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Nomenclature or List of Acronyms 
DIR direct normal irradiance 
NREL National Renewable Energy Laboratory 
NSRDB National Solar Radiation Data Base 
PCA principal component analysis 
RDA redundancy analysis 
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Executive Summary 
Data used by the National Renewable Energy Laboratory (NREL) in energy analysis are often 
produced by industry and licensed or purchased for analysis. While this practice provides needed 
flexibility in selecting data for analysis it presents challenges in understanding the differences 
among multiple, ostensibly similar, datasets. As options for source data become more varied, it is 
important to be able to articulate why certain datasets were chosen and to ensure those include 
the data that best meet the boundaries and/or limitations of a particular analysis. 

This report represents the first of three phases of research intended to develop methods to 
quantitatively assess and compare both input datasets and the results of analyses performed at 
NREL. This capability is critical to identifying tipping points in the costs or benefits of achieving 
high spatial and temporal resolution of input data. 

This report describes the first phase of a longer-term research effort in which several 
methodologies are evaluated to determine their capability in describing differences between 
parameters in large spatiotemporal datasets. The report also presents an overall methodology for 
performing this type of analysis. The work described in this report will be followed by a second 
phase of research involving the application of these methods to evaluate three large 
spatiotemporal renewable energy resource datasets. Selection and preparation of these datasets 
are being completed at this time. 
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1 Introduction 
Performing analysis in any domain of research can involve the problem of selecting data from a 
collection of seemingly similar spatial or temporal data. In some cases, these data can be highly 
variable in terms of their resolution (both in space and in time), quality, geographic coverage, or 
availability. In others, the differences are much less obvious and may present challenges when 
interpreting analysis results. This is particularly true in studies in which resource assessment is 
critical. For example, different analytical results can be derived from numerous solar resource 
datasets that are currently available at varying temporal and spatial resolutions. By 
acknowledging, understanding, and then leveraging the variations and patterns that exist across 
space and time within and across these datasets, researchers can ensure their analysis take 
advantage of the strengths, and avoids the weaknesses, of the available data. The methodology 
described in this report can be used to compare the results of different analysis methods to 
determine the impact of using fewer or different datasets. Such comparisons address the question 
of minimally sufficient data, which is critical to expanding research from data-rich (domestic) to 
data-poor (international) analysis domains. Of particular interest is reducing the cost of 
unnecessarily high temporal or spatial resolution in data collection and acquisition.  

The objective of the research described in this report is to develop statistical methods for the 
cross-comparison and relative-quality evaluation of large spatiotemporal datasets. This research 
outlines several methods that can be used to facilitate interpretation of analytical results and 
perform validation of modeled data through comparison to known or source datasets. 
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2 Methodologies Evaluated 
This report describes the first phase of a longer-term research effort. In the first phase, several 
methodologies were evaluated to determine their capability in describing differences between 
parameters in large spatiotemporal datasets. Additionally, an overall methodology for performing 
this type of analysis was organized, and it is proposed here for further work in this area. The 
most promising experiments are described, each in a separate sub-section outlining the 
methodology and specific problem that is being addressed, along with the overall methodological 
approach. 

This analysis was performed using the 1991–2010 update to the National Solar Radiation 
Database (Wilcox 2012). These data were sourced from 1,454 weather stations across the United 
States, and they are comprised of hourly values representing 41 weather and atmospheric 
parameters. The original format of these data was CSV files representing each year for each 
station. These data were processed to create zoo (Zeileis and Grothendieck 2013) time series data 
files appropriate for processing in R. These data are often used as a point of reference or as 
validation data for other solar resource datasets; their size and format provided a convenient 
starting point from which to develop and evaluate methods that are intended to work on much 
larger but similarly formatted data. 

2.1 Evaluation of Data Formats for Statistical Analysis of Large 
Matrices on High Performance Computing 

As part of our preliminary experimentation, we ran benchmarks to see how standard analyses 
might scale on Peregrine, NREL’s flagship HPC providing 1.19 PetaFLOPS of computing 
capability. We timed a principal component analysis (PCA) on datasets of varying size (7.6 
megabytes [MB], 76 MB, 763 MB, and 7.45 gigabytes [GB]), differing numbers of cores (96, 
144, 192, 240, and 288), and numbers of cores per node (16 and 24). We chose PCA as the basis 
of this comparison because (1) we plan to use PCA in our future analysis and (2) the matrix 
operations involved in a PCA are commonly used in other statistical procedures. Our results are 
based on the average timing over ten independent trials. 

The results of this experimentation are presented in Figure 1. There are several interesting 
observations of note. First, it may make sense to undersubscribe nodes (i.e., request 16 cores 
rather than 24) for datasets less than 100 MB in size (see the left panel in Figure 1). This effect 
seems to disappear as we approach the 1 GB size. Our second observation is related to requesting 
the number of compute nodes for a given job; more nodes do not always yield better outcomes 
(right panel). Again, for small datasets (< 100 MB), requesting fewer nodes yields better results. 
However, a substantial speedup is attained when using 288 cores on the 7+ GB datasets relative 
to just using 96 cores. 



3 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

 
Figure 1. Timings for all combinations and speedups gained in using 144, 192, 240, and 288 cores 

(left panel) relative to using 96 cores (right panel) 

In addition to running these benchmarking experiments, we investigated how to store and access 
“big data” on Peregrine using R. The majority of Peregrine’s compute nodes have 32 GB of 
memory, with the exceptions having 64 GB. Therefore, we have to distribute data across nodes 
when analyzing data on the scale that we anticipate in this project (e.g., on the order of 
terabytes). In our preliminary investigations, we found that the best tool for distributing large 
matrices within R comes from the “Programming with Big Data in R” project (Ostrouchov et al. 
2012) in the form of a ddmatrix object. 

Our future work in this domain will focus on a more comprehensive set of benchmarking 
experiments. Specifically, we will investigate several commonly used statistical procedures to 
see how they scale with respect to data size and compute (i.e., number of cores). A significant 
part of our future study will assess memory per node issues for analyzing extremely large 
datasets on Peregrine. One result of this work will be a list of best practices for various 
combinations of data analysis tool and dataset size. 

2.2 Comparison of Datasets using Map-Reduce 
The process of comparing datasets often follows a common pattern (see Figure 2). Analysts are 
typically faced with deciding which of N datasets is most appropriate for their application. They 
rarely use datasets in their raw form. Rather, analysts typically aggregate, transform, or 
summarize datasets into a set of features for their application. In some cases, this might be the 
output of a complex model, such as the System Advisor Model (SAM) (SAM, 2015) or Plexos 
(PLEXOS); in other cases, this might simply be a thematic map at a particular resolution. 

Rigorous statistical comparison of raw datasets usually indicates that they are statistically 
different (e.g., have biases or other anomalies), which is not particularly informative to an 
analyst. Applying statistical tests to the user-defined features of interest can help determine 
whether the datasets differ for the analyst’s application. Statistical tests for comparing datasets 
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typically rely on transforming, binning, or summarizing the data before applying the test. The 
result of the test is the identification of the anomalous features, which can then be visualized and 
used to assess the consequences of using each dataset. Furthermore, statistical inversion 
techniques can allow one to trace the anomalies identified in the features of interest back to the 
characteristics of the raw datasets. Subject-matter experts can then focus on determining the 
fundamental cause of the anomalies and assessing the severity of their impact on applications. 

  
Figure 2. Pattern common in the process of comparing datasets 

Abstractly, the preparation of the raw data focuses on presenting information in the form of 
features meaningful to users, whereas the assessment of the data imposes a model (heuristic or 
statistical) that highlights the significance of the features and enables the efficient navigation of 
visualizations of the features. Summarization is often used to organize the data as they are 
assessed in batches that should be identically distributed under the null hypothesis. Depending 
upon the dataset and its intended end use, summarization might take several forms: 

• Aggressive (i.e.,  boiling data down to a few numbers) 

• Geospatial/temporal slices and windows 

• Distributional 

• Scale/frequency 

• Un-summarized (e.g., individual observations). 

Furthermore, these common data-processing patterns can be implemented in  high performance 
computing environments as a map-reduce operation (see Figure 3). We envision that standard 
map-reduce frameworks, such as Hadoop, MongoDB, and BigTable, can be specialized the 
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processing and comparative statistical analysis of large renewable-energy datasets. This involves 
the following generic operations for which an analyst or user provides dataset- and analysis-
specific functions: 

1. Presentation of features 

A. Input reader: extract raw data from its native format 

B. Map function: group raw data into the unit of resolution required by the user (e.g., 
spatial, temporal, frequency, or scale) and transform the raw data into its 
individual contribution to user-defined features 

C. Reduce function: summarize transformed data in the aforementioned units of 
resolution 

D. Output writer: transform summarized data into user-defined features 

2. Statistical testing 

A. Map function: group feature data (see 1.D above) into the unit of resolution 
required by the statistical test 

B. Reduce function: compute components (e.g., partial sums) of test statistics 

C. Output writer: compute test statistic 

Thus, the computation of the features can be embodied in one map-reduce operation, and the 
statistical testing can be embodied in a second map-reduce operation built on the output of 
the first. 

  
Figure 3. Map-reduce approach to the comparison of spatiotemporal data 
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2.3 Non-parametric Detection of Bias in Diffuse Solar Irradiance 
Non-parametric statistical methods combine power with robustness and have several advantages 
for routine use in comparing spatiotemporal datasets. These methods are accessible and safe for 
non-statisticians to use. They apply broadly to many types of energy efficiency and renewable 
energy data. They do not require strong assumptions about data. They avoid false positives but 
perform nearly as well as parametric methods. Finally, many non-parametric methods are well 
suited for rapid calculation in distributed computing environments. 

As an example of a study question, we considered how the National Solar Radiation Data Base 
(NSRDB) station’s irradiance “measurements” (Dataset #1) compare with those measurements 
from the same hour of the same day five years previously (Dataset #2). One of the simplest 
possible non-parametric statistical tests that can be performed on this pair of datasets to identify 
a bias in the irradiance is the sign test. This test pairs observations in Datasets #1 and #2 and the 
same temporal offset (in this case, the day and hour versus the day and hour five years 
previously). Under the null hypothesis that either of the pair of points is equally likely to be 
larger, which would be the case if there were no systematic bias between the datasets, the 
distribution of which point has a larger irradiance would conform to the binomial distribution. 
Because the sign test is repeated for each spatial point, care must be taken in interpreting the 
significance of the test; the significance threshold for p-values (say 5% for a single sign test) 
must be divided by the number of tests performed. (More sophisticated detection techniques, 
similar to those including multiple comparison corrections or those used in Statistical Analysis of 
Microarrays [SAM] can also be used to interpret results of repeated tests.) Figure 4 illustrates the 
performance of this test, which results in the conclusion that a statistically significant bias is 
detectable between these datasets in many geographical regions. Once the presence of bias has 
been detected, biased and unbiased spatial locations can be filtered in exploratory visualizations, 
and the precise nature of the bias can be investigated. 
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Figure 4. Example of an application of a non-parametric statistical test (the sign test) to detect 

bias between two datasets 

As with the simple sign test, more sophisticated and robust non-parametric tests can be applied to 
spatiotemporal data, such as renewable-energy resource information. In particular, the following 
standard tests are applicable (Giddons and Chakraborti 2011), as are their multivariate 
generalizations (Oja 2010): 

1. Median comparison 

A. Sign test 

B. Wilcoxon signed-rank test 

2. Distribution comparison 

A. Quantile test 

B. Wald-Wolfowitz runs test 
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C. Kolmogorov-Smirnov test 

D. Mann-Whitney test 

3. Location comparison 

A. Wilcoxon rank sum test 

B. Van der Waerden test 

4. Scale comparison 

A. Wilcoxon rank sum test  

B. Mood test 

C. Siegel-Tukey test. 

If numerous test statistics are produced, multiple-comparison corrections are applied to the test 
results in order to interpret them accurately. If the test results have spatial or temporal extent, 
simple classification and clustering methods can be applied to help summarize the spatial and 
temporal domains and trends where the null hypothesis does not hold. 

2.4 Detection of Simultaneous Variability through Analysis of 
Principal Components  

This analysis was performed using the 1991–2010 update to the NSRDB. A subset of the data, 
representing 122 stations, was created by limiting the data to those stations for which data 
existed for wind speed and solar irradiance for every daylight hour from 1/1/1992 to 12/31/2010. 
Additionally, the analysis was focused on the West and Southwest, including stations in Arizona, 
California, New Mexico, Nevada, and Utah. 

From these data, two values were calculated that form the basis of these analyses. First, the 
variance was calculated for each parameter at each station at daily, weekly, monthly, and yearly 
aggregation levels. Each calculation was based on the data at the hourly level for the entire 
temporal period and resulted in 6,940 daily, 991 weekly, 228 monthly, and 19 yearly measures of 
variability for both solar irradiance and wind speed. At this point, both a correlation and a 
difference between each measure of variability for wind speed and solar irradiance were 
calculated. This produced a dataset for which each observation represented either the correlation 
or the difference in variability of wind speed and solar irradiance at a point in space and in time, 
at a specific aggregation level (Figure 5). These differences were used in the remainder of 
the analysis. 
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Figure 5. Mapping of the difference between the variability of direct normal irradiance (DIR) and 

wind speed for several individual days at weekly, monthly, and annual aggregation levels 

The pre-processing steps taken in this analysis produced data that could be used directly to 
evaluate the correlation of variability between the wind speed and DIR. One issue with taking 
this step has to do with the volume of data and the nature of the variability of the relationship 
between wind and solar variability. Given a correlation of the values at any aggregation level or 
a series of charts of the differences at each aggregation level, it is difficult to make statement 
about the relationships (Figure 6).  

 
Figure 6: Difference between variability of wind speed and variability of solar irradiance for a 

single station at four aggregation levels 
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To examine spatial and temporal trends in this relationship, we performed a PCA on the 
difference values between wind speed and direct normal irradiance at each aggregation level. 
PCA is a widely used multivariate data analysis technique due to the simplicity with which it can 
be used to both interpret and calculate (Wackernagel 2003). PCA can be used to reduce, or 
transpose, a dataset from some number of correlated parameters to a more limited number of 
principal components. These components are orthogonal, meaning they are uncorrelated 
themselves and each component will successively account for the maximum variance, as 
estimated through the creation of eigenvectors in the original data (Wilks 2011) that will be 
assessed in this analysis. In this case, PCA was run in two distinct processes. Both processes 
started from a dataset in which the columns (or parameters) represented the stations and the rows 
(or observations) represented the time series at each aggregation level. 

First, PCA was run using all of the data at each aggregation level to see how the contribution of a 
particular station to the variance of the difference in variability changes at each aggregation 
level. Second, PCA was run at the monthly aggregation level separately for each month. The first 
run took into account all the observations that occurred in January of all years, the second all of 
the values that were observed in February of all years,  et cetera. The intention was to see how 
the contribution of each station changes monthly or seasonally. Figure 7 illustrates this process. 

 
Figure 7. Diagram of data processing and analysis 

By comparing stations that represent low and high contributions to the first ten eigenvectors, 
which represent the majority of the variance in these data, we can evaluate whether this 
contribution is related to simultaneous variability in wind speed and DIR. In the initial 
comparison, the contribution to the first ten eigenvectors for each month was calculated and 
visualized in map form (Figure 8). Visually inspecting these data demonstrates that the resulting 
pattern for this contribution is more consistent than the pattern that results from simply looking 
at the difference between the variability of DIR and wind speed (Figure 5).  
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Figure 8. Mapping the contribution of each station to the first ten eigenvectors 

A visual inspection of the variability of the difference between the variability of wind speed and 
DIR for two stations—one a consistent low contributor (blue) and one a consistent high 
contributor (red) to the first ten eigenvectors—demonstrates more variability at both the daily 
and weekly aggregation levels (Figure 9). 

 

Figure 9. Variability of the difference between the variability of wind speed and DIR for 
two stations 

The station represented in red is a high contributor to the first ten eigenvectors and the 
station represented in blue is a low contributor. Values represent the month of July 
across all years at each aggregation level. 
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Additional statistics were calculated for each station in order to gauge the relationship between 
the variability of the difference between the variability of wind speed and DIR. These included 
variability, range, and maximum difference between wind speed and DIR for each station. 
Quintiles were generated for each of these values, and each station was classified as consistently 
low (< 3) or high > 3 in these values. By plotting the distribution of the values for the 
contribution to each eigenvector for both the consistently low and high stations (Figure 10), and 
by plotting the distribution of the parameters for both the consistently low and high contributors 
(Figure 11), we obtained an indication of the relationship between these values. Stations with 
low contributions to the first ten eigenvectors demonstrate lower variability, range, and 
maximum values of the difference between variability of wind speed and solar irradiance (DIR). 
Stations with higher contributions demonstrate higher values in these parameters. 

 
Figure 10. Contribution of all stations to the first ten eigenvectors, grouped by high and low 

values representing the variability, range, and maximum difference between wind speed and DIR 

 
Figure 11. Quintiles for variability, range, and maximum difference between wind speed and DIR 

for stations, grouped by low and high contribution to the first ten eigenvectors 

The next steps in developing this methodology will involve quantifying these classifications in 
such a way as to automate the process of identifying locations in the dataset, both temporally and 
spatially, where variability has a high probability of being correlated. 



13 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

2.5 Non-parametric Distance-based Redundancy Analysis 
Understanding the differences between and within large resource datasets is important when 
analysts decide which datasets to use and whether and how variables may be used within a given 
dataset. Methods that are quick to implement and require few assumptions are likely to be the 
most accessible to a wide range of  energy efficiency and renewable energy analysts with diverse 
backgrounds. In this section, we introduce a non-parametric method of performing intra- and 
inter-dataset comparisons. 

Nonparametric analyses are methods in which the analyst does not make a priori assumptions 
regarding the distribution of the data or the distribution of the test statistic used. Sheskin (2011) 
distinguishes nonparametric from parametric analyses thusly: “inferential tests that evaluate 
categorical/nominal data and ordinal/rank-order data are nonparametric, while tests that evaluate 
interval or ratio data are parametric.” With regard to time series analysis, Fan and Yao (2005) 
describe nonparametric methods as those that model a process whose defining parameters lie in 
infinite dimensional space and/or that have an unspecified (or incompletely specified) probability 
form. In general, nonparametric methods are considered to have lower statistical power than their 
parametric counterparts as long as the assumptions required for a given parametric test are not 
violated (Sheskin 2011). Nonparametric methods are preferred in instances in which one or more 
parametric assumptions are violated. Nonparametric methods of comparison were well suited for 
our study for several reasons. Many of the large resource datasets are irregularly distributed, and 
they violate assumptions of normality, precluding parametric testing. Methods of analysis that do 
not require distributional assumptions will be more user-friendly and straightforward for analysts 
to implement. 

Redundancy analysis (RDA) is used to assess differences and interactions of factors within large 
resource datasets. Redundancy analysis is an extension of multiple regression to multivariate 
response data (Legendre and Legendre 2012). In RDA, Y is constrained and the ordination axes 
are linear combinations of X. The ordination axes are obtained through principle component 
analyses (PCA) of matrix ŷ. RDA consist of two main processes: (1) the regression of matrix Y 
on matrix X and computation of the fitted values and (2) performance of PCA on the matrix of 
fitted values to obtain eigenvalues and eigenvectors. Individual canonical axes are tested for 
significance using a permutation procedure. 

2.6 Illustrative RDA Results and Discussion 
For this, the first phase of the study, a subset of a much larger dataset was used as a test set for 
development and evaluation of statistical methods. Direct solar irradiance data from the NSRDB 
for four sites in the western United States were used: Abilene, TX; El Torro, CA; Tustin, CA; 
Twentynine Palms, CA. Autoregression was used to remove the influence of temporal 
autocorrelation from each time series (Figures 12 and 13). The RDA was performed on the 
residuals from the autoregressive models. Based on the results of the RDA (Figure 14), salient 
differences in underlying data structure of the four NSRDB stations exist. Such results could 
elucidate critical differences in large datasets. This analysis approach could also be implemented 
to assess the similarity or dissimilarity of datasets that are ostensibly the same. During the next 
phase of this project, we will focus on applying this analytical approach to much larger datasets, 
which will require the use of high-performance computing and the parallelization of R and the 
statistical methods described above. 
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Figure 12. Direct solar irradiance for four NSRDB stations in the western United States 

Data presented in this figure have been minimally processed to remove NA values. 
The time period presented is 300 hours. 
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Figure 13. Residual plots of four NSRDB stations in the western United States 

An autoregressive model was used to remove the effects of autocorrelation on the data. 
From this plot, it is salient that a strong underlying structure exists in the data. 
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Figure 14. Biplot of the redundancy analysis (RDA) 

The green triangles represent the fitted site scores of the dissimilarity measures and the 
blue lines represent the station data. The two axes are the first (x) and second (y) 
principle coordinates. The cosine of the angle between any two stations (blue lines) 
represents the correlation. 



17 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

3 Discussion 
The first phase of our research focused on discovering methods with potential for use in the 
cross-comparison and relative-quality evaluation of large spatiotemporal datasets. From the 
initial experimentation, it is apparent that several of these methods can be used for this purpose. 
In anticipation of the need to perform this analysis on much larger data matrices using high 
performance computing resources, research into both the most appropriate data format and 
computing configuration was performed. The next phase of this research will involve applying 
these methods to evaluate three large spatiotemporal renewable energy resource datasets. 
Selection and preparation of these datasets is being finalized at this time. 
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