

National Fuel Cell Technology Evaluation Center (NFCTEC)

DOE Fuel Cell Technologies Office Webinar

Jennifer Kurtz and Sam Sprik

March 11, 2014

NREL/PR-5400-61760 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Outline

About NFCTEC

 Benefits to the Hydrogen & Fuel Cell Community

 New Fuel Cell Cost/Price Aggregation Project

About NFCTEC

Energy Department Launches National Fuel Cell Technology Evaluation Center to Advance Fuel Cell Technologies September 2013

Source: http://apps1.eere.energy.gov/news/news_detail.cfm/news_id=19607

Rebranding of HSDC

National Fuel Cell Technology Evaluation Center

a national resource for hydrogen and fuel cell stakeholders

supported through Energy Efficiency and Renewable Energy's Fuel Cell Technologies Office

NFCTEC Objectives

- Independent, secure analysis
- Industry collaboration & benchmarking
- Confirmation of component and system technical targets
- Technology validation
- Evaluation, optimization, and demonstration in integrated energy systems and real-world operation

Photo by Dennis Schroeder, NREL Figures and illustrations: NREL

NFCTEC Security Procedures

<u>National Fuel Cell Technology Evaluation Center</u> <u>at</u> <u>Energy Systems Integration Facility</u>

Procedures to Protect Proprietary Technical Data Submitted to the NREL National Fuel Cell Technology Evaluation Center

> National Renewable Energy Laboratory Revision C, November 22nd 2013

Table of Contents

1.	Scope	2
2.	Publication Approval Procedure	2
3.	Physical Room Security	3
4.	Data Transfer	5
5.	Activities Within NFCTEC	7
6.	NREL Security Responsibilities	8
7.	NREL Quality Assurance Responsibilities	8
8.	Revision History	9

Protection and use of data

- Security, access, publications, data transfer
- Reviewed every 2 years
- NREL Security response

NFCTEC Analysis and Reporting of Real-World Operation Data

Detailed Data Products (DDPs)

- Individual data analyses
- Identify individual contribution to CDPs
- Shared every six months only with the partner who supplied the data¹

Composite Data Products (CDPs)

- Aggregated data across multiple systems, sites, and teams
- Publish analysis results every six months without revealing proprietary data²

www.nrel.gov/hydrogen/proj_tech_validation.html

NFCTEC Data Templates & Tools

On-Road Vehicl Data does not need to Tempiate updated: J On-Board Vehi Start Time (ryymmid) Start Time (ryymmid) Gata files submitted n a time stamp (down 201 Cata will be converted	e Data ^{1,2} o be provided via nuary 5, 2012 (f cele and Refe HHMMSS) bed to contain the the second) for 1 1015, 155005.cs 101615, 155005.cs	Excel spreadsheet NREL) Joing Data^{3,4} Start Trans Starp unique vehicle u unique vehicle nan he start of each set rv) files	, provided the infor me as well as a of data	rmation below is	Clearly identified in Footnotes (1) (2) (3) (4)	the data file and form Data will be delivered Data must be coled Values may be calcul Fueling information is	atted the same for to NREL's Hydro do at a minimum fr lated rather than d s needed to gather	Vehicle Dess Provide ane column fr Template updated: Jar	criptive Parai er each unique vehicle ar each unique vehicle Parameter Date of input Configuration ID Vehice Wear Made Inology Generation Frontal Area Cefficient of Orag Curb Weight Range Hydrogen Storage	meters configuration Units yyyy/mm/dd - - - - - kg miles/kg miles/kg	Compa	IIY: Campony! Unique Vehicle Con Configurat			HSDC eet Analys	sis Toolkit Application Vehicle Bus Material Handling Plugin Lab
Component	N/A	Vel	hicle	N/A		Fuel Tank ⁴		Accel	Top Speed eration (0-60 mph) Evel Coll System	miles/hour s			EcoCars		Add	Backup Stationary
Measurement Se	Time ² conds (at least 1 data point per second)	Vehicle Speed Miles/hour	Odometer Miles	Ambient Temperature degrees C	Pressure psig	Temperature deg C	Tank Level %	System Fuel Cel Oy Current Densi Fue Puel C Bala	Manufacturer Manufacturer Model Net Power Rating I Stack Max Power pen Circuit Voltage I die Current Load Operating Current ty @ Rated Power I Cell System Mass II System Volume ance of Plant Mass	 kW kW V Amp Amp/cm ² kg L kg			Project H2 Coupe	THIN		RELATE PUBLISH
Vehicles							_	Fuel	el Cell Stack Mass Cell Stack Volume er of Cells in Stack	kg L					Ľ [°] X ↔	
Data should Template up	include all dated: Ja	vehicles sir nuary 5, 20	nce inceptio 12 (NREL)	in of the p	rogram			Calculat Calcula Fuel Ce	ed Specific Power ted Power Density Il System Efficiency (LH	W/kg W/L / based)	#DIV/01 #DIV/01	#DIV/0 #DIV/0				
Date d	ata update tomaker	ed:	ins	ert date up name of a	odated utomaker			Gross Sy Efficient	stem Power at Idle cy at 5% net power	kW %			GIT SCC			
Date updated mm/dd/yy	U V Ide	Inique ehicle entifier	Venici Configura (1,2, fr separa templat configurat	e tion om S te e) tionx	tarting Date Vehicle Operation mm/dd/yyyy	of Odomet of DOE	er at start program ille	Efficiency Efficiency	vat 25% net power vat 55% net power at 50% net power at 100% net power at 100% net power Hydrogen Storage Number of Tanks Tank Type Cycle Life Tank Pressure	% % % cycles bar				lients		
11/1	8/11	V24	configurat	ion1	10/30/04	5	50	N/A	Total H2 Mass Total H2 Volume	ka LAI RS-OR		Y IS	mmary	iee Sta	ck Durability	
11/1	8/11	V29	configural 2 rows are for and should be en with real dat	tion2 example over- ta.	12/1/04		20	N/A	Detroit, MI	RS-14	4	Y Fi	st vehicle to operate	in sub-zero te	emperatures	
	4 4	+ +1	Vehic	les	Stacks	Mainten	ance	Safety	On-Road	Fuel Econo	omy +					

NRELFAT2010a

Examples shown for vehicle operation, maintenance, safety, and specification templates

— — X

Leveraging Data Process and Analysis Capabilities Across Technology Validation Projects

74 MHE & Infrastructure CDPs—Count and Category

Benefits to the Hydrogen & Fuel Cell Community

NFCTEC Real World Operation Analyses

Results published via NREL technology validation website (www.nrel.gov/hydrogen/proj_tech_validation.html)

Tracking Future Progress Against Previous Demonstration Results for FCEV Evaluation

Vehicle Performance Metrics	Gen 1 Vehicle	Gen 2 Vehicle	2009 Target	After 2009Q4
Fuel Cell Stack Durability			2,000 hours	
Max Team Projected Hours to 10% Voltage Degradation	1,807 hours	<u>2,521</u> hours		
Average Fuel Cell Durability Projection	821 hours	1,062 hours		1,748 hours
Max Hours of Operation by a Single FC Stack to Date	2,375 hours	1,261 hours		1,582 hours
Driving Range			250 miles	
Adjusted Dyno (Window Sticker) Range	103-190 miles	196- <u>254</u> miles		
Median On-Road Distance Between Fuelings	56 miles	81 miles		98 miles
Fuel Economy (Window Sticker)	42 – 57 mi/kg	43 – 58 mi/kg	no target	
Fuel Cell Efficiency at ¼ Power	51% – 58%	53% – <u>59</u> %	60%	
Fuel Cell Efficiency at Full Power	30% – 54%	42% – <u>53</u> %	50%	

Infrastructure Performance Metrics	2009 Target	After 2009Q4		
H ₂ Cost at Station (early market)	On-Site Natural Gas Reformation \$7.70 – \$10.30/kg	On-Site Electrolysis \$10.00 – \$12.90/kg	\$3/gge	
Average H ₂ Fueling Rate	0.77	kg/min	1.0 kg/min	0.65 kg/min

Outside of this project, DOE independent panels concluded at 500 replicate stations/year: Distributed natural gas reformation at 1,500 kg/day: **\$2.75-\$3.50/kg** (2006) Distributed electrolysis at 1,500kg/day: **\$4.90-\$5.70** (2009)

NATIONAL RENEWABLE ENERGY LABORATORY

Infrastructure Reliability Analysis Supports Additional R&D Projects (e.g. Compressors, Hoses)

MHE Cost of Ownership Comparison with Incumbent Technology

Cost advantage per unit is ~\$2,000/year for the average high-use facility with Class I and II fuel cell lift trucks analyzed by NREL.

	Class I & II MHE Annualized Costs						
Battery / Fuel Cell Maintenance	\$20,000	\$19,700					
Lift Truck Maintenance	\$20,000	\$3,600	\$17,800				
Cost of Infrastructure	(\$)		\$2,200				
Warehouse Space	515 ,000 -	\$2,800	\$2,800				
Cost of Electricity / Hydrogen	ost (\$1,900	\$500				
Labor Cost for Battery Charging	al C	\$500	\$2,400				
& H2 Fueling	10,000	\$4.400	\$800				
Per Lift Cost of Charge/Fuel Infrastructure	Lift	,400 	\$3,700				
Amortized Cost of Battery /	a \$5,000 -	\$1,400					
Fuel Cell Packs	\$3,000	\$2,300	\$2,600				
Amortized Cost of Lift		\$2,800	\$2,800				
	\$0 +	Battery Lift	Fuel Cell Lift				

Key Findings

- Cost advantages dependent on deployment size and use (i.e., multi-shift operation per day)
- H₂ fuel cell cost advantages in maintenance, warehouse infrastructure space, and refueling labor cost
- H₂ fuel cell cost disadvantages in infrastructure and fuel cell cost and hydrogen cost

Report Sections

- Inputs, assumptions, and results for Class I/II and Class III
- Sensitivity study
- Intensive deployment scenario

Fuel Cell Bus Evaluation is an International Effort with Many Different Stakeholders

Lab Data - Fuel Cell Technology Status

Analysis – hours to 10% voltage degradation

Fuel Cell Material Handling Evaluation

Validation of MHE is based on real-world operation data from high-use facilities

Operation hours

490

Units in operation*

4.4

Average operation hours between fills

Hydrogen dispensed in kg

0.6 Average fill amount in kg

> **2.3** Average fill time in minutes

Fuel Cell Backup Power Evaluation

*Not all systems have detailed data reporting to NREL

H₂ Infrastructure Evaluation

Data Supports DOE Updates/Records/Status

ENE

available One of t

cell syste

Examples: Early Market Fuel Cells for _ Material Handling Fact Sheet

http://www1.eere.energy.gov/hydroge nandfuelcells/pdfs/early markets mh e fact sheet.pdf

Fuel Cell Bus Targets Record

http://hydrogen.energy.gov/pdfs/1201 2 fuel cell bus targets.pdf

Fuel Cell Backup Power

Deployments Record

http://hydrogen.energy.gov/pdfs/1300 7 industry bup deployments.pdf

RGY Ren	rgy Efficiency & ewable Energy	FUEL CE	ELL TECHN	OLOGIE	S OFF	ICE					
Markets: for Mate ling Equi	: Fuel rial ipment	outdoor opera acid batteries where emissis logistics of bu present sever for high freig multiple daily include specie	tions or by using 1 for indoor applicat ons must be contro attery lift track ope al challenges, espec ht volume through s i	ead- tions lled. The ration tially put with		Z		6			
can be used to may end-use generation of the second term of the second second second second second taking almost n systems are contoury of sever sest semerging n second second second sets. MHE can sets. MHE can the Membrane (Second Secon	produce is in stationary, bible power converting this such as thogs to efficiently the same o harmful air menerially al applications, and/ets is in ment (MHE) ef forklith, ment (MHE) ef forklith, ment (MHE) be faeled with be faeled with	Include spect and maintena including the battery chang min'shift in a cool down. A requires infa battery storag battery chang maintenance watering equi Unlike batteri refueled, booe eliminating the eliminating the eliminating the labor cost put os 80% an as compared infastructu	4 品 语 E E E E E E E E E E E E E E E E E E	Record # Origi Approved Item: Performanc market-driv technologis Table 1. P	Fuel : 12012 inator: J: d by: Sur se, cost, a yen target ss. They erforman	Cell Tec Title: acob Sper nita Satyaj and durabi ts represer do not rep ace, cost, a	hnolog Fuel Condelow pal [*] lity targ at techn present of and durs	gies Program Date: March ell Bus Targets and Dimitrios P. Date: Septen pets for fuel cell ical requiremen expectations for ibility targets fo	Record 2, 2012 apageorgopointer 12, 2012 transit buses its needed to c the status of to r fuel cell trans	ilos are presen ompete wi he techno isit buses.	ted in Table 1. These thalasenative logy in future years.
ethanol Fuel Ce	ells (DMFCs).	cutts, while b degrades.	ste sat	Bus Lifetim	•		Units	2012	Status 2	2/500.000	Uttimate Target
MHE is power	eu by gasoline,	With their pro canabilities a		Power Plan	t Lifetime	23	hours	12,	000	18,000 85 10 mln) 00,000 ⁵ 50,000 ⁵	25,000 90 1 (<10 min) 600,000 ⁵ 200,000 ⁵
	DOE H Title: I Originate	Program Record Date: 09/05/2013 Backup Power (BuP) Sara Dillich, Dimitrios						15,000 10/15,000 20/7 0.75 300	50,000 4,000/20,000 20/7 0.40 300		
	Appro Rick Farmer an Item: Table 1: Num	by: d Sunita Sa ber of fuel (ells deploymen	09/09	e: 2/13 ad planne	ed) for app	lication	is in backup		8 mthy proje el cell syn cs, electri	8 acted to have S year / tem includes supporting c drive, and hydrogen
7	power.	DOE Funded ¹ (ARRA) as of 5/2013	DOE Funded (Appropriati as of 9/1/2013	oms) ^{2,3} To	DE Ind tal Fun (Gl Fre	iustry nded or or der lobally) ⁴⁻⁰ om 2009 -	n In Te Fi R	OE and idustry otal rom 2009 – ecord Date		ystems per ad level of	r year. This production sales.
	Number of Backup Power Deployments (current & planned)	820	83	90	03	3,593		4,496		san Ricker	tson, Gregory Rymarz)
	The funding of 9 3,500 industry in Data/Assumptio The manufacture in Table 1 above	03 Departm stallations a <u>ms/Calcula</u> rs providing are:	ent of Energy (I nd on-order bac tions: ; the fuel cells fo	DOE) fuel ce kup power u or the deploy	ll backup nits with ments (co	p power sy 1 no DOE f urrent and	stems h funding planne	as led to over		F	
	Total DOE Amer projects is \$18.5?	A E tican Recov M, with an i	ltergy fydrogenics ery and Reinves ndustry cost sha	Ballar ReliOr tment Act (A re of \$30.8M	d / Ida Te n, Inc. (RRA) in L' While	ech avestment publicly a	for thes	e fuel cell e sales			
	ARRA funding m PG&E sites, Sprin Warner Robins Ai project such as in:	apported dep at Nextel wir r Force Bass stallation, pr	- oloyments in bac ih deployments a e and Fort Irwin. re-testing, data c	kup power for it Sprint sites Funds inclu ollection, and	r: ReliOn , and Plu ded units lysis, ma	with deplo ag Power w as well as intenance,	oyments ith depl other a , and rep	at AT&T and oyments at spects of the sorting.			
										1	

"NREL is uniquely set up to

compare data sets from a variety of fuel cell developers for a range of applications. Without this project, such comparative

analysis would not be available."

Examples of Peer Review Feedback

"Other areas of strength include industry's confidence and trust in NREL's team and approach to the project, and the continuous improvement and enhancement of project products, particularly CDPs and DDPs..."

"This is a good national approach to fuel cell analysis. There are early warnings of commercial problems, such as compressors..."

The ability to leverage the capabilities established by NREL for its implementation of other technology validation projects is a strength of this project..."

"This project is essential to benchmarking the progress of fuel cell systems over time and across industries." "This is a great way to put all the data together and get information back to the industry and potential customers."

Fuel Cell Cost & Price Aggregation Project

DOE Fuel Cell System Cost Based on Models for High Volume

Record Source: http://www.hydrogen.energy.gov/pdfs/13012_fuel_cell_system_cost_2013.pdf

Fuel Cell Technology Status – Cost/Price

The U.S. Department of Energy's National Renewable Energy Laboratory is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell product cost/price to benchmark the current state of the technology and support industry growth.

NATIONAL RENEWABLE ENERGY LABORATORY

Cost/Price Data Template

	А	В	С	D
7	System 🗸	ProductName1 🗾 🔽	ProductName2 🗾 🔽	ProductName32 🔽
8	Current Price (US \$)			
9	Availability			
10	Market			
11	Application			
12	Fuel Cell Type	PEMFC	PEMFC	
13	Fuel			
14	Comments			
15	Power Rating (kW)			
16	Other features			
17	# systems sold to date			
18	2010 Price (US \$)			
19	2011 Price (US \$)			
20	2012 Price (US \$)			
21	Current system cost (US \$)			
22	Current fuel cell stack cost (US \$)			
23	Cell count			
24	Active area			
25	Turndown capability			
	Spec sheet link or Product			
26	brochure PDF attached			

Benefits of Cost/Price Analysis

External

- Provide current cost status of fuel cell products that fill the gap with high volume cost numbers
- Help set realistic price expectations at small volume production
- One source of realistic cost/price status for DOE from the leading fuel cell developers
- Highlights technology successes
- Helps adoption of fuel cell technology

Internal

- Provide independent, credible and consistent product cost/price information that is very useful for external partners (e.g. DOE and industry) without revealing proprietary information
- Benchmarking against CDPs
- Collaboration with NREL's technology validation team; dedicated analysis team with experience in multiple fuel cell applications

NFCTEC Contacts

Website

http://www.nrel.gov/hydrogen/proj_tech_validation.html

Email <u>techval@nrel.gov</u> jennifer.kurtz@nrel.gov

Question and Answer

 Please type your question into the question box

hydrogenandfuelcells.energy.gov

Thank You

James.Alkire@go.doe.gov

hydrogenandfuelcells.energy.gov

Backup

NFCTEC Partners

AC Transit	FedEx	Proterra
Auto OEMs	GENCO	Proton OnSite
Ballard Power Systems	Golden Gate Transit	ReliOn Inc.
Bluways	GTI	San Francisco Metropolitan Transit Agency
CaFCP	H2 Frontier	San Mateo Transit Authority
California Stationary Fuel Cell Collaborative (CaSFCC)	H2Pump	Santa Clara Valley Transportation Authority
CARB/Shell	H2USA	SCAQMD
CEC	Hydrogenics	Sprint Communications
СНВС	Linde	SunLine Transit Agency
City of Burbank	National Fuel Cell Research Center (NFCRC)	Sysco of Houston
ClearEdge Power	Nuvera Fuel Cells	US Hybrid
CSULA	PDC Machines	
FCHEA	Plug Power	