Field Test Results of Using a Nacelle-Mounted Lidar for Improving Wind Energy Capture by Reducing Yaw Misalignment

Paul Fleming, Andrew Scholbrock, Alan Wright

Nordic Wind Power Conference

November 4–5, 2014
Stockholm, Sweden
Lidar-Enhanced Controls Research at NREL

• NREL, working collaboratively with research partners, has developed, analyzed, and field tested lidar-enhanced strategies for improving:
 o Pitch control
 o Torque control
 o Yaw control
 o Active power control.

• Several research campaigns ongoing

• Focus of this presentation is yaw control.
Note on References

• Most of the results to follow are more fully described in available publications, or else articles under review

• Contact paul.fleming@nrel.gov to request references and for an explanation of slides and further details.
Motivation

• Modern commercial turbines use active yaw control, typically based on measurements from nacelle-mounted wind vanes

• Static errors in measurement can occur as a result of:
 o Rotor wake
 o Complex flow from nacelle
 o Environmental impacts on the wind vane
 o Poor calibration or installation.

• Yaw misalignment can lead to reduced power production.

Photo by Lee Jay Fingersh, NREL
Yaw Misalignment Research Campaigns

• **Campaign one:**
 - Learned and applied nacelle vane correction function
 - Partnered with:
 - Avent Lidar Technology
 - Renewable NRG Systems (RNRF).

• **Campaign two:**
 - Directly used lidar as control signal for yaw controller
 - Partnered with:
 - ZephIR Lidar.
Turbine Descriptions

• **Controls Advanced Research Turbines (CARTs) 2/3:**
 - Hub height of 36.6 meters
 - Rotor diameter of 42.6 meters
 - Power rated at 600 kilowatts
 - Two or three blades.

• **Extensively instrumented:**
 - Dedicated meteorological (met) mast
 - Strain gauges
 - Accelerometers.

Photo credit: Andrew Scholbrock, NREL
Research Campaign One

• NREL/Avent/RNRG collaborated on uses of lidars for improved turbine control
• Phase one used the lidar measurement to determine yaw misalignment correction function running the baseline controller
• Phase two collected data with and without the correction function (two hours per cycle).
Lidar Specifications

• Avent Wind Iris
 o Sample rate of 2 hertz
 o Pulsed lidar
 o Ten measurement ranges
 o Two horizontal beams
 o Half-angle of 15°
 o Calibrated to the rotor axis to within 0.1°.

Illustration courtesy of Samuel Davoust, Avent Lidar Technologies

Photo by Lee Jay Fingersh, NREL
Yaw Controller Schematic

\[\text{AccErr} = \int \text{sign}(e_{r_{\text{fast}}}) \cdot e_{r_{\text{fast}}}^2 \]

Lowpass
TC = 1s

Lowpass
TC = 60s

yaw error
precomputed offset

Do nothing this cycle

\[|\text{AccErr}| > \text{Threshold} \]

yes

no

Yaw to yaw setpoint

Yaw setpoint in cone?

yes

no

Stop the turbine

Yaw setpoint

Yaw position

\[e_{r_{\text{fast}}} \]

\[e_{r_{\text{slow}}} \]
Measurement Campaign

Red line indicates point when offset was computed

Group chose a 7.5° initial offset after 40 hours of data were collected.

A better choice would have been a ~9.5° offset if all data from the experiment had been used.
Yaw Correction Compared to Met Mast

![Graph showing yaw correction comparison between Lidar and Met Mast](image-url)
Results: Power Improvement

Annual energy production estimated to be increased by 2.4% for a 7.5° offset.
Results: Error Function

Error bars indicate 95% confidence interval, points with large confidence interval not shown for neatness.
Research Campaign Two

- CART3 mounted with ZephIR lidar
- Direct use of lidar signal in yaw control.

\[\text{AccErr} = \int \text{sign}(e_{\text{fast}}) \times e_{\text{fast}}^2 \]

Photo by Lee Jay Fingersh, NREL
Results: Power Improvement

![Power Improvement Graph](image)

- **Power (kW)** vs **Rotor Speed (RPM)**
- **Number of data points**:
 - 100
 - 200
 - 300
 - 400
- **Yaw control signal**:
 - Nacelle Vane
 - Lidar
Results: Error Function

![Graph showing nacelle offset against rotor speed for Lidar and Met Tower operations. The graph compares running and stopped operations with error bars indicating variability.]
Results

• In this case, vane appeared to have had a fault occurring in one direction
• Rotor-induced bias toward that direction furthered the impact
• However, calibration with turbine offline appeared to have been correct

• Paper to be presented at AIAA 2015.
Conclusions

- Lidars have been shown to be capable of resolving errors in yaw calibration by:
 - Learning a correction function
 - Applying the lidar signal directly.
Further Research with Yaw Control

• Ongoing research at NREL and the Delft University of Technology is exploring control strategies for wind plants
• One topic of interest is the use of yaw control for the redirection of turbine wakes to optimize overall plant power
• Accurate yaw alignment detection is a must.
Further Research with Lidar-Enhanced Controls

• NREL has collaborated with other research centers and lidar manufacturers on the use of lidars for enhanced:
 o Pitch speed control
 o Torque control
 o Active power controls.
Lidar-Enhanced Pitch Control

• Several test campaigns completed, and several more ongoing

• Use lidar wind speed preview information as feedforward input to pitch controller
 o Improve speed regulation
 o Reduce turbine loads.

Photos by David Schlipf, Stuttgart Wind Energy (top left), and Lee Jay Fingersh, NREL (top right, bottom left, bottom right)
Results: Pitch Control

Rotor Speed

Tower Bending

Figure courtesy David Schlipf, Stuttgart Wind Energy

Photos by Lee Jay Fingersh, NREL
Pitch Control

• Recent demonstration with Stuttgart Wind Energy (SWE) and a ZephIR lidar mounted on CART3 showed successful application of lidar feedforward control.
Pitch Control

- Ongoing campaign on the CART2 with an Avent five-beam demonstration lidar and DNV-GL is yielding promising results.

Figures courtesy of Avishek Kumar and Ervin Bossanyi, DNV-GL
Active Power

• Current research in active power controls investigates the use of wind energy in the provision of grid services

• In study, use lidar measurement of wind speed to maintain a fixed power overhead

• Field test with CART3 and Avent five-beam demonstration lidar.
Acknowledgments

• This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Funding for the work was provided by the DOE Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Office.
Thanks for Your Attention!

Photo by Dennis Schroeder, NREL

Paul Fleming | paul.fleming@nrel.gov