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Executive Summary 

This project delves into the workflow and results of regression models on monthly and daily 
utility data (meter readings of electricity consumption), outlining a process for screening and 
gathering useful results from inverse models. Energy modeling predictions created in Building 
Energy Optimization software (BEopt™) Version 2.0.0.3 (BEopt 2013) are used to infer causes 
of differences among similar homes. This simple data analysis is useful for the purposes of 
targeting audits and maximizing the accuracy of energy savings predictions with minimal costs.  

The data for this project are from two adjacent military housing communities of 1,166 houses in 
the southeastern United States. One community was built in the 1970s, and the other was built in 
the mid-2000s. Both communities are all electric; the houses in the older community were 
retrofitted with ground source heat pumps in the early 1990s, and the newer community was built 
to an early version of ENERGY STAR® with air source heat pumps. The houses in the older 
community will receive phased retrofits (approximately 10 per month) in the coming years. All 
houses have had daily electricity metering readings since early 2011.  

Inverse modeling provides insight into the actual operational characteristics of the space 
conditioning systems, the thermal enclosure, and occupant behavior. Variations in the average 
base load and heating and cooling slopes differed markedly from one community to another. The 
heating, ventilation, and air conditioning systems in these houses may not be performing as 
anticipated or may be failing, and thermostat set points may vary widely. Base-load variation 
indicates a wide range of usage across housing type, size, and occupancy. Schedules (e.g., set 
points, water use, windows being open, occupants being away on vacation) dramatically impact 
energy consumption, especially in houses with low heating and cooling requirements where base 
loads can dominate the whole-building energy consumption.  

When normalizing the utility bills of a home, data need to be screened for changes in occupancy 
and other possible changes in how the building is using energy, such as malfunctioning 
equipment. Homes with utility data that do not adhere well to generally accepted models could 
be exhibiting such behavior. Selecting time periods for analysis provided a significant challenge 
and barrier to an accurate analysis. If a single model were run containing an occupant 
changeover, the results would be skewed. A model tends to more closely match the data when 
only one family has been living in the home during the analysis period. Vacation periods also 
exemplify a type of operational change not represented with simple standard weather 
normalization procedures and would cause poor model fit. The military communities studied in 
this project saw rapid turnover of occupants; therefore, without accounting for these changes 
either by splitting the dataset or leveraging multiyear data, many homes had to be ignored. 

Audits represent a large portion of the costs associated with a retrofit program but can provide 
valuable measurements and observations to help determine the best retrofit strategy. Obtaining 
submetered and finer-resolution data requires significantly more expense (e.g., performing 
blower door tests to better understand air infiltration). Acquiring daily energy consumption data 
requires the installation of new meters on each building, and measuring individual subsystems 
requires access to the homes and significant costs. Although these detailed data will enable 
decisions to be made with more certainty, their impact should be weighed against the data 
acquisition costs.  
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Depending on the acceptable level of accuracy, daily data as in this project did not yield 
significantly different results from monthly data. That is, following basic weather normalization 
procedures, the daily and monthly results were similar for many of the homes. This report 
discusses the differences between two resolutions of data, along with limited building 
characteristic data, to determine how outcomes vary between them. 

Consistency is another issue. The methods presented in this report emphasize repeatability 
through the development of automated techniques. This is important for property management 
companies and utilities that have large portfolios and are seeking to retrofit all or a subset of 
them. Reliable and consistent results are needed from any analyses they choose to apply across 
their portfolios, as discussed in the background literature. The ability to repeat a process and 
duplicate the results is enhanced through the use of scripting and batch processing in software. 
Although manual, intuitive techniques yield acceptable results when modeling individual homes, 
at the larger scale necessary for deep market transformation, the techniques must be consistent 
and optimized. Leveraging computation is the best way to do this. 

Scripted modeling is an important emerging practice used by architects and engineers to analyze 
energy consumption at the community scale. BEopt Version 2 (BEopt 2013) recently was 
reworked to implement batch processing capabilities. This allows for the creation of batch 
processing algorithms within a freely available and simple-to-use energy modeling software. 
Automation will lower analysis costs and will allow for the application of energy simulations to 
a much larger portfolio. 

This project explores a dataset at a simple level and describes applications of a utility data 
normalization. There are far more sophisticated ways to analyze a dataset of dynamic, high 
resolution data; however, this report focuses on simple processes to create big-picture overviews 
of building portfolios as an initial step in a community-scale analysis.  

The Building America program is positioned to provide guidance to industry for the purpose of 
adoption of new technologies at a large scale. Efforts such as BEopt and Building Energy 
Simulation Test for Existing Homes (BESTEST-EX 2013) highlight efforts to standardize the 
modeling process. 
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1 Introduction 

Typical community-scale energy upgrades require house-by-house modeling and testing to 
determine strategies that would effectively reduce energy usage. At the scale of this study with 
more than 1,000 homes, this process can become tedious and expensive. Therefore, to the extent 
possible, tedious processes were automated using batch calculations with software. Most 
modeling done for this report is brute force, meaning many models were run that did not 
correspond to the home in question or its final modeled representation (i.e., many models were 
created that were not used for analysis or predictions). Although the processes presented in this 
research are not exactly “tender loving care,” modeling every home represents individual 
attention as well as macroscopic views of the home data. This project uses the Inverse Modeling 
Toolkit (IMT) (Kissock et al. 2002) to study change-point inverse (regression) modeling of 
utility billing data on a large scale in an effort to reduce the time needed to design and analyze 
retrofit programs. 

Additional data can help with model uncertainty; however, data acquisition costs can add up. The 
installation of higher resolution meters, for example, needs to be justified by some guarantee 
there will be better decision-making ability or a beneficial outcome. Physical audits, with the 
time involved, cost a lot of money. Simply obtaining the data and analyzing the significance is a 
huge cost for building energy retrofit programs.  

IBACOS used linear change-point models to screen 1,166 houses in a suburban neighborhood of 
legacy production-built houses, with some known general characteristics. The project team 
evaluated the results of regression models using daily and monthly data to determine if 
significantly different conclusions could be drawn between the daily and monthly data in an 
effort to determine if higher time resolution data will influence the analysis results.  

1.1 Background 
IBACOS collaborated with a military housing partner to evaluate the opportunities associated 
with energy retrofits in military housing. A goal of the retrofit program was to conduct audits 
and energy modeling to evaluate cost-effective energy upgrades. IBACOS conducted a limited 
number of audits in two military housing communities in the southeastern United States that 
were slated for a set of energy upgrades, as had been determined by the military housing partner 
staff prior to IBACOS’ involvement in the project. The project partner began phased retrofits on 
the homes in fall 2013. Upon completion of the retrofits, IBACOS may perform a verification of 
the energy savings following from the baseline models established through this research.  

The data for this project were from two adjacent military communities of 1,166 houses in the 
southeastern United States. One community consists of ranch-style homes built in the 1970s, and 
the other consists of duplex homes built in the mid-2000s. Both communities are all electric; the 
homes in the older community were retrofitted with ground source heat pumps in the early 
1990s, and the newer community was built to an early version of ENERGY STAR® with air 
source heat pumps. The homes in the older community will receive phased retrofits 
(approximately 10 per month) in the coming years. All homes have had daily electricity meter 
readings since early 2011. 
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Regression modeling of utility bills historically has been used to evaluate the “actual” energy 
savings associated with home energy retrofits and to disaggregate utility bills into relative usage 
for heating, cooling, and base load. Energy simulations (forward models) can be calibrated to the 
utility data, and savings resulting from energy conservation measures can be estimated. The 
Building Performance Institute (BPI) provides standardized procedures for qualifying energy 
savings estimates in homes (ANSI/BPI-2400-S-2012) (BPI 2012). The standard requires 
practitioners to qualify energy savings estimates with utility data to increase confidence in 
predictions. 

As higher resolution utility data are becoming available, research is needed to determine how a 
combination of utility bill analysis and energy simulation can be used with a limited (even 
optimized) number of physical house audits to identify retrofit measures and to reasonably 
predict energy savings. 

This report documents the normalization of the pre-retrofit utility and building characteristic data 
following Kissock et al. (2002), which is the process referenced by ANSI/BPI-2400-S-2012 (BPI 
2012). Kissock’s report provides an overview of different types of linear inverse models and 
their applicability to residential energy consumption. Inverse modeling, or data-driven modeling, 
is the derivation of a function’s coefficients to fit it to a dataset where the statistical degree of 
error is minimized. A common application is to quantify energy savings while accounting for 
temperature differences between pre- and post-retrofit periods. 

1.2 Inverse Modeling 
Inverse modeling refers to assigning values to model inputs based on empirical performance 
data. This is the reverse of simulations, or forward modeling, which predicts the performance 
given a list of inputs and physics-based equations. In combination, the two modeling methods 
provide the ability to reduce uncertainty in energy savings predictions made by simulations. 

The most common application of inverse modeling to building energy is for weather 
normalization, referring to the process to account for differences in weather between two use 
periods for the purpose of measuring savings from energy conservation measures. ASHRAE 
Guideline 14, Annex D (ASHRAE 2002) provides the methodology for weather normalizing 
utility data using regressions, as referenced by BPI (2012). 

This research used a simple change-point estimation algorithm as employed by the IMT (Kissock 
et al. 2002) to assess the variance in performance among a collection of homes. A common 
model for describing seasonal weather-sensitive use of an all-electric home is a five-parameter 
model (ASHRAE 2009). Equation 1 describes this model as 

( ) ( ) ,       43210
++ −⋅+−⋅+= TbbbTbbE        (1) 

where 

E = total energy consumption for measurement interval 

T = average temperature for measurement interval 

b0 = base-load energy consumption 
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b1 = heating slope, heating energy increase per unit T above b2  

b2 = heating change-point temperature 

b3 = cooling slope, cooling energy increase per unit T below b4 

b4 = cooling change-point temperature 

1.3 Research Questions 
This project is designed to create a baseline of pre-retrofit information about homes that will be 
retrofitted during the coming years. These data can be used in the future to compare actual 
energy consumption of the post-retrofit houses against the pre-retrofit case and the predicted 
savings associated with those measures as calculated by BEopt (BEopt 2013). The following are 
the specific research questions related to this phase of the project:  

• How can the consumption data of each home be screened to identify changes in 
occupancy?  

• How do inverse modeling results vary between those using daily data and those using 
monthly data?  

• What is the variation in regression models of the heating and cooling energy slopes and 
change-point temperatures using daily or monthly utility bills when houses in a 
community are grouped by floor plan, orientation, square footage, and number of 
occupants? 

• How do inverse models of simulated energy use from BEopt compare to inverse models 
of utility bills?  

• What efficiency characteristics and energy upgrade opportunities can be inferred from 
inverse modeling?  

• How do statistical methods compare to more traditional methods of physical energy 
audits?  
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2 Mathematical and Modeling Methods 

Of note in this research is the resolution of the utility data. What types of differences in results 
between monthly and daily inputs might be significant? Throughout this project, analyses were 
performed on daily and monthly utility data resolution to examine how the results differ between 
the two.  

Annual energy consumption data come packed with electricity consumers: mostly computers, 
water, lights, heat pumps, and more. The Building America House Simulation Protocols 
(Hendron and Engebrecht 2010) provide simple ranges of miscellaneous electric loads (MELs), 
envelope, heating, ventilation, and air conditioning (HVAC), and other parameters useful to 
estimate or represent the energy consumption of a home. BEopt can be used to calculate energy 
savings estimates through a calibrated simulation process and with utility data must be leveraged 
to ensure accuracy in those estimates.  

Homes can be understood individually, each with unique traits, and as part of a large set. Figure 
1 illustrates the daily electricity consumption of a single home relative to the consumption across 
the community for the corresponding days. This particular home’s daily consumption—the red 
diamonds—floats in and out of the inner quartile range, as represented by bold black lines. The 
faint dashed lines encompass 95% of consumption observed across all the homes. 

 

Figure 1. One home’s daily electricity consumption overlaying the 
community’s daily energy consumption distribution 

 
Inverse modeling gives clues as to a simple breakdown into the bigger, second-tier parts: heating, 
cooling, and base load. Smaller loads are more difficult to see, as discussed later in this report—
heating is one such small load in this case—and are mostly ignored (difficult to trust) in this and 
other standard weather normalization processes. Also, by running these inverse models, the 
quality of the data can be assessed for its appropriate use as a calibration dataset (BPI 2012). 
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Casey et al. (2010) performed an analysis of simulated data, asking the question: Can heating 
slope sorting accurately identify the underperforming homes of a community? They used 
variable based degree day modeling to sort homes based on a heating performance coefficient 
determined using a three-parameter linear change-point estimation algorithm. The process 
correctly sorted homes by performance of simulated utility data with added random noise. The 
algorithms employed by Casey’s team to disaggregate the simulated utility data were similar to 
the change-point estimation algorithm used by the IMT. This study aims to perform a sorting 
operation to explore the range of savings potential and to look for clues to the possible causes of 
abnormal energy consumption. 

Occupancy schedules have a significant impact on model results; therefore, the dataset for each 
home had to be split at apparent shifts in occupant behavior, resulting in periods of low use but 
not necessarily below an arbitrary threshold. Examples of shifts include a new family moving 
into a home and vacations. Shifts occur at unique times and frequency unless a mass event 
occurred. Various techniques were attempted to automatically split, including splitting at 
temperature, splitting effectively at the shoulder seasons, and running models on distinct periods.  

Eger and Kissock (2007) used sliding regressions to look at normalized annual consumption over 
multiple years to track consumption of an industrial facility over time. By iterating over equal-
sized intervals (an interval being one year of monthly utility data with corresponding weather) 
and over multiple years, the report quantified the changing energy use profile of the facility. This 
report documents an approach based on this work to identify the best full-year intervals within a 
3-year dataset to use in analysis and calibrating simulations.  

IBACOS used the IMT (Kissock et al. 2002) to perform change-point estimations and linear 
regression (normalized least squares). The homes in this study are all-electric homes; therefore, 
IBACOS chose the five-parameter model to represent the data. The IMT was automated using a 
Python script (Python 2012) to batch process folders of IMT input files. The IMT was used on 
both the actual utility data and the BEopt modeling results (BEopt 2013) described below to 
analyze the difference between the two. 

Figure 2 illustrates three years of daily electricity measurements for a single example home. It is 
one of the 1,166 homes in the community that was analyzed using a standard, automated 
approach. 
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Figure 2. Three years of daily total electricity consumption for one example home 

 
Because the inverse models are simple and linear, dynamic or changing behaviors in the input 
data can cause them to fail. For the inverse models to align well, they must have 1 full year of 
data with more or less consistent set points, miscellaneous loads, and other occupant-influenced 
drivers of electricity consumption. The shifts can be permanent, as when occupants move in or 
out of a home, or temporary, as when occupants go on vacation. Whether permanent or 
temporary, these shifts will cause models to fail if contained in the utility data fed into the 
models.  

Figure 3 illustrates a house with one behavior at the beginning of the 3-year interval, a period 
with no consumption in the house (which is assumed to be a transition period in which the home 
was unnoccupied), and what appear to be new occupants of the house at the end of the interval. 
Conditions with uniform occupancy will result in better model alignment.  

Again, Figure 3 illustrates an example home with three apparent intervals: two operational 
periods interrupted by an “away” period. This home would have been thrown out because it 
exceeded the goodness-of-fit (GOF) thresholds without splitting the dataset into three and 
running each set as separate models. Doing so automatically to batch process all homes in the 
dataset represented a significant challenge. The following section describes a method for 
leveraging multiyear data to throw out intervals with presumably a change in occupants or 
vacation periods. 
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Figure 3. Total daily electricity consumption with interruption for one example home 

 
2.1 Sliding Regressions 
The following section describes the method for extracting reliable models for each home in the 
community using sliding regressions. A sliding regression is performed by modeling every one-
year interval within the dataset, shifting the interval by one step for each successive model run. 
Sequential intervals differ by 1 week for daily utility data and 1 month for monthly utility data, 
dropping the first point of the previous interval and adding the next sequential point to the end. 
Figure 4 shows, for example, how the monthly intervals were taken from the full 3 years. 

 
Figure 4. Monthly graphic representation of sliding regression intervals 

 
For daily input data and with a 1-week separation between intervals, the result is 105 
(52 × 2 + 1) individual models with sequential start and end dates. For monthly data, with 
1 month separating each interval, the result is 24 models. Changes cause the parameters to adjust 
to account for the differences between the days or months. Notice the change points are on a 
grid, as controlled in the algorithms of the IMT. Figure 5 shows side-by-side sliding regression 
results for the example home from Figure 3. There is one point in each plot cell for each year 
interval modeled for the one house. Only the coefficient of determination (R2) is depicted for the 
sake of simplicity in the graphic, whereas the coefficient of variance of the root mean squared 
error (CV-RMSE) also was used to filter homes. 
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Figure 5. Example sliding regression results for a single home 

 
Splitting the dataset in an automated fashion represented a significant technical challenge for the 
research team. The task was to identify when occupants moved out of the home and/or occupants 
moved into the home. Vacation periods or intentional behavioral changes such as the adjustment 
of a thermostat will have an impact as well but not as dramatic as if a completely new family 
moves into a home. If there is no change in occupancy, the models will show better alignment 
with the data. This splitting is simple to do visually; however, to batch process all homes, the 
team developed a script to perform the splitting automatically and to return the models for any 
one-year interval for each home that passed all fitness criteria. To achieve the splits, the team 
employed sliding regression to throw out data points with poor GOF. 
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2.2 Goodness-of-Fit Thresholds 
To assess the model’s representation of the data, GOF measures were used to assess the model’s 
fit for each 1-year interval. The first test of model fitness used in this analysis was the R2, a 
measure commonly used as the sole fitness criteria in weather normalization. It represents the 
ability of the model to predict individual observed data points. A value of 1 represents a perfect 
match where every observation falls exactly on the model, with lower values having lower 
fitness. A second commonly used measure is the CV-RMSE. It is a percentage value and 
corresponds to the standard deviation of the model fit. Lower values of CV-RMSE indicate good 
fit, inversely to R2. 

Arbitrary thresholds were established to sort the models into those with good fit and those with 
bad fit. The fitness threshold values were dependent on the data input to the model. Statistical 
measures must be given a fitness threshold for acceptance of model validity. Reddy and Maor 
(2006), for example, placed a CV-RMSE threshold of 20% for calibrated simulations. These 
thresholds also can take into account the climate of the homes. In the case of this study, the 
heating loads were very low, and their contribution was buried in the noise, so to speak. In warm 
climates, one would expect models to more closely align to the data if winter months are 
excluded from those models. Sub-year models, or models with fewer than the full number of 
days or months, were not run as part of this study but will be attempted in future research. 

The BPI (2012) standard considers only monthly utility data, establishing a CV-RMSE of 20% 
as a threshold. Therefore, observations of the results were used to determine new thresholds for 
the models with daily input. Intuitively, the values seemed to work. Table 1 documents the 
statistical GOF measures used to filter data. Results with counterintuitive slopes also were 
thrown out. A counterintuitive slope is, for example, a positive heating slope, which implies 
heating usage would go up with higher outdoor temperatures. A counterintuitive cooling slope is 
a negative cooling slope.  

Table 1. GOF Threshold Values per Data Resolution 

Utility Bill Interval GOF Measure 
 R2 ≥ CV-RMSE ≤ 

Monthly 0.7 20% 
Daily 0.25 40% 

 
Whenever an individual model from a sliding regression passed all of the GOF criteria, its results 
for each continuous interval were analyzed. A continuous interval is a sequence of models with 
uninterrupted GOF passing values. Consider, for example, the results shown in Figure 6. This 
figure is the same as the previous plot with green regions shaded, indicating all points that pass 
the GOF measures documented in Figure 5. Homes with positive heating slopes and negative 
cooling slopes also were not passed.  
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Figure 6. Example sliding regression results with shaded “passing” time intervals 

 
In the daily results, there were five sets of sequential periods, two of which had more than 
10 sequential well-fit models. The other sets with only a few models can be thrown out. Those 
two intervals with sufficient numbers of observations can be used to obtain two distinct results 
for a single house, further isolating the effects of the structure rather than those of the occupants 
or weather.  

For this particular home, there were distinct differences between the monthly and daily results. 
Table 2 shows the results for each of the green shaded regions in Figure 6. The letters for the 
multiple daily intervals, A through E, are indicated on Figure 6. Daily intervals B through D are 
grayed out in Figure 6 because the number of samples was few, and the result of E had 
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15 samples. The daily filter found two clusters of models with passing numbers, whereas the 
monthly filter found only one.  

Table 2. Summary of Sliding Regression Results With Passing GOF Measures, Monthly and Daily 

 
Slopes  

(kWh/CDDa) 
Balance Point 

Temperatures (oF) Base Load  
(kWh/day) 

GOF 

Interval Measure Cooling Heating Heating Cooling CV-RMSE R2 

Monthly 

Mean 2.66 0.75 69.87 71.28 17.68 17.43 0.79 
Samples 2 2 2 2 2 2 2 

Confidence 
(95%) 0.49 0.81 0.70 3.45 14.18 1.43 0.14 

Daily A 

Mean 1.89 1.52 48.48 64.21 44.87 37.24 0.28 
Samples 12 12 12 12 12 12 12 

Confidence 
(95%) 0.05 0.80 2.23 0.32 1.12 0.53 0.01 

Daily B 

Mean 1.12 0.34 51.29 61.82 30.84 34.90 0.29 
Samples 5 5 5 5 5 5 5 

Confidence 
(95%) 0.13 0.02 0.00 0.00 0.11 0.30 0.04 

Daily C 

Mean 1.62 0.42 51.02 63.05 30.45 34.78 0.39 
Samples 4 4 4 4 4 4 4 

Confidence 
(95%) 0.06 0.03 0.06 0.12 0.16 0.60 0.02 

Daily D 

Mean 1.54 0.38 51.08 63.16 30.66 36.39 0.36 
Samples 1 1 1 1 1 1 1 

Confidence 
(95%) NAb NA NA NA NA NA NA 

Daily E 

Mean 1.59 0.37 56.37 63.16 28.83 38.29 0.34 
Samples 15 15 15 15 15 15 15 

Confidence 
(95%) 0.05 0.03 2.94 0.00 0.82 0.52 0.01 

a Cooling degree day. 
b Not applicable. 

 
The monthly results, although statistically valid according to the thresholds, show the energy 
profile for an unoccupied period. Perhaps models of monthly data are more prone to this error 
because the sample size is small. The monthly results are sensitive to the heating slope GOF 
criteria, and the first three intervals were thrown out because of that threshold. Because this 
climate zone has a low heating load, the heating slope was not used to screen homes. Table 3 
documents the results with this modification in GOF application. Ignoring the heating slope 
value for filtering purposes but not for output purposes, the monthly result added an additional 
passing date range; in the daily results, B through E merged into one. 
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Table 3. Final Results for Example Home, Monthly and Daily 

  
Slopes 

(kWh/CDD) 
Balance Point 

Temperatures (oF) Base Load 
(kWh/day) 

GOF 

Interval Measure Cooling Heating Heating Cooling CV-RMSE R2 

Monthly A 

Mean 1.62 –* 46.51 62.63 48.70 7.99 0.91 
Samples 3 3 3 3 3 3 3 

Confidence 
(95%) 0.03 – 2.24 0.95 1.81 0.54 0.01 

Monthly B 

Mean 2.66 0.75 69.87 71.28 17.68 17.43 0.79 
Samples 2 2 2 2 2 2 2 

Confidence 
(95%) 0.49 0.81 0.70 3.45 14.18 1.43 0.14 

Daily A 

Mean 1.89 1.52 48.48 64.21 44.87 37.24 0.28 
Samples 12 12 12 12 12 12 12 

Confidence 
(95%) 0.04 0.71 1.99 0.28 0.99 0.47 0.01 

Daily B 

Mean 1.50 0.37 54.29 62.88 29.56 36.98 0.34 
Samples 25 25 25 25 25 25 25 

Confidence 
(95%) 0.08 0.02 1.89 0.21 0.57 0.72 0.01 

* Heating slope was not valid and was ignored. 
 
Note that there is very little change among the cooling parameters but a roughly 35% decrease in 
base-load consumption. The heating parameters also shifted to be less efficient, possibly caused 
by the shift in base load, which, in theory, provided heat to the conditioned space, lessening the 
amount of heat necessary from the HVAC system. However, there is a high level of uncertainty 
in the heating data because of the warm climate. 

Table 3 compares daily estimates to monthly estimates. The reported values are those used 
ultimately to sort the homes in terms of their performance. This process ensures that the most 
accurate electricity measurement periods are chosen for analysis and that homes with no valid 
models are excluded. The example analysis for a single home was batch applied to each home in 
the dataset and then used to sort homes.  

The best model was not the only model used because, in most cases, many others were 
acceptable for any given home, and the best model could be an outlier of passing models. For the 
example home, there were two distinct passing intervals, with a significant shift in base load 
between the two periods (from 45 kWh to 30 kWh, a decrease of 33%). Therefore, all passing 
models are useful for analysis, and each home received a range of base load in time rather than 
single values, representing all valid models.  

2.3 Interpreting Inverse Modeling Toolkit Results 
Figure 7 contains a data sample of full-year data from four representative homes and their IMT 
five-parameter results overlaid as a line, including monthly and daily resolutions. These example 
homes appear to have normal or continuous operation; therefore, the statistics show fair 
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agreement with the model. The upper right home is a high base-load and high slope home. The 
lower left home is a low base-load and low slope home. Note that the monthly and daily results 
closely align in these “normal” homes. 

 

Figure 7. One full year of results for four example homes, low and high energy consumption 

 
Once models with good fit were established for each address possible, the team performed some 
tests to get a sense of how the IMT results were driven. For example, what might the effect of a 
reduced-capacity ground source heat pump look like through the lens of the IMT?  

The research team used BEopt to perform some simple simulations of the homes with varying 
degrees of performance. Simulations were useful to test the relationship between known changes 
in model inputs and how the IMT registers those changes in terms of its model coefficients.  

This sensitivity analysis gives a sense to the response of the IMT to known building and 
operational effects.  
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Table 4 documents the BEopt input parameters and their values. Note that the set point inputs 
were paired; not all combinations of cooling and heating set points presented were made. The 
baseline model inputs are in boldface type and in the leftmost values column. Simulations were 
run with the inputs listed, and the hourly results were totaled for each day and were averaged per 
month. The daily and monthly results were modeled in the IMT using the five-parameter model 
used on the measured data.  

Figure 8 shows the results of the simulation runs. Dark-green plot facets are IMT parameters that 
saw significant change with variation in the BEopt input on the vertical axis. Light-green shaded 
cells are those with minor effects. These effects are considered specific to this dataset. Other 
climates and building types would have different sensitivities. The input geometry matches the 
homes in the dataset, and the weather is the same. Climate affects the magnitude of change 
induced by any one parameter. For example, air infiltration in this instance is not having a 
noticeable effect on home performance; however, in a colder climate, one would expect the input 
to have a noticeable impact on heating loads. Equipment efficiency and size parameters were 
adjusted in parallel because the team assumed the coefficient of performance (COP) is closely 
tied to the capacity of the equipment.  
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Table 4. BEopt Input Parameters and Baseline Values 

 Set Point Mode 0 1 2 3 4 5 6 7 8 9 10 11 

Set Points (°F) Heating 71 72 68 64 60 56 56 56 56 68 64 60 
Cooling 76 72 76 76 76 76 72 68 64 72 72 72 

Equipment Size 
and Efficiency 

Size (MBtu/h) 24            
Size (tons) 2            

COP 4 3.6 3.2 2.8 2.4 2 1.6 1.2 0.8 0.4 0  Energy efficiency 
ratio (Btu/h/W) 21.2 19.1 17.0 14.8 12.7 10.6 8.5 6.4 4.2 2.1 0.0  

Air Infiltration ACH50 15 17 13 11 9 7       
Ducts Leakage (%) 21 39 36 33 30 27 24 16 11 6 1  

Insulation R-value 6 0 4 8         

Base Load 
Other hot water 

loads 1.0 2.00 0.50          
Other electric loads 1.0 4.00 2.00 1.50 0.75 0.50 0.25      

       ACH50 is air changes per hour at 50 Pascals.  
 



 
 

16 

 

Figure 8. BEopt to IMT sensitivity analysis results.  
(HDD is heating degree day.) 

 
Slopes are affected primarily by the equipment efficiency, and a significant decrease in the 
performance of the HVAC equipment should register as an increased heating or cooling slope. 
Balance point temperature is observed to change primarily with set point inputs. Occupant 
comfort is a driving force behind balance point temperatures. Because this community has very 
little variation in the building enclosure, which also affects balance points, the effect is expected 
to be caused primarily by thermostat set point temperatures. Base loads also can cause balance 
points to change because of the heat generated by appliances and humans. Inefficient appliances 
emitting heat will meet part of the heating load and add to the cooling load, impacting the 
estimated coefficients. 

Table 5 summarizes the assumptions derived from the BEopt models.  

The research team ran a different set of BEopt models to get a sense of how a larger range of 
possible BEopt input combinations based on the static building information would align with the 
utility bills. The team ran both datasets—the simulated and the actual—through the IMT and 
then compared the inlier results. 
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Table 5. Implications of Five Parameters Derived From BEopt Simulations 

IMT Result Real Implication Potential Upgrade Opportunities 

Steep Cooling 
Slope 

House uses much more 
energy as the outdoor 

temperature rises 

Building enclosure inefficient; duct 
leakage; inefficient/failing air conditioning 

unit or air conditioning unit improperly 
commissioned  

Steep Heating 
Slope 

House uses much more 
energy as the outdoor 

temperature drops 

Building enclosure inefficient; duct 
leakage; inefficient/failing heating unit 
(e.g., furnace, heat pump) or improper 

commissioning of the heating unit 

Cooling 
Change Point 

Outdoor temperature at 
which cooling is used in the 

house 

Indication of relative efficiency of the 
building enclosure and the indoor 

thermostat set point  

Heating 
Change Point 

Outdoor temperature at 
which the house needs 

heating 

Indication of relative efficiency of the 
building enclosure and the indoor 

thermostat set point 

Base Load Relative energy use 
independent of weather 

Indication of occupant lifestyle; 
miscellaneous plug loads; may be an 
indicator of high domestic hot water 

consumption 
 
Each ranch house plan type was input into BEopt Version 2.0.0.3 (BEopt 2013), including the 
building characteristics that were collected during the limited number of on-site audits. Each 
building plan’s window areas, aspect ratio, envelope area, and overhangs were reasonably 
consistent from house to house. Only unique combinations of orientation and building plan were 
modeled.  

Table 6 details the parameters that were changed and the values used for the parametric analysis. 
In all, there were 17 building plan types, some with minor variations, and each at one of 
8 orientations, making 91 unique combinations (baseline models) of orientation and building 
plan. 

With each parameter change, 3,264 results were generated—24 models for each unique floor 
plan and orientation (17 plans and 8 orientations). Floor plans and orientations were matched 
with each home in the utility bill dataset, and of the 24 variations, the model with the best 
statistical fit was selected as representative of the home. 
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Table 6. Parameters Changed for BEopt Modeling 

Category Values 
Cooling Set Point Temperature 

(Weekday–Weekend) 71, 76 

Heating Set Point Temperature 
(Weekday–Weekend) 68, 71 

MELs 0.5, 1.0, 1.5 
Simulation Engine EnergyPlus (EnergyPlus 2013) 

Infiltration (ACH50) 7, 10 
Natural Ventilation BEopt default 

Relative Humidity Set Point Default 
HVAC Equipment Sizing BEopt default 

Dehumidification None 
Ducts (Leakage, R-Value) Default 
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3 Results 

Data screening is the process of sorting between model results that can be trusted and those that 
should be “kept at arm’s length during important meetings.” The research team performed 
additional sorting on square footage, geometry, year built, and number of occupants.  

With only 1 year of data, further work could be done to run sub-years using the daily data. There 
is an advantage with the daily data to selectively remove outlier points. Monthly data may 
remove only a few data points before the home’s data are not viable. The team wanted to test the 
sensitivity of the results to the number of input homes. It was thought that uncertainty would 
decrease as more years were included in the analysis, making the case for acquiring multiple 
years of data.  

3.1 Data Screening Results 
Table 7 summarizes the screening results, broken out by individual measure, both for daily and 
monthly input data. The survival rate is listed for each individual as well as for combined 
thresholds. With the additional years of data from which to draw, there is significantly higher 
confidence in the results. The ability to be more selective in which data are input into the model 
is an advantage to the goal of accuracy.  

Table 7. Filtering Iterations, Survival Percentage, and GOF Measures, Daily and Monthly 

 

CV-RMSE ≤ 20% 
Monthly 

(45% Daily) 

R2 ≥ 0.70 Monthly 
(0.25 Daily) Both 

One Year 48% (62%) 36% (47%) 30% (30%) 
Three Years 97% (97%) 97% (89%) 93% (82%) 

 
Figure 9 illustrates pre- and post-screening GOF measures. Each blue dot is the best model for a 
home’s data from the sliding regression model runs. The red dots show a single unfiltered ran-
dom year and its noisy results. Any individual year will pass a small percentage of homes. Those 
homes that did not pass all the GOF measures in the filtered results appear at zero on the y-axis. 
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Figure 9. GOF measures for unscreened 1-year and 3-year screened averages 

 
Figure 10 shows the averaged results. Each home’s models with acceptable GOF values are 
averaged, resulting in a single value. Across homes, the distribution of inverse modeling results 
for daily and monthly inputs is shown. 

 

 

Figure 10. Inverse modeling results 

 
Table 8 summarizes the inverse modeling results for the entire community. Each observation is 
an individual home’s average of all its models passing all GOF criteria. Heating slopes tend to 
create errors in low-load homes and thus lower passing rates. Some cooling slopes still fail, but 
because it is a higher magnitude load with clear signals, far fewer failures occur. 
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Table 8. Summary of Inverse Modeling Results 

 
Monthly IMT Results, Inliers 

Averaged Results  Daily IMT Results, Inliers 
Averaged Results 
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Heating 
Slope 

(kWh/HDD) 
860* 0.8 1.4 1.7 5.9 0.1 820 1.0 1.7 2.2 7.4 –0.3 

Cooling 
Slope 

(kWh/CDD) 
929 1.8 2.2 1.5 0.8 6.3 804 1.8 1.8 0.5 1.0 2.9 

Heating 
Change 

Point (°F) 
937 58.2 58.4 6.0 46.9 69.7 823 54.3 54.4 5.9 43.4 66.6 

Cooling 
Change 

Point (°F) 
937 67.5 67.6 5.3 57.0 77.8 823 66.1 65.9 3.4 58.8 72.2 

Base Load 
(kWh/day) 937 28.3 29.1 10.2 11.2 50.6 823 26.0 26.5 7.4 13.4 42.4 

* Heating slopes tend to create errors in low-load homes and thus lower passing rates.  
 
Table 9 describes the confidence intervals for each parameter across the community. In general, 
the 95% confidence interval is small, and although the heating slope and change point show the 
largest differences, they are to be “taken with a grain of salt” because it is a hot climate. 
Individual homes with very high values for the interval could have experienced changes in 
building performance over the course of 3 years, meaning potential changes in occupant behavior 
or equipment malfunctions.  

When the team compared the full dataset to a slice of 1 year, the results shifted, as shown in 
Table 10. If the data pool is small with limited points from which to sample for modeling, the 
results can be distorted. A single random sample as displayed in Table 10 varies dramatically 
from the distribution of results, highlighting the importance of carefully choosing the data to be 
input into the model. 
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Table 9. Confidence Intervals of Inlier Models 

 
Monthly IMT Results, Inliers 
Confidence Interval Ranges  Daily IMT Results, Inliers 

Confidence Interval Ranges 
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Heating 
Slope 

(kWh/HDD) 
860* 0.26 0.58 0.96 0.01 3.01 820 0.30 0.83 1.69 0.02 4.69 

Cooling 
Slope 

(kWh/CDD) 
929 0.42 0.77 1.16 0.05 3.72 804 0.15 0.22 0.22 0.03 0.74 

Heating 
Change 

Point (°F) 
937 3.97 4.53 3.07 0.67 12.29 823 3.16 3.65 2.54 0.54 10.08 

Cooling 
Change 

Point (°F) 
937 2.91 3.55 2.76 0.47 10.60 823 1.23 1.61 1.38 0.29 5.19 

Base Load 
(kWh/day) 937 2.39 3.28 3.11 0.26 12.71 823 1.38 2.04 2.04 0.22 7.46 

*Heating slopes tend to create errors in low-load homes and thus lower passing rates.  
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Table 10. Single-Year Average IMT Results of Inlier Models 

 

Monthly IMT Results, Inliers 
(% Change from 3-Year Result) 

Daily IMT Results, Inliers 
(% Change from 3-Year Result) 
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Heating Slope 
(kWh/HDD) 306 0.55 

(47.6%) 
1.85 

(–26.2%) 
3.02 

(–44.9%) 
10.36 

(–43.3%) 
0.11 

(–5.4%) 306 –0.86 
(11.5%) 

–1.45 
(13.8%) 

1.89 
(16.2%) 

–5.46 
(34.7%) 

–0.2 
(25.7%) 

Cooling Slope 
(kWh/CDD) 299 1.38 

(33.6%) 
1.41 

(55.8%) 
0.42 

(252.2%) 
0.7 

(11.9%) 
2.35 

(169.9%) 332 1.69 
(3.6%) 

1.79 
(1.5%) 

0.5 
(3.9%) 

1.04 
(–4%) 

2.85 
(2.3%) 

Heating Change 
Point (°F) 301 55.36 

(5.2%) 
55.16 

(5.8%) 
6.16 

(–2.4%) 
47.34 
(–1%) 

65.39 
(6.6%) 333 57.59 

(–5.7%) 
55.55 

(–2.1%) 
7.42 

(–20.8%) 
41.7 
(4%) 

66.71 
 (–0.2%) 

Cooling Change 
Point (°F) 301 63.38 

(6.4%) 
63.71 
(6.1%) 

3.45  
(54%) 

52.69 
(8.2%) 

70.07 
(11%) 333 66.71  

(–0.9%) 
65.63 

(0.4%) 
3.59 

(–5.5%) 
57.59 

(2.1%) 
72.19  
(0%) 

Base Load 
(kWh/day) 301 33.07  

(–14.6%) 
33.6  

(–13.4%) 
9.41 

 (8.3%) 
15.38  

(–27%) 
55.22  

(–8.4%) 333 27.82  
(–6.6%) 

27.99  
(–5.4%) 

7.52 
 (–1%) 

13.23  
(1%) 

44  
(–3.7%) 
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3.2 Grouping by Plan Type, Square Footage, Occupancy, and Orientation 
The research team performed further slicing of the set of models into groups by floor plan, 
occupancy, square footage, and orientation. The results previously reported are the results for the 
pooled community. In this particular case, the community is fairly homogeneous; however, a 
subset of homes is newer, with higher performing attributes.  

3.2.1 Plan Types 
Table 11 through Table 13 show the relative differences in results when houses are sorted by 
either single-story ranch or two-story duplex plan type. The largest variation in the data from 
monthly to daily at a high level is the difference in heating change points and heating slopes for 
these two different plan types. The problem with that is heating loads in this climate zone (hot-
humid) are low and do not use much electricity for heating. The cooling slopes are almost 
identical, and the base load for the ranch houses is slightly lower than that of the duplexes. 
Change points are similar to those presented in Table 11 and follow the same pattern.  

Table 11. IMT Results on Ranch-Type Houses (Total n = 857) 

 Daily IMT Results, Ranch Inliers 
(n = 363) 

Monthly IMT Results, Ranch Inliers 
(n = 287) 
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Heating Slope 
(kWh/HDD) 1.85 2.07 1.26 5.18 0.39 1.45 1.84 1.20 4.41 0.57 

Cooling Slope 
(kWh/CDD) 1.45 1.52 0.70 0.40 3.00 1.37 1.46 0.73 0.51 3.35 

Heating Change 
Point (°F) 55 55 3.4 50.9 62 59.1 60 2.7 56.3 67.1 

Cooling Change 
Point (°F) 67.4 67 5.5 55.6 75.6 64.7 65.9 5.7 59.1 75.9 

Base Load 
(kWh/day) 30.39 31.71 8.01 14.55 48.97 31.32 30.67 8.80 11.20 47.11 

CV-RMSE 33% 34% 8% 23% 52% 12% 12% 5% 4% 19% 
n is the number of houses. 
 

  



 
 

25 

Table 12. IMT Results on Duplex-Type Houses (Total n = 857) 

 
Daily IMT Results, Duplex Inliers  

(n = 363) 
Monthly IMT Results, Duplex Inliers  

(n = 287) 
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Heating Slope 
(kWh/HDD) 0.87 0.94 0.44 1.92 0.27 0.90 0.98 0.54 2.31 0.22 

Cooling Slope 
(kWh/CDD) 1.45 1.51 0.58 0.58 2.92 1.44 1.52 0.67 0.50 3.01 

Heating Change 
Point (°F) 57.1 57.3 4.5 50.9 67.4 60.5 60.6 3.1 56.3 68.9 

Cooling Change 
Point (°F) 67.4 67.4 4.4 59.1 75.6 67.5 66.7 4.3 59.1 74.5 

Base Load 
(kWh/day) 28.14 28.65 8.20 13.98 45.71 28.58 28.56 9.07 12.10 49.33 

CV-RMSE 35% 36% 5% 28% 47% 10% 10% 4% 4% 19% 
n is the number of houses. 

 
Table 13. Percent Change Between Duplex and Ranch-Type Houses 

 
Percent Change From Duplex to 

Ranch, Daily Data 
Percent Change From Duplex to 

Ranch, Monthly Data 
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Heating Slope 
(kWh/HDD) 112% 119% 183% 169% 42% 62% 86% 123% 91% 162% 

Cooling Slope 
(kWh/CDD) 0% 1% 21% –31% 3% –5% –4% 10% 4% 11% 

Heating Change 
Point (°F) –4% –4% –25% 0% –8% –2% –1% –12% 0% –3% 

Cooling Change 
Point (°F) 0% –1% 25% –6% 0% –4% –1% 32% 0% 2% 

Base Load 
(kWh/day) 8% 11% –2% 4% 7% 10% 7% –3% –7% –5% 

 
3.2.2 Square Footage 
Table 14 through Table 18 show that when houses are separated by square footage, the results 
are similar to those of sorting by plan type. Houses from 1,100 to 1,500 ft2 appear to have similar 
characteristics to the ranch plan type, and the 1,500- to 1,700-ft2 houses appear to be the duplex 
houses. Heating results here show a possible significant difference between monthly and daily 
data, but that should be expected in this climate and ignored. The base loads for each group 
increase as the houses become larger. 
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One might have expected cooling slopes to increase as the square footage increased; however, in 
this case, they did not. No thorough multiple linear regression was completed to determine the 
significance of the individual building characteristics, but this will be attempted in the future. 

Table 14. IMT Results on Small Square Footage 

 
Daily IMT Results, 

1,100 < × < 1,300 Inliers (n = 169) 
Monthly IMT Results, 

1,100 < × < 1,300 Inliers (n = 134) 
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Heating Slope 
(kWh/HDD) 0.86 0.95 0.47 2.17 0.31 0.90 0.99 0.59 2.50 0.26 

Cooling Slope 
(kWh/CDD) 1.54 1.58 0.60 0.65 3.03 1.57 1.63 0.66 0.65 3.02 

Heating Change 
Point (°F) 55 57.3 4.8 50.9 67.8 60.5 60.6 3.3 56.3 68.9 

Cooling Change 
Point (°F) 67.4 67.8 4.4 59.1 75.2 67.5 67 4.1 59.1 73.1 

Base Load 
(kWh/day) 27.25 27.62 8.15 12.67 44.73 26.36 26.96 9.03 11.69 47.88 

CV-RMSE 36% 36% 05% 27% 45% 10% 11% 5% 4% 20% 
n is the number of houses. 

 
Table 15. IMT Results on Medium Square Footage 

 
Daily IMT Results, 

1,100 < × < 1,300 Inliers (n = 194) 
Monthly IMT Results, 

1,100 < × < 1,300 Inliers (n = 134) 
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Heating Slope 
(kWh/HDD) 0.87 0.94 0.42 1.85 0.18 0.89 0.98 0.49 2.28 0.14 

Cooling Slope 
(kWh/CDD) 1.42 1.45 0.55 0.47 2.67 1.33 1.42 0.66 0.43 2.90 

Heating Change 
Point (°F) 57.1 57.2 4.2 50.9 65.3 60.5 60.6 3 56.3 68.9 

Cooling Change 
Point (°F) 67.4 67.1 4.4 57.1 75.6 67.5 66.5 4.4 59.1 74.5 

Base Load 
(kWh/day) 29.65 29.55 8.15 15.86 46.00 29.66 29.97 8.90 14.19 49.71 

CV-RMSE 35% 35% 5% 28% 47% 9% 10% 4% 4% 19% 
n is the number of houses. 
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Table 16. IMT Results on Large Square Footage 

 
Daily IMT Results, 

1,500 < × < 1,700 Inliers (n = 65) 
Monthly IMT Results, 

1,500 < × < 1,700 Inliers (n = 51) 
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Heating Slope 
(kWh/HDD) 1.85 2.07 1.26 5.18 0.39 1.45 1.84 1.20 4.41 0.57 

Cooling Slope 
(kWh/CDD) 1.45 1.52 0.70 0.40 3.00 1.37 0.82 0.14 0.47 0.97 

Heating Change 
Point (°F) 55 55 3.4 50.9 62 59.1 –1.8 1.2 –4.4 –0.6 

Cooling Change 
Point (°F) 67.4 67 5.5 55.6 75.6 64.7 65.9 5.7 59.1 75.9 

Base Load 
(kWh/day) 30.39 31.71 8.01 14.55 48.97 31.32 30.67 8.80 11.20 47.11 

CV-RMSE 33% 34% 8% 23% 52% 12% 12% 5% 4% 19% 
n is the number of houses. 

 

Table 17. Percent Change From Small to Medium Square Footage 

 
Daily Percent Change From Small  

to Medium Square Footage 
Monthly Percent Change From Small to 

Medium Square Footage 
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Heating Slope 
(kWh/HDD) 1% –1% –11% –15% –42% –1% –2% –16% –9% –46% 

Cooling Slope 
(kWh/CDD) –8% –8% –8% –28% –12% –15% –13% 0% –33% –4% 

Heating Change 
Point (°F) 4% 0% –13% 0% –4% 0% 0% –10% 0% 0% 

Cooling Change 
Point (°F) 0% –1% 1% –3% 1% 0% –1% 7% 0% 2% 

Base Load 
(kWh/day) 9% 7% 0% 25% 3% 13% 11% –1% 21% 4% 
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Table 18. Percent Change From Medium to Large Square Footage 

 
Daily Percent Change From  

Medium to Large Square Footage 
Monthly Percent Change From 

Medium to Large Square Footage 
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Heating Slope 
(kWh/HDD) 111% 120% 199% 181% 115% 63% 88% 143% 93% 300% 

Cooling Slope 
(kWh/CDD) 2% 5% 26% –16% 12% 3% –42% –79% 9% –66% 

Heating Change 
Point (°F) –4% –4% –20% 0% –5% –2% –1% –7% 0% –3% 

Cooling Change 
Point (°F) 0% 0% 25% –3% 0% –4% –1% 28% 0% 2% 

Base Load 
(kWh/day) 2% 7% –2% –8% 6% 6% 2% –1% –21% –5% 

 

3.2.3 Occupancy 
Table 19 through Table 22 show the difference in results when houses are sorted by number of 
occupants. Occupancy also might correlate with square footage, hence biasing this analysis. In 
other words, the observed difference between two and three occupants might actually be square 
footage. A multiple linear regression would help to determine whether the number of occupants 
is a significant factor, but this was not completed for this report. 
 
  



 
 

29 

Table 19. IMT Results on Two Occupants 

 
Daily IMT Results, Two  

Occupants, Inliers (n = 156) 
Monthly IMT Results, Two 
Occupants, Inliers (n = 111) 
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Heating Slope 
(kWh/HDD) 0.85 0.92 0.48 2.27 0.23 0.89 1.00 0.58 2.27 0.25 

Cooling Slope 
(kWh/CDD) 1.50 1.52 0.57 0.57 2.81 1.48 1.56 0.62 0.62 3.01 

Heating Change 
Point (°F) 57.1 57.2 4.4 50.9 67.4 60.5 60.8 3.3 56.3 68.9 

Cooling Change 
Point (°F) 67.4 67.5 4.4 58.9 75.6 67.5 66.9 4.3 59.1 74.5 

Base Load 
(kWh/day) 25.95 26.66 7.47 14.30 44.63 25.33 25.68 8.01 13.48 47.68 

CV-RMSE 35% 36% 6% 27% 45% 10% 11% 4% 4% 19% 
n is the number of houses. 

 

Table 20. IMT Results on Three Occupants 

 
Daily IMT Results, Three 

Occupants, Inliers (n = 272) 
Monthly IMT Results, Three 
Occupants, Inliers (n = 227) 
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Heating Slope 
(kWh/HDD) 1.00 1.23 0.85 3.74 0.30 1.01 1.17 0.81 3.76 0.19 

Cooling Slope 
(kWh/CDD) 1.44 1.50 0.61 0.51 2.96 1.39 1.48 0.70 0.49 3.10 

Heating Change 
Point (°F) 55 56.7 4.4 50.9 67.4 60.5 60.4 2.9 56.3 68.9 

Cooling Change 
Point (°F) 67.4 67.3 4.7 57.1 75.6 67.5 66.5 4.6 59.1 74.5 

Base Load 
(kWh/day) 30.20 30.52 8.33 14.17 47.59 30.64 30.45 9.13 11.17 49.67 

CV-RMSE 35% 35% 5% 26% 47% 10% 11% 4% 4% 19% 
n is the number of houses. 
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Table 21. Percent Change From Three to Two Occupants 

 
Daily Percent Change From  

Three to Two Occupants 
Monthly Percent Change From  

Three to Two Occupants 
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Heating Slope 
(kWh/HDD) –16% –25% –43% –39% –24% –11% –14% –28% –40% 29% 

Cooling Slope 
(kWh/CDD) 4% 1% –7% 11% –5% 7% 5% –10% 28% –3% 

Heating Change 
Point (°F) 4% 1% 0% 0% 0% 0% 1% 14% 0% 0% 

Cooling Change 
Point (°F) 0% 0% –7% 3% 0% 0% 1% –6% 0% 0% 

Base Load 
(kWh/day) –14% –13% –10% 1% –6% 17% –16% –12% 21% –4% 

 

Table 22. Percent Change From Monthly to Daily, Two and Three Occupants 

 

Two Occupants Three Occupants 
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Heating Slope 
(kWh/HDD) –5% –8% –17% 0% –8% –1% 5% 6% –1% 57% 

Cooling Slope 
(kWh/CDD) 1% –2% –9% –9% –7% 4% 1% –12% 6% –4% 

Heating 
Change Point 

(°F) 
–6% –6% 32% –10% –2% –9% –6% 51% –10% –2% 

Cooling Change 
Point (°F) 0% 1% 2% 0% 2% 0% 1% 2% –3% 2% 

Base Load 
(kWh/day) 2% 4% –7% 6% –6% –1% 0% –9% 27% –4% 

 

3.2.4 Orientation 
Table 23 through Table 26 present the differences and percent differences between each subset 
of homes of a particular orientation and the average of all homes. The data clearly register an 
increase in cooling slope for the south-facing houses. The south orientation experienced a 12% 
increase over the others, as shown in Table 23.  
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Table 23. Difference Between Orientations and the Mean (n = 428) 

  

Daily IMT Results, Orientation, Inliers (n = 428) 

Mean 
Deviation From Mean 

S SW W NW N NE E SE 
Number of 

Houses   31 86 38 61 19 81 46 66 

Heating Slope 
(kWh/HDD) 1.1 –0.19 0.025 –0.033 0.038 0.001 0.028 –0.018 0.151 

Cooling Slope 
(kWh/CDD) 1.5 0.202 –0.193 –0.059 –0.129 0.023 –0.055 0.186 0.025 

Heating Change 
Point (°F) 60.64 1.23 –0.44 0.94 –0.58 –0.53 0.08 –0.36 –0.34 

Cooling Change 
Point (°F) 66.8 0.99 –0.16 0.69 0.14 0.03 –0.20 –0.01 –1.48 

Base Load 
(kWh/day) 28.7 –3.40 0.69 –5.32 4.73 5.30 –1.78 –1.31 1.08 

CV-RMSE 10.7% –0.3% 0.3% 1.7% –1.8% 0.3% 1.5% –0.3% –1.4% 
n is the number of houses. 

 

Table 24. Percent Difference Between Orientations and the Mean (n = 428) 

 

Daily IMT Results, Orientation, Inliers (n = 428) 

Mean 
Percent Deviation From Mean 

S SW W NW N NE E SE 
Number of 

Houses  31 86 38 61 19 81 46 66 

Heating Slope 
(kWh/HDD) 1.1 –20% 2% –5% 25% 8% 2% –19% 7% 

Cooling Slope 
(kWh/CDD) 1.5 12% –4% –3% 1% 1% –1% –1% –5% 

Heating Change 
Point (°F) 60.64 2% 1% 1% –1% –1% –1% 0% –1% 

Cooling Change 
Point (°F) 66.8 0% 0% 1% 0% 1% 0% –1% –1% 

Base Load 
(kWh/day) 28.7 –9% 0% –11% 13% 7% –2% –3% 5% 

n is the number of houses. 
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Table 25. Difference Between Orientations and the Mean (n = 338) 

n is the number of houses. 
 

Table 26. Percent Difference Between Orientations and the Mean (n = 338) 

n is the number of houses. 
 
3.3 Sorting by Energy Consumption 
Figure 11 is a histogram showing the percentage of homes, by end use, in 1,000-kWh bins. The 
x-axis labels are the maximum of each percentage. More than 85% of the homes are within one 
bin in their estimated heating use. Cooling use is more widely distributed; all homes are within a 
10,000-kWh range. Base-load use is the widest, with more than 18,000-kWh difference between 
the highest and lowest users.  

 

Monthly IMT Results, Orientation, Inliers (n = 338) 

Mean 
Deviations From Mean 

S SW W NW N NE E SE 
Number of 

Houses  23 61 29 54 19 58 36 58 

Heating Slope 
(kWh/HDD) 1.082 –0.192 0.025 –0.033 0.038 0.001 0.028 –0.018 0.151 

Cooling Slope 
(kWh/CDD) 1.532 0.202 –0.193 –0.059 –0.129 0.023 –0.055 0.186 0.025 

Heating Change 
Point (°F) 60.64 1.23 –0.44 0.94 –0.58 –0.53 0.08 –0.36 –0.34 

Cooling Change 
Point (°F) 66.78 0.99 –0.16 0.69 0.14 0.03 –0.20 –0.01 –1.48 

Base Load 
(kWh/day) 28.65 –3.40 0.69 –5.32 4.73 5.30 –1.78 –1.31 1.08 

CV-RMSE 10.7% –0.3% 0.3% 1.7% –1.8% –0.3% 1.5% –0.3% –1.4% 

  
  
  

Monthly IMT Results, Orientation, Inliers (n = 338) 

Mean 
Percent Deviation From Mean 

S SW W NW N NE E SE 
Number of 

Houses  23 61 29 54 19 58 36 58 

Heating Slope 
(kWh/HDD) 1.082 –19% 18% 5% 12% –2% 5% –17% –2% 

Cooling Slope 
(kWh/CDD) 1.532 13% –2% 2% –2% 0% –2% 1% –10% 

Heating Change 
Point (°F) 60.64 2% –1% 2% –1% –1% 0% –1% –1% 

Cooling Change 
Point (°F) 66.78 1% 0% 1% 0% 0% 0% 0% –2% 

Base Load 
(kWh/day) 28.65 –12% 2% –19% 17% 19% –6% –5% 4% 
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Figure 11. Estimated normalized annual energy consumption per end use, with 2011 temperatures 

 

Of interest and a focus of this research is to isolate the high users—those who, relative to the 
community, consume the most energy. The inverse models point to the causes of why one user is 
higher than another. In the case of this community, heating use is a small part of the total energy 
consumption, and the distribution shows all users are within a small enough range to be arguably 
insignificant relative to cooling and base-load use.  

Table 27 illustrates the breakdown of homes with combinations of cooling and base-load bins. 
The upper bound of each bin range is included in the range; the lower bound is not included in 
each range. Base load increases tend to correspond with cooling slope increases, possibly 
because of the increased cooling load introduced by increased miscellaneous electric 
consumption. This binned matrix can influence the selection of homes for audits. Homes within a 
single bin represent narrow bands of performance, and they are expected to have very similar 
characteristics from an occupant standpoint and with respect to the building enclosure and 
equipment. 
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Table 27. Counts and Percentages of Inlier Homes Within Base Load and Cooling Slope Bins 

 
Cooling Slope Bin (kWh/CDD) 

0.0–0.5 0.5–1.0 1.0–1.5 1.5–2.0 2.0–2.5 2.5–3.0 3.0+ 

B
as

e 
L

oa
d 

B
in

 (k
W

h/
da
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0–10 0.1% 0.4% 0.2% – – – – 

10–20 – 1.5% 5.7% 6% 2.3% 0.6% – 

20–30 – 0.5% 13.7% 26% 12.6% 2.9% 0.9% 

30–40 – 0.1% 2.9% 11.3% 4.6% 2.6% 0.7% 

40–50 – – 0.5% 1.1% 1.3% 0.4% 0.2% 

50–60 – – – 20.2% 0.1% 0.2% 0.1% 

60+ – – – – 10.1% – – 
 

3.4 BEopt Modeling Compared to Utility Data 
The primary differences between simple BEopt models with minimal calibration and the data are 
in the heating and cooling slopes; BEopt predictions yield lower slopes than those from the 
utility bill analysis. As in other areas of this analysis, heating coefficients are “taken with a grain 
of salt” because of their high uncertainty.  

Table 28 compares the utility bill data and BEopt simulation IMT results. The primary 
differences in the results are in the heating and cooling slopes; BEopt predictions yield lower 
slopes than those from the utility bill analysis. All BEopt runs were inliers; therefore, the sample 
size is higher. It would be reasonable to replace homes having very noisy data with calibrated 
BEopt models.  

Cooling slopes between the inverse models and the BEopt models are very different. The inverse 
models suggest much less efficient equipment than is assumed in the BEopt model, which took 
as input the nameplate efficiencies of the equipment. Change points and base-load values align 
more closely, but the distributions seen in the utility data appear wider.  

 

  



 
 

35 

Table 28. Comparison of Utility Bill Data and BEopt Simulation IMT Results 

 
Daily IMT Results, Inliers  

(n = 937), Actual Utility Bills 
Daily IMT Results, Inliers  
(n = 1009), BEopt Models 
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Heating Slope 
(kWh/HDD) 0.8 1.4 1.7 0.1 5.9 1.1 1.1 0.2 0.8 1.5 

Cooling Slope 
(kWh/CDD) 1.8 2.2 1.5 0.8 6.4 1.3 1.3 0.2 1.0 1.7 

Heating Change 
Point (°F) 58.3 58.4 6.0 46.9 69.7 55.0 54.2 1.9 50.9 59.1 

Cooling Change 
Point (°F) 67.5 67.6 5.3 57.0 77.8 65.3 66.5 1.8 63.3 69.4 

Base Load 
(kWh/day) 28.3 29.1 10.2 11.2 50.6 29.6 30.1 7.0 19.6 40.4 

CV-RMSE 12.5% 12.5% 3.1% 6.8% 18.5% 43.8% 50.0% 51.0% 32.0% 77.7% 
n is the number of houses. 

 
BEopt default assumptions about how energy is consumed in the home will not specifically align 
with utility data “out of the gate.” The results displayed in this report are preliminary calibration 
measures, where only limited ranges of inputs were tested. More runs that take into account 
differences in inverse models could be completed to better align the BEopt simulations to the 
utility data. For using the models to predict energy consumption, more calibration iterations 
would be necessary.  

Table 29 compares the normalized annual energy consumption, calculated from the utility data, 
to BEopt simulation totals. Note that the number of inliers between the simulations and the utility 
data are different because the noise level is greatly reduced in simulations. 

Table 29. Comparison of Annual Energy Consumption Statistics 

  Total Energy (kWh in 2011) 
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Ranch Inliers (n = 937) Daily Actual Utility Bill  
IMT Results 15,252 15,459 4,163 7,469 24,001 

Ranch Inliers (n = 1,009) Daily BEopt Energy  
Simulation IMT Results 12,915 12,994 2,542 9,006 16,750 

% Difference Between BEopt and Utility Bills 15.3% 15.9% 38.9% –20.6% 30.2% 
 n is the number of houses. 
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4 Conclusions 

This project was designed to create a baseline of pre-retrofit information about houses that will 
be retrofitted during the coming years. These data then could be used in the future to compare 
actual energy consumption of the post-retrofit houses against the pre-retrofit case and the 
predicted savings associated with those measures as calculated by BEopt (BEopt 2013). The 
simple processes discussed here can be used to create big-picture overviews of building 
portfolios as an initial step in producing baseline models for a community of homes from which 
energy savings can be projected. Also, the estimated disaggregation of the whole-house energy 
data can be used to sort homes by their energy consumption profiles, which can aid in the 
selection of homes for additional audits.  

This project has addressed the research questions as explained in the following paragraphs. 

1. How can the consumption data of each home be screened to identify changes in 
occupancy? 

Changes in occupancy cause the five-parameter model to inadequately represent the data as 
indicated in the GOF measures. Therefore, the project team performed sliding regressions to 
select only results from date ranges that pass all filtering thresholds. With a single model per 
home and with every home in the set using the same dates for analysis, 30% of the homes passed 
all GOF criteria for daily and monthly data. Only full years were run, and selectively removing 
abnormal data points such as unoccupied periods would theoretically increase the number of 
passing homes; however, this was not tested. With all 1-year intervals within a 3-year span 
modeled, 93% of homes had at least 1 full year of data that passed the GOF thresholds for 
monthly data and 82% for daily data.  

With many models per home from sliding regressions, a distribution of results yields the range of 
behavior performance within a home in time. A range of modeled performance characteristics is 
a better way to look at the energy consumption of a home than single-point values because 
single-point values do not represent the full spectrum of behavior. For the community as a 
whole, the predictions may not be significantly skewed with only one model per home; however, 
for individual homes, the results can be misleading. 

2. How do inverse modeling results vary between those using daily data and those using 
monthly data?  

Monthly and daily interval utility data were modeled using the five-parameter change-point 
linear model from the IMT. The models created with monthly input data predicted wider 
distributions of the five parameters than those with daily input data. However, in general, there 
were insignificant differences between IMT results using monthly and daily input data. The 
mean and median cooling slopes were comparable. Balance point temperatures shifted 
downward from monthly to daily data. Base-load estimates were more conservative with the 
daily data, with the results on average being lower than those made with monthly data. For 
simple weather normalization, monthly data results on average very closely aligned with daily 
data results.  
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3. What is the variation in regression models of the heating and cooling energy slopes and 
change-point temperatures using daily or monthly utility bills when houses in a 
community are grouped by floor plan, orientation, square footage, and number of 
occupants? 

Once houses were grouped by plan type and square footage, the differences in the results became 
more pronounced. The small and medium-sized houses were all ranch plan types that were built 
in the same era to the same specifications. Similarly, the larger houses were all duplex plan types 
that were built to meet ENERGY STAR® Version 1 criteria. As such, a noticeable difference was 
found between the IMT results for the houses when grouped in this way. There was variation in 
the results for houses when grouped by orientation, but it did not necessarily follow a pattern that 
could be attributed specifically to orientation effects. The south orientation had the greatest base-
load deviation below the mean (3.4 kWh/day less), and the north orientation had the greatest 
deviation above the mean (5.3 kWh/day more); however, there was no clear pattern as the front 
of the house shifted around the cardinal orientations. Further analysis may be useful to subdivide 
the houses by plan type and then overlay orientation because the aggregation of all houses may 
be masking orientation effects.  

Grouping by occupancy appeared to have the greatest impact on base load and heating slope, but 
the results should be “taken with a grain of salt.” Only energy data were known in time. The 
occupancy data were single-point measurements, and it is not known how those data may have 
changed over the 3-year period.  

4. How do inverse models of simulated energy use from BEopt compare to inverse models of 
utility bills? 

The largest variation in results was seen in the heating and cooling slopes. The IBACOS team 
suspects that the nameplate efficiency of the HVAC system as input into BEopt was 
questionable, given the large discrepancy between simulation cooling slopes and utility data 
cooling slopes. Even when airtightness and thermostat set points were varied along with MELs, 
the BEopt heating and cooling slope results were 13% and 35% different, respectively, from the 
utility data. 

5. What efficiency characteristics and energy upgrade opportunities can be inferred from 
inverse modeling?  

Within this dataset of all-electric homes, inverse modeling appears to provide insight into the 
actual operational characteristics of the space conditioning systems and occupant behavior. All 
data provided to IBACOS indicated that these houses were built and maintained in a production 
fashion; therefore, one would not expect a large variation in thermal enclosure characteristics and 
space conditioning systems by community. Houses with steeper than normal heating and cooling 
slopes may be candidates for immediate intervention because their equipment may be failing. 
Houses with average cooling slopes and high heating slopes may be using excessive electric 
resistance heat, which may indicate a control problem or an occupant-initiated use of the 
resistance heat caused by aggressive setup/setback or to maintain comfort. 
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Base-load variation indicated a wide range of usage across housing type, size, and occupancy. 
There appears to be a significant opportunity for occupant education across all houses as a means 
of reducing base load because there was a 7.4-kWh/day standard deviation on a mean usage of 
26.50 kWh/day, with the 2.5th percentile at 13.40 kWh/day and the 97.5th percentile at 
42.40 kWh/day. Audits also found that domestic hot water consumption could be lowered 
through the use of low-flow fixtures, although this cannot be inferred directly from the inverse 
modeling results. 

6. How do statistical methods compare to more traditional methods of physical energy 
audits? 

Statistical methods disaggregate the whole-house energy data into their major parts: heating, 
cooling, and base load. These energy consumption categories are derived from models with 
reasonable fits to the measurements; from the results, assumptions can be made about the 
possible causes of higher or lower energy consumption. Base-load energy naturally will vary 
from home to home and is primarily driven by occupant behavior. Cooling and heating use will 
vary by thermostat set points and other factors controlled by occupants, as well as static building 
and equipment characteristics. The insights derived from inverse models will enable targeted 
retrofits seeking “low-hanging fruit.”  

Typical audits do not study the consumption in time and rely on single-point measurements. 
Static pictures of energy consumption can be misleading, as exemplified by the differences 
between results of single years of data and distributions of performance over 3 years of data.  

Typical energy audits require field testing and submetering of homes, incurring significant costs. 
The time in the field and the skill required to do the analysis properly are expensive. This project 
did not seek to quantify the necessity of additional auditing for this community; instead, it 
illustrates the types of information that can be gleaned from simple whole-house data. With 
available utility and building data, the simple inverse modeling approach to weather 
normalization is very fast, requiring no travel and no expensive software. Although physical 
audits will obtain detailed information useful for one house, at the community level, that detail is 
not warranted. If robust savings estimates were to be a goal, much more significant model 
calibration would occur to align the BEopt simulations to the utility bills. Inverse modeling 
would be helpful in combination with auditing to be able to select homes for auditing from the 
distribution of observed performance rather than a random selection of homes. 

4.1 Future Work 
There is a question of how to predict energy savings using this information. Inverse modeling 
could be helpful to use as an interpolation mapping so only a limited number of calibrated 
simulations need to be created to forecast savings. This would minimize the need for time-
intensive simulations for every home in a large population, thus reducing analysis costs. 

In this project, only a five-parameter model was used on full years of data. Most projects will 
likely have only 1 year of data with which to work. Further analysis could be done to develop a 
method for automatically removing anomalous data points. Three-parameter models of part-year 
data may adequately model individual seasons, for example. Daily data, with its significantly 
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higher number of samples, will potentially exhibit an advantage over monthly data, where only 1 
or 2 months of data could be removed before the quantity of data is insufficient. 

Also, as the ongoing retrofits are completed, predictions can be verified and compared using the 
baseline models described in this report. 
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