commands to achieve this end is divided into two 
time scales. First, an interval load target is optimized. The optimal value represents the lowest 
level to which the peak net meter load can be reduced with the support of the battery. Second, 
faster battery commands are computed and implemented every 1 minute within each 15-minute 
interval to best achieve the interval load target, taking into account hardware limitations and 
fluctuations in net demand.  

4.1 Interval Load Targeting 
This algorithm seeks to identify the minimum interval load target achievable within the energy 
and power constraints of the battery. The algorithm, defined at a high level below, can be run at 
the beginning of each new 15-minute interval, each new day, or each new month as specified by 
the user. It is an iterative algorithm premised on selecting a potential interval load target, 
evaluating the battery’s response over a future forecast when said target is implemented, then 
comparing the computed battery SOC and meter load to desired limits. Figure 4.1 illustrates the 
time period of interest to the algorithm and defines relevant variables, while Figure 4.2 depicts 
the process described below in flowchart format. 

1. Evaluate system response when the maximum observed interval load in memory is 
employed. If this interval load target can be achieved without exceeding battery SOC 
limits, use this target. If not, proceed to step 2. 

2. Evaluate system response when the maximum interval load in the forecast is employed. If 
this interval load target cannot be achieved without exceeding battery SOC limits, then 
the battery has no ability to affect the peak interval load over the period of interest. In this 
case, set the interval load target to the maximum. Otherwise, proceed to step 3. 

3. Reaching this step implies that the optimum interval load target is somewhere between 
the maximum previously observed interval load in memory and the maximum interval 
load in the forecast. The following iterative approach is used to identify the optimum, as 
illustrated in Figure 4.2: 

A. Define a starting interval load target delta as half of the difference between the 
maximum previously observed interval load in memory and the maximum 
interval load in the forecast. 

B. Define a new interval load target guess by subtracting the interval load target 
delta from the maximum interval load in the forecast. 
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C. Evaluate the system response when the new interval load target is employed. If 
this interval load target cannot be achieved without exceeding battery SOC limits, 
then define a new interval load target guess by adding half of the previous delta to 
the previous guess and repeat this step (3.C). If this interval load target can be 
achieved, proceed to step 3.D. 

D. If the achieved minimum battery SOC is within 1% of the battery target SOC or 
the interval load target delta is less than 0.1% of the maximum power rating of the 
battery inverter, then apply the current interval target. Otherwise, define a new 
interval load target guess by subtracting half of the previous delta from the 
previous guess and return to step 3.C. 

 
Figure 4.1. Illustration of time periods and load values employed for calculating interval load 

target 
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Figure 4.2. Flowchart of target interval load calculation algorithm 

This optimization problem is relatively well behaved:  while the relation between the interval 
load target and the resultant minimum achieved SOC can be highly nonlinear, it is monotonic. 
As such we have found that a simple bisection method for optimization is both reliable and 
reasonably efficient. Generally, fewer than 10 iterations are necessary to find the optimum. 
Combined with the need to run this algorithm relatively infrequently (at most, once every 15 
minutes), it is therefore readily implementable in real time with minimal computational 
resources. An example convergence is shown in Figure 4.3. 

 
Figure 4.3. Example iterative walk to optimum interval load target (94 kW) 
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The maximum, minimum, and target SOC values can be set by the user within BLAST. The 
target SOC defines the lowest SOC that the algorithm will plan the battery to discharge to; 
however, this value may not be achieved when the actual net demand and/or battery response 
differs from that forecasted. For example, if actual net load is less than forecasted, the battery 
will need to discharge less than planned, and the lowest observed SOC will be greater than the 
target SOC. On the other hand, when actual net load is greater than forecasted, the battery will 
need to discharge more than planned, and the lowest observed SOC will be less than the target 
SOC. Thus, while setting a higher target SOC reduces the amount of energy available for peak 
shaving, it also increases the margin for forecast errors. As the control algorithm will not allow 
the battery to discharge below the user specified minimum SOC, the margin is defined by the 
difference in the target and minimum SOCs. 

The battery model employed to evaluate system response within the interval load targeting 
algorithm is selectable between the energy accounting model and the equivalent circuit model. 
For computational efficiency, the energy accounting model is recommended. Note that using 
different models for evaluating system response within the interval load targeting algorithm and 
the subsequent simulation provides the opportunity for errors in forecasted battery response. 
Done properly, this can reflect the reality of applying imperfect performance models to predict 
real-world battery performance. 

The reset frequency of the interval load target memory is controllable by the user – it can be 
specified as daily or monthly. The forecast period can be set to end of day, end of month, or a 
user-specified duration. Use of end-of-day and shorter 24-hour forecasting windows can result in 
overly aggressive discharging in the near term, leaving the battery at an inadequate SOC to 
address subsequent load peaks. Where diurnal trends exist, as is often the case, increasing the 
forecasting window to 48 hours or longer is recommended where consistently low peak loads are 
desired. Predicting out to the next ratchet (e.g., end of the month) will reduce battery activity and 
likely battery wear as well. However, the accuracy of long-term forecasts must be considered. 

4.2 Sub-Interval Control 
The sub-interval control seeks to achieve the interval load target by observing real-time net 
demand and commanding real-time battery power. It is important to recognize that it is not 
critical for the meter load to be exactly at or below the target interval load for the entire interval, 
but rather that the average meter load over the entire interval is equal to or less than the target. 
For example, consider a case where the target interval load is calculated at 100 kW. From the 
perspective of the monthly utility bill, it is perfectly acceptable for the instantaneous meter 
power to well exceed 100 kW, so long as the average power over the interval is 100 kW or less. 
In cases of high load variability (i.e., high PV penetration and intermittent irradiance), limitations 
on battery power may in fact make it infeasible to keep instantaneous meter load below the target 
interval load. We therefore define and continuously update a trigger value based on the observed 
interval loads and the interval load target to allow and accommodate for such behavior per 
Equation 4.1. 
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𝐿𝑏𝑟𝑡𝑡𝑡𝑡𝑟(𝑑) =
𝐿𝑡𝑖𝑏𝑡𝑟𝑣𝑎𝑖 𝑏𝑎𝑟𝑡𝑡𝑏(𝑑2 − 𝑑1) − ∫ 𝐿𝑟𝑡𝑐𝑟𝑟𝑟𝑡𝑟(𝑑)𝑑𝑑𝑏

𝑏1
𝑑2 − 𝑑1

 Equation 4.1 

 
Where: 

𝐿𝑡𝑖𝑏𝑡𝑟𝑣𝑎𝑖 𝑏𝑎𝑟𝑡𝑡𝑏 = interval target load 

𝐿𝑟𝑡𝑐𝑟𝑟𝑟𝑡𝑟(𝑑) = recorded meter load, inclusive of battery action, at time 𝑑 

𝑑2 = time at end of interval 

𝑑1 = time at beginning of interval 

𝑑 = present time 

The power request from the battery is then calculated via Equation 4.2: 

𝑃 𝑟𝑡𝑟𝑟𝑡𝑠𝑏 = 𝐿𝑏𝑟𝑡𝑡𝑡𝑡𝑟(𝑑) − 𝐿𝑟𝑡𝑏𝑎𝑖𝑟+𝑃𝑃(𝑑) Equation 4.2 

 
Note that when the trigger value is greater than the facility demand minus PV power, Equation 
4.2 produces a positive power request to charge the battery. In this manner, we command the 
battery to charge whenever this is the case, resulting in a greedy charge response that seeks to 
maximize battery SOC when it will not imply an increase in demand charges. While this does 
result in on-peak charging of the battery, and thus potentially higher energy costs, it also 
maximizes availability of the battery for reducing demand charges. 

4.3 DC Power, Hardware Limitations, and Charging 
While the interval load targeting process considers the SOC, maximum power capabilities, and 
alternating current (AC) to DC conversion efficiency of the battery system, the power request of 
Equation 4.2 does not. To translate this value to an achievable battery power, we first crop the 
request based on the maximum AC power capability of the inverter, then account for the one-
way inverter efficiency (user specified) to translate the AC request to a DC request. This 
specified efficiency should be set slightly low relative to peak efficiencies achieved by modern 
inverters to account for the fact that our simulations do not scale inverter efficiency with output 
power levels. Next, we calculate the DC battery current (see Section 2), then check and apply 
battery current, voltage, and SOC limitations. Where demand and PV power predictions as well 
as battery and system models are perfect, this process should not affect the power request in 
Equation 4.2, as these factors are accounted for in the control algorithm discussed previously. 
However, where forecast and/or model errors exist, these factors may limit the power request, 
potentially resulting in suboptimal peak shaving. 
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5 BLAST-BTM Lite 
BLAST-BTM Lite has been developed to offer a simpler and more computationally efficient 
means of evaluating behind-the-meter energy storage. Subsections 5.1 through 5.4 discuss the 
specific changes that have been made to achieve this end. Subsection 5.5 discusses how to use 
the tool and describes the required inputs.  

5.1 Modelling 
To maximize computational efficiency, several changes and limitations to the modelling 
approach have been made to BLAST-S. First, the time step used for simulations is set to 15 
minutes. This was selected to agree with the common peak power metering period employed by 
utilities in setting demand charges. The battery electrical modeling is restricted to kilowatt-hour 
accounting on a single cell, and thermal and degradation models are excluded. 

5.2 Peak Shaving Control 
Only the peak shaving controller is included. Only perfect load forecasting is employed—there is 
no facility for forecast error. As such, BLAST-BTM Lite is set to forecast load only on a 
monthly basis. Further, the peak load memory resets monthly as well. Peak shaving sub-interval 
control is excluded, because the simulation time step is set to 15 minutes. 

5.3 Demand and Solar Power Input 
The user may input both facility demand and PV power production separately. This may be done 
directly by importing a .csv file provided by the user. Alternatively, 98 year-long historical 
facility demand profiles have been acquired from EnerNOC [2] and preloaded for selection by 
the user. BLAST-BTM Lite has also been linked to NREL’s PVWatts, which provides an 
estimate of hourly PV production by location on an hourly basis using typical meteorological 
year data [3]. BLAST-BTM Lite allows the user to specify the latitude and longitude of a 
location of interest, which is then used to call PVWatts and import the PV production data for 
use in BLAST-BTM Lite simulations. Note that as the provided data are hourly, this will 
underestimate the variability in 15-minute interval loads.  

5.4 Energy Storage System Optimizer 
To capitalize on the improved efficiency of the tool, a battery size optimizer has been added. 
This optimizer allows the user to specify a range of energy storage systems, then to identify the 
most cost-effective system for his or her facility. Internal rate of return (IRR) over a user-
specified term is employed to measure cost effectiveness, as computed subsequently (see 
Equation 5.9). 

Once an array of energy storage system (ESS) minimum durations and energy fractions are 
defined (see Section 5.5.1), BLAST-BTM Lite begins simulating individual combinations of 
these values in search of a cost optimal. The algorithm starts its search at the lowest energy, 
highest power-to-energy ratio ESS defined by the user. It first seeks the IRR-optimal power-to-
energy ratio while holding the ESS energy constant by incrementally decreasing the power-to-
energy ratio and evaluating the resultant IRR. It assumes that IRR will monotonically increase to 
a maximum value as the ESS power-to-energy ratio is decreased, then monotonically decreases 
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thereafter.1 Thus, it will continue decreasing the ESS power-to-energy ratio until an IRR is 
computed and found to be smaller than the previous iteration. Once this occurs, the algorithm 
retains the previous value as cost-optimal at the given ESS energy level.  

Once the optimal ESS power-to-energy ratio has been found for a given ESS energy level, the 
ESS energy level is increased to the next user-defined value and the process is repeated. Similar 
to the search for optimal power-to-energy levels, the algorithm assumes that IRR will 
monotonically increase with increasing ESS energy up to its maximum value, then 
monotonically decrease as ESS energy continues to rise thereafter. Accordingly, once it is found 
that larger ESS energy levels yield lower IRR, the algorithm terminates. This entire process is 
illustrated by example in Figure 5.1. The algorithm begins with the lowest selected energy (87.9 
kWh, purple) and finds an optimal power-to-energy ratio of 0.5 at iteration 4. Next, the process is 
repeated at a higher energy level (131.9 kWh, green), finding an improved IRR at iteration 9. 
Progression to a higher energy level (175.9 kWh, red) shows a reduced IRR once the power-to-
energy ratio is optimized. Thus iteration 9 is identified as the optimal battery configuration. 

 
Figure 5.1. Example search algorithm for optimal power-to-energy ratio 

 
5.5 User Inputs 
The front panel of BLAST-BTM Lite is shown in Figure 5.2. Optimizing a battery for a peak-
shaving application is as simple as completing the four main input sections (hardware options, 
demand options, PV options, and rate structure), specifying an investment term for IRR 
calculations, and then clicking the “Run” button. The inputs can be completed in any order as 
desired by the user, but they all must be completed to enable the optimization algorithm to run. 
The following subsections detail the required inputs.  

                                                 
1 While this has not been proven to be true, it has been found to hold up over all cases explored to date. 
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Figure 5.2. BLAST-BTM Lite front panel 

5.5.1 Hardware Options 
This panel serves as inputs for defining the battery performance and cost values employed by the 
simulation and is shown with its default values in Figure 5.3.  

 
Figure 5.3. Hardware inputs 
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Upfront Installed Cost values define initial battery costs per Equation 5.2, where P and E are the 
installed ESS power (in kilowatts) and energy (in kilowatt-hours), respectively. 

Installed Cost = ($/kW Upfront) * (P) + ($/kWh Upfront) *(E) + ($ Upfront Base) Equation 5.2 

Incentives inputs allow definition of a third-party credit given for the installation of the energy 
storage device. Equation 5.3 defines how the incentive is calculated from these values. 

Incentive = min[(Max Fractional Incentive) * (Upfront Installed Cost) ,  

($/kW Incentive) * min( P, E/(Min Hours at Incentive kW Required))] Equation 5.3 

Operational & Maintenance Costs define recurring costs resulting from battery operation. 
Equation 5.4 defines how these are combined to compute the recurring annual cost. 

O&M = P * ($/kW annual) + E * ($/kWh annual) + ($ Annual Base) Equation 5.4 

Hardware parameters bound the battery size and operation. Target daily minimum SOC defines 
the lowest SOC to which the battery will plan to operate. ESSs are specified by minimum 
duration and energy fraction. The minimum duration defines the minimum time in which the 
system can fully discharge 100% of its available energy; e.g., specifying a 2-hour minimum 
duration for a 100-kWh battery will yield a 50-kW system (a power-to-energy ratio of 0.5).  

To define the energy fraction, we first must define the maximum energy storage value, Emax. This 
metric represents the approximate amount of 100% efficient energy storage required to fully 
flatten the meter load (see Figure 5.4). Emax can be precisely calculated over a 24-hour period for 
a diurnal load cycle using Equation 5.5. BLAST-BTM Lite applies Equation 5.1 over an entire 
year. While this approach is not perfectly accurate of the intent of Emax, it is sufficiently 
representative for the purposes of this tool.  

𝐸𝑏𝑎𝑚 =
∫ |𝐿 − 𝐿𝑏𝑡𝑎𝑖|𝑑𝑑𝑏2
𝑏1

2(𝑑2 − 𝑑1)  Equation 5.5 
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Figure 5.4. Illustration of the maximum energy storage required for maximum theoretical demand 

charge reduction (Emax) in the presence of a perfectly sinusoidal diurnal load profile 

BLAST-BTM Lite calculates Emax automatically once the demand and PV profiles are loaded. 
Then, the available energy of the battery (E) is defined as Emax times the user-defined energy 
fraction. Use of energy fractions between 1% and 20% are recommended as starting points to 
find the most cost-effective storage systems for a given facility.  

5.5.2 Demand and PV Options 
These panels provide for user selection of facility demand and PV production profiles. As noted, 
BLAST-BTM Lite allows selection of preloaded demand profiles from EnerNOC [2], as well as 
PV profiles provided by PVWatts [3]. User-entered values are also allowed via CSV. Note that 
when providing CSV data for either demand or PV profiles, the .csv file must be a single column 
of data with the unit of watts. The .csv file must contain either 8,760 hourly values or 35,040 15-
minute values, starting at 12:00:00 AM on January 1.  

5.5.3 Rate Structure Options 
Rate structure options, shown in Figure 5.5, allow for the creation of a utility rate structure to 
which the facility will be billed. Timing and applicability of the rate coefficients are illustrated in 
Figure 5.6. Different rate structures are specified by summer and winter seasons. Four demand 
charges can be specified in the power price fields:  one each for off-, mid-, and on-peak periods, 
and a facility charge that applies to all hours. Demand charges are computed monthly via 
Equation 5.6. Monthly energy charges and the total monthly utility bill are then computed by 
Equations 5.7 and 5.8, respectively. 
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Figure 5.5. Rate structure inputs 

 

 
Figure 5.6. How to define off-, mid-, and on-peak time periods and applicability of cost values 
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Monthly Demand Charge = (maximum off-peak load) * (off-peak $/kW) + (maximum 
mid-peak load) * (mid-peak $/kW) + (maximum on-peak load) * (on-peak $/kW) + 
(maximum load) * (facility $/kW)  Equation 5.6 

Monthly Energy Charge = (total off-peak energy) * (off-peak $/kWh) + (total mid-peak 
energy) * (mid-peak $/kWh) + (total on-peak energy) * (on-peak $/kWh) Equation 5.7 

Monthly Utility Bill = Monthly Demand Charge + Monthly Energy Charge + Monthly 
Flat Rate Equation 5.8 

5.5.4 Internal Rate of Return 
IRR is used for assessing the cost effectiveness of the storage system. To do this, the total annual 
utility bill for the assumed facility is calculated via Equation 5.8 when no storage system is 
assumed. Then, the annual utility bill is calculated for a specified energy storage system and 
subtracted from the “no storage” bill to yield the annual savings. Once the annual savings are 
known, IRR is computed iteratively to satisfy Equation 5.9, where N is the user-specified IRR 
term in years. 

𝑈𝑈𝑈𝑈𝑈𝑈𝑑 𝑂𝑈𝐶𝑑 − 𝐼𝑈𝐼𝐼𝑈𝑑𝐼𝐼𝐼 =  ∑ 𝐴𝑖𝑖𝑟𝑎𝑖 𝑆𝑎𝑣𝑡𝑖𝑡𝑠
(1+𝐼𝐼𝐼)𝑛

𝑁
𝑖=1  Equation 5.9 

5.5.5 Evaluating and Saving Outputs 
Once all of the inputs have been provided, clicking the “Run” button on the main panel will 
initiate the optimization algorithm discussed in Section 5.4. When the optimization is complete, 
two figures will be created. The first presents the calculated IRR for all of the simulated ESS, an 
example of which is presented in Figure 5.7. Each data point represents a uniquely sized ESS. 
The power-to-energy ratio of that system is defined by the x-axis; the amount of available energy 
defined for that system is constant within each individual trace as specified by the legend in 
kilowatt-hours. The figure can be saved via the “File” menu in the upper left hand corner of the 
window. The data can be exported to a .csv file using the “Write Results to CSV” button in the 
lower left hand corner of the window. 
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Figure 5.7. Example IRR battery comparison output of BLAST-BTM Lite 

Summaries of the ESS specifications and results of operating that system on the selected facility 
are presented at the top of Figure 5. The top subplot compares the original load profile to the 
aggregate load profile with the ESS acting to reduce peak loads. Battery power and SOC are 
shown in the following two subplots. The figure can be saved via the “File” menu in the upper 
left hand corner of the window. The data can be exported to a .csv file using the “Write Results 
to CSV” button in the lower left hand corner of the window. 
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Figure 5.8. Example optimal battery configuration results output of BLAST-BTM Lite 
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