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Executive Summary 
In this report, we introduce a methodology to achieve multiple levels of spatial resolution 
reduction of solar resource data, with minimal impact on data variability, for use in energy 
systems modeling. The selection of an appropriate clustering algorithm, parameter selection 
including cluster size, methods of temporal data segmentation, and methods of cluster evaluation 
are explored in the context of a repeatable process. In describing this process, we illustrate the 
steps in creating a reduced resolution, but still viable, dataset to support energy systems 
modeling, e.g. capacity expansion or production cost modeling. This process is demonstrated 
through the use of a solar resource dataset; however, the methods are applicable to other resource 
data represented through spatiotemporal grids, including wind data.  

In addition to energy modeling, the techniques demonstrated in this paper can be used in a novel 
top-down approach to assess renewable resources within many other contexts that leverage 
variability in resource data but require reduction in spatial resolution to accommodate modeling 
or computing constraints.  
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1 Introduction 
Solar and wind renewable resources are driven by weather and other atmospheric conditions that 
span wide-ranging spatial and temporal scales. For this reason, they have intrinsic variability and 
uncertainty, meaning the amount of resource available changes from one moment to the next and 
the changes cannot be perfectly forecast. Energy or electricity generated from solar and wind 
resources are commonly referred to as variable generation. The variability occurs for any given 
location, and it is correlated between locations with the amount of correlation depending on 
distance, topography, and other conditions. The existing research to quantify renewable resource 
variability and correlation has relied on an atmospheric science approach with numerical weather 
models. 

Advances in numerical weather modeling have yielded valuable datasets reaching very high 
temporal and spatial resolutions that can present billions of estimates over hundreds of thousands 
of locations [1,2,3,4]. These datasets have been used to assess site- or region-specific resource 
quality to inform technology developers, system planners, and energy researchers [5,6]. In one 
use of these data, energy models require input data to inform the characteristics of the different 
energy sources and technologies represented in the models. With the recent growth in renewable, 
and especially wind and solar, deployment in many countries and renewable energy’s potential to 
contribute a more sizeable fraction of total energy supply, accurate representation of these data 
sets in energy models, especially electricity-sector focused models, has become increasingly 
important. Moreover, the increase in renewable penetration in the electric sector has motivated 
modelers to develop better techniques for handling resource variability and uncertainty [7], 
including greater temporal resolution. 

One class of energy models of particular focus for the methods introduced in this paper are 
capacity expansion models for electricity systems, which are used to develop future scenarios of 
electricity supply and demand for a geographic region of interest [8,9,10]. The geographic 
structures of these models are often designed to consider a wide range of spatial boundaries, 
including political, institutional, and electrical ones. Typically, the model structures do not use 
detailed or quantitative methods to account for the regional characteristics of renewable 
resources. Instead, capacity expansion models characterize renewable resources based on the 
arbitrary—from the perspective of the renewable resources—regions designed for other purposes 
or rely on engineering judgments about renewable resources. The combination of limited data 
availability, computational limits, and historically low renewable penetration levels have 
justified modelers’ use of this practice. 

In this paper, we introduce how clustering methods can be applied to solar resource data. In 
particular, we demonstrate clustering techniques on regional hourly profiles of solar photovoltaic 
(PV) plant performance for a sample region. We evaluate two clustering methods and a wide 
range of cluster sizes as well as four methods of segmentation. Using two different metrics, we 
attempt to measure the quality of the clusters. The application of numerical clustering techniques 
to regionalize multi-attribute spatial datasets is not a new concept in the literature [11,12]. 
However, these methods have not been translated to spatiotemporal datasets, such as PV 
performance profiles. 
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Energy models represent one application of the techniques presented in this paper. For example, 
energy modelers can cluster high spatiotemporal resolution renewable resource data into a 
smaller and computationally manageable set of regions. Mai et al. [13]1 describe the Resource 
Planning Model, a capacity expansion model for regional power systems in the Western United 
States, which relies on the clustering techniques to model transmission interconnection options 
for solar resources. The application of clustering techniques to renewable resource data also 
enables a measure of the level of approximation through the metrics we present. 

In addition to energy modeling, the techniques demonstrated in this paper can be used in a novel 
top-down approach to assess renewable resources. For example, while renewable resource 
behavior is intrinsically driven by atmospheric and ground conditions, the clustering techniques 
are blind to these factors, but they might be useful in assessing their effects. Patterns driven by 
ground features and weather can be revealed through cluster results. While we do not 
comprehensively evaluate these here, the methods introduced can be applied in future work. 

                                                 
1 This forthcoming paper builds on the model described in Mai et al. [10]. 
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2 Methodology 
This research outlines a process for selecting the most appropriate statistical clustering method 
and data segmentation strategy for clustering simulated solar PV performance data. 

The state of Colorado in the United States is chosen as a sample region to develop and evaluate 
the methodology. However, the techniques presented here are applicable to any region where 
gridded solar resource data are available. The variability of solar resource results in a complex 
solar capacity factor2 dataset, which presents a challenge in the determination of the most 
appropriate combination of data segmentation and clustering method. For example, Figure 1 
shows the normalized PV capacity factor for three locations in Colorado over a three-day period. 
The output profiles demonstrate the variability of PV output in each location and between 
locations. Clustering techniques can be used to systematically evaluate the temporal correlations 
between locations and group sites accordingly. 

 

Figure 1. PV output in terms of capacity factor over a three-day period for three locations in 
Colorado  

While clustering can be applied for time-series data over any amount of time or any resolution, 
we focus on one-year hourly profiles. To reduce computation time, we further segment the 
annual hourly PV performance data using four different methods. This produces four individual 
performance datasets on which to cluster. We apply two clustering methods, k-means [14] and 
Max-P [15], with a range of required clusters (20–140) to each segmented dataset. Finally, we 
test the quality of the various cluster techniques, cluster sizes, and data segmentations using a 
simple sum of squares and a cross validation within each cluster. 

As a result of the clustering, the PV performance data are reduced from about 3,000 time-series 
vectors (each with 8,760 data points) to between 20 and 140 time-series vectors (again, each with 
8,760 data points). 
                                                 
2 Capacity factor is a unit-less representation of the system output performance relative to its nameplate capacity 
over a defined duration (e.g., instantaneously, over an hour, or over a year). We use hourly data in the analysis 
presented. 

http://www.nrel.gov/publications


4 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

2.1 Source Data 
We use solar radiation and weather data from the National Solar Radiation Data Base (NSRDB) 
[3]. The solar data are hourly and on a 10 x 10 km2 grid spanning the contiguous United States 
and Hawaii. The gridded solar product from the NSRDB spans 12 years from 1998 to 2009, but 
for the present analysis, we use only data from 2006.3 The solar data are measured using 
geostationary satellites, which calculate the direct normal incident (DNI) and global horizontal 
incident (GHI) radiation by measuring the sunlight that is reflected or scattered in the 
atmosphere. The weather data come from the North American Regional Reanalysis (NARR) and 
are coarser in time (three-hour) and space (40 x 40 km2). The NARR weather data are spatially 
joined to the solar data using a nearest neighbor method and linearly interpolated to match the 
solar hourly time step. 

We calculate hourly PV generation using the PVWatts model,4 which estimates the electricity 
production of a grid-connected PV system based on system characteristics (e.g., tilt, derate, 
orientation), solar radiation, and weather data.5 We convert the hourly generation output from 
PVWatts into hourly capacity factors (Figure 1). 

2.2 Temporal Resolution Reduction Methods 
One of the main challenges of working with resource data—in general and in energy models—is 
the large volume of data especially for uses that require high spatial and temporal resolution. The 
volume of data can adversely impact computational runtime for clustering algorithms. To 
examine the possibility of reducing data volume, we reduce the data size in four ways. Each 
method attempts to retain the variability of the capacity factors at key time spans. In Section 4, 
implications of different segmentation methods are presented. The four data reduction methods 
include: 

• Daytime (DT) Only: We subset the hourly capacity factors by extracting only daylight hours 
(9 a.m. – 4 p.m. local standard), as PV output is negligible for all regions during non-daylight 
hours. 

• Peak Load Day: We subset the hourly capacity factors by the 24 hours in which the peak load 
occurs.6 Historical (2006) electricity load profiles are from the Western Electricity 
Coordinating Council (WECC) Transmission Expansion Planning Policy Committee 
(TEPPC) 2020 report [16]. The peak load day was identified by summing the WECC TEPPC 
load profiles in Colorado. We select these hours because of the importance of peak demand 
to utility planning. Clustering over this period of time may be preferable over annual profiles 
for analyses or models that are focused on resource adequacy and peak capacity needs. 

• Peak Load Week: We apply the same method as for the Peak Load Day segmentation except 
the full week (168 hours) in which the peak load occurs is used. 

                                                 
3 Solar data from 2006 are chosen as they overlapped the load and wind data used in the Resource Planning Model 
[10, 13]. 
4 http://www.nrel.gov/rredc/pvwatts/ 
5 The nominal PV system configuration used in PVWatts to develop hourly profiles includes the following 
specifications: 20-MW system size; 0.85 derate factor; 1-axis tracking; 0-degree tilt. 
6 The Peak Load Day and Peak Load Week methods also sample only the daytime hours and therefore include fewer 
than 24 and 168 hours, respectively. 
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• Wavelet Transformation: A discrete wavelet transformation was created from the daytime 
hours dataset to determine whether clustering on the wavelets would provide similar or better 
results than modeling the entire hourly dataset. Wavelet decomposition is one method of 
looking at the variability within specific temporal frequencies within a time series [17]. 
Wavelet decomposition is beneficial in time series analysis because it provides a view into 
the variability at specific frequencies through an estimate of the energy at that frequency 
while retaining all original data [17]. We use the default Daubechies S8 symmlet transform. 
In doing so, we reduce the data used in the clustering process from 8,760 values per data 
point to 11. 

2.3 Clustering Methods 
Aggregation of spatial data is often a necessary part of spatial data analysis. Compatibility of 
datasets within a single analysis and spatial or temporal resolution constraints are two common 
reasons for this. Data aggregation can be accomplished in numerous ways, but a significant 
component in an aggregation process is the decision whether to aggregate based on predefined 
regions or discover regions using the relationships in the data themselves. The latter case is 
referred to as clustering and it is the method used in this analysis. Clustering is essentially a 
process in which similar areas are categorized into regions that have some type of internal 
consistency and are different from surrounding regions. 

There are numerous methodologies for categorizing data and this research is not intended to 
completely evaluate or compare these methods. For the purpose of this research, two clustering 
methods are used and the results compared. 

First, traditional k-means clustering [14] is selected to provide a baseline or benchmark 
classification to use in comparing other classification methods. The k-means algorithm is a 
distance-based clustering algorithm. The number of desired number of clusters, the parameter k, 
must be specified as an input parameter for this algorithm. Given this input parameter, k 
centroids are selected at random. Each data point is assigned to the centroid with the shortest 
distance, the centroids are recalculated based on these assignments, and the process is repeated 
until there are no changes in centroid assignment. On completion, data points that have the same 
centroid assignment are considered to be in the same cluster. The k-means algorithm is not 
explicitly spatial and so the parameters for latitude and longitude for each data point are included 
in the vector used for classification. Although k-means does result in regional clusters using this 
strategy, many resulting clusters are not contiguous and are spread out across the geographic 
space of the region (see Figure 1 for examples of non-contiguous regions from k-means 
clustering). A secondary process would be needed to finalize or refine the regions to remove 
these potentially undesirable traits.7 

The second method explored is the max-p clustering algorithm [15]. Unlike k-means clustering, 
the max-p algorithm does not require the user to predefine a number of clusters. Instead, the 
algorithm is designed to find the optimal combination of clusters based on retaining spatial 
homogeneity while ensuring that the regions remain within some predefined, spatially 
constrained, threshold [15]. As a result, the algorithm returns spatial contiguous regions. To 
ensure a direct comparison between k-means and max-p, a threshold is calculated such that the 

                                                 
7 For example, connectedness of regions might be required under some model structures. 
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total number of clusters approximately matched k. This is accomplished using a simple 
calculation in which the total number of data points is divided by the desired number of clusters. 
All of the data points are given an additional attribute with a value of 1, and the sum of this 
parameter for each cluster is used as the maximum threshold for max-p. In this way, we 
consistently generate datasets with a known number of clusters using both k-means and max-p. 

2.4 Evaluation Process 
Traditionally, determining the best clustering process is hampered by selecting the “best” 
number of clusters or, in the case of max-p, the limiting value determining the size of each 
cluster. Finding this optimum number is less of a concern in our analysis than is setting the 
resolution of the data to a specific value, and hence setting the number of clusters, is a desired 
outcome of the process. For this reason, the process of evaluating combinations of data and 
method is based on identifying the best performers within two ranges of desired resolutions for 
each region. These ranges are 20–40 clusters for the low-resolution version of the dataset and 
120–140 clusters for the high-resolution version of the dataset. 

Automated cluster evaluation is challenging when optimal boundaries are not known. If there is 
no ground truth, many different combinations of clusters can provide similar results. In our 
analysis, two tests are selected to evaluate clusters from each clustering method. A goal of this 
research is the reduction of spatial resolution in resource datasets used in modeling. As some 
representative value will be calculated for each cluster and used in further analysis, it is critical 
that the data within each cluster be as representative of the whole cluster as possible. Because of 
this, both tests are selected on the premise that they would provide some measure of consistency 
within each cluster. 

The first test involves calculating the sum of squared within (SSW) each cluster. This calculation 
simply sums the squared differences of each observation from the overall mean within the 
cluster, where smaller values representing more similar resource within a cluster. The resulting 
values provide a representation of the variance within the cluster. 

The second test involves estimating the capability to use a subset of the data points within a 
given cluster to estimate the values of other data points within the same cluster. This cross-
validation test is intended to determine how accurately the data points within a single cluster 
could be used to predict a randomly selected data point within the same cluster. The first step in 
the process is to reduce the total number of points by 10% through random selection. Then, 10% 
of the points in the cluster are selected one at a time and a linear regression is performed using 
all of the remaining points (independent variables) in the cluster to model each model each select 
point (dependent variable), resulting in an adjusted R2 value. The adjusted R2 value gives us an 
indication of the amount of the variance that can be explained by the model, and hence the level 
of accuracy with which the remaining values in the cluster can estimate the missing values. 

In an effort to put into perspective the differences between the results of this testing for each run, 
the resulting statistics are compared to determine whether the differences were statistically 
significant. As the data are not found to be normal, the Wilcoxon rank-sum test is used in this 
test. 
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3 Results 
When considering the results of these evaluations, it is first important to ask whether differences 
between the results are significant. In this case, the results of both tests for all datasets are 
compared with each other using the Wilcoxon rank-sum test. Specifically, the set of SSW results 
from one run are compared to the set of SSW results from all other runs to determine whether the 
differences between the result sets are significant. The same process was performed for the 
Adjusted R2 values. Datasets with a high p value from this test, in this case p>= 0.05, are 
considered to have failed to reject the null hypothesis that the data are from the same population, 
and they are therefore statistically equivalent. The combinations of runs that fail to reject the null 
hypotheses are outlined as rows in Table 1. Each row indicates a set of results that are deemed 
statistically equivalent to each other using this test.  
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Table 1. Datasets Determined to be from the Same Population Using the Wilcoxon Rank-sum Test 

Statistically Equivalent SSW Results (for low-resolution cluster sets) 

 

Peak Load Week / K-
Means Wavelet / Max-P  

Statistically Equivalent SSW Results (for high-resolution cluster sets) 

 

None 

Statistically Equivalent Median Adjusted R2 Results (for low-resolution cluster sets) 

 

All DT Hours / K-Means 
Peak Load Day / K-
Means Peak Load Week / K-Means 

 

Peak Load Day / K-
Means Peak Load Day / Max-P Peak Load Week / K-Means 

 

Peak Load Day / Max-P 
Peak Load Week / K-
Means  

 

Peak Load Week / Max-
P Wavelet / Max-P  

Statistically Equivalent Median Adjusted R2 Results (for high-resolution cluster sets) 

 

All DT Hours / K-Means Peak Load Day / Max-P 
Peak Load Week / 
Max-P 

Wavelet / Max-
P 

 

Peak Load Day / K-
Means 

Peak Load Week / K-
Means  

 

Peak Load Day / Max-P Peak Load Week / Max-P Wavelet / Max-P 

 

Peak Load Week / Max-
P Wavelet / Max-P  

a Each row in the table represents a set of results that are deemed statistically equivalent to each other using this test.  

Figure 2 shows example clusters generated through the two algorithms (k-means and max-p) 
evaluated and for two resolution levels. The k-means algorithm produces some clusters with 
disconnected data points. This could be resolved by applying another regionalization algorithm 
to the k-means results; however, that would result in far more clusters for each run. The max-p 
algorithm spatially constrains the clusters and therefore has no disconnected clusters in the 
results. In both cases, the algorithms produce clusters with simpler edge complexity in the 
eastern part of the state and clusters that have more edge complexity in the mountainous western 
part of the state. This is likely due to the high variability of the data in the western part of the 
state. 
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Figure 2. Examples of cluster regions for k-means and max-p at 20 and 120 clusters each 
Disconnected data points within a single cluster are highlighted for one sample cluster (yellow) in both k-means result sets. 

In Figures 3 through 9, the results of the two tests are shown in box-and-scatter plots for each of 
the datasets at both the low and high-resolution clusters. Results in the figures are standardized 
using a simple 0-1 scaling (X - min X)/(max X - min X), where X represents the metric 
presented in each figure. 

Figures 3 and 4 clearly show that the variance of the SSW values is less in the higher-resolution 
clusters than it is in the lower-resolution clusters for all datasets. Also, the datasets with more 
attributes on which to cluster (All DT Hours with 2,920 attributes and Peak Load Week with 55 
attributes) generally perform better with both algorithms. The exception to this observation is the 
performance of the wavelet dataset (10 attributes) with the max-p algorithm, which performs 
second best of the datasets. Additionally, the difference in performance between k-means and 
max-p is accentuated in the lower-resolution clusters, where dataset and algorithm selection 
seem to have a much greater impact on the results. Figure 6 demonstrates that the relative 
differences between the datasets is fairly constant for this statistic and that the performance gets 
exponentially better as the number of clusters increases, but only to about 100 clusters, where 
performance improvement becomes more linear. This is expected as the variability of the clusters 
decreases significantly as the number of data points within each cluster decreases. 
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Figure 3. All estimates of the SSW for each dataset and clustering method in the low-resolution 
clusters 

 

Figure 4. All estimates of the SSW for each dataset and clustering method in the high-resolution 
clusters 
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Figure 5. All estimates of the SSW for each dataset and clustering method at all cluster levels with 
locally weighted scatterplot smoothing (LOWESS) shown as a line for each dataset 

The results of the cross-validation tests (Figures 6 through 9) tell a slightly different story.8 The 
difference in the performance of each of the datasets at the two resolutions is less pronounced 
with this statistic. Also, performance in this test is better at lower resolutions than it is at higher 
resolutions. This is expected, as the lower-resolution clusters will have more points with which 
to build a model, which will result in a better-adjusted R2 value. 

The max-p clusters perform better than the same datasets using k-means in all cases. The full 
dataset performance—although it is still better in the max-p clusters—is much closer to the other 
datasets in performance. The wavelet dataset performs poorly with the k-means algorithm and 
close to the level of the full dataset when using max-p at both resolution levels. Also, the results 
for both algorithms are highly correlated between datasets, according to the Wilcoxon results 
(Table 1). As with the SSW values, the relationship between the performance of each of the 
datasets is shown to be consistent for all cluster sizes. 

Because the cross validation is run on each cluster within each clustered dataset—between 20 
and 199 times depending on the dataset resolution—we are able to look at the percentiles of the 
result of the test. Figure 8 shows the values of the cross validation for both max-p and k-means 
for all runs. This figure highlights the tighter spread of both the values themselves and the range 
of the 5th and 95th percentiles for the max-p algorithm. 

                                                 
8 Higher R-squared values in Figures 6 through 9 indicate better cluster quality, whereas the opposite is true for 
Figures 3 through 5, in which lower SSW values reflect better clustering. 
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Figure 6. All estimates of the median adjusted R2 for each dataset and clustering method in the 
low-resolution clusters 

 

Figure 7. All estimates of the median adjusted R2 for each dataset and clustering method in the 
high-resolution clusters 
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Figure 8. All estimates of the median adjusted R2 for each dataset and clustering method at all 
cluster levels with LOWESS (locally weighted scatterplot smoothing) shown as a line for each 
dataset 

 

Figure 9. All estimates of the median adjusted R2 at all cluster levels including the 5th and 95th by 
cluster method 

http://www.nrel.gov/publications


14 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

4 Conclusions 
The purpose of this research is twofold: outline a process for determining the best clustering 
method and dataset segmentation type, and outline the process for selecting values for a specific 
modeling application that could be expanded to include a variety of datasets and statistical tests 
for cluster performance. In the context of these goals, several conclusions can be drawn from our 
results. Upon comparing the results of the SSW and cross-validation tests, we can see creating a 
cluster with low internal variability does not necessarily provide a cluster that can reliably 
estimate missing values or generate typical values for the cluster. In a comparison of the 
algorithms, max-p seems better able to use the information in the full dataset, and significantly 
better able to use the information available in the wavelet dataset, to estimate missing values. 
Lastly, although both algorithms produce results that are consistent across all datasets regardless 
of the resolution of the clusters, attention should be paid when determining the best combination 
of data reduction method and clustering method at lower resolutions. 

Given our results, it would seem that the max-p algorithm applied to the full dataset would give 
the best results. This combination provides spatially contiguous clusters, better performance 
when extracting a reasonable approximation of the data represented within a cluster, and more 
consistent results over many runs. Reducing the variability within clusters, as measured with the 
SSW estimates, is important but only in so far as doing so impacts the ability to extract a 
reasonable representation of the data in the cluster. 

Given that the results from the max-p algorithm are very similar and even statistically equivalent 
in some cases, the option to swap one of the data subsets for the full dataset is viable if 
computational or temporal limitations require a smaller input dataset. If data segmentation is 
needed, the results suggest that the wavelet dataset represents enough of the information in the 
time series at each point to use in place of the full dataset for high-resolution cluster runs. 

We identify several options to expand this research. Initially, several other clustering methods 
could be added as options, depending on the nature of the datasets being evaluated. Options 
include DBSCAN [18], self-organizing maps [19], and clustering with mixture models. 
Additionally, the evaluation statistics presented here are sufficient for general approximation of 
the runs; however, several enhancements could be made in this area. These include adding 
additional evaluation methods such as using a dynamic time warping (DTW) value to measure 
overall difference between the values within a cluster or enhancing the model-based evaluation 
by testing the capability to predict missing values within the cluster. 

Because the data being clustered are spatiotemporal, investigating fuzzy clustering within specific 
time ranges (e.g., seasonal clustering) and then determining changes in cluster inclusion over time 
might offer some insight into selection of the best methods. As topography, localized weather, and 
other external factors can impact renewable energy potential, exploring comparisons of clustering 
methods with respect to these factors would also be useful. Undertaking focused efforts to 
understand the performance within mountainous or coastal regions, or exploring the removal of 
regions that have inherently low potential for renewable energy development due to population or 
resource restrictions, would be a useful addition to this research. Finally, while we have focused on 
solar PV profiles, clustering techniques can be applied to other renewable energy resources, such 
as wind, or other time-dependent data relevant for energy models. 
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