Performance Evaluation of Lower-Energy Energy Storage Alternatives for Full-Hybrid Vehicles

SAE 2014 Hybrid & Electric Vehicle Technologies Symposium
La Jolla, California
February 11-13, 2014

Jeff Gonder, Jon Cosgrove and Ahmad Pesaran
National Renewable Energy Laboratory (NREL)
Transportation and Hydrogen Systems Center (THSC)
Project supported by the DOE Vehicle Technologies Office
Motivation

• Hybrid electric vehicles (HEVs) are effective at reducing per-vehicle fuel use
• Incremental cost remains a barrier to wider market penetration
 o Energy storage system (ESS) arguably the largest contributor
• ESS cost reductions/performance improvements \rightarrow improved vehicle-level cost vs. benefit
 o Increase market demand and aggregate fuel savings
• LEESS considerations
 o Technical evaluation—can it do the job?
 o Potential for lower cost with less energy?
 o Potential benefits from alternative technology?
 – Better life, better cold temperature performance

Project Focus
Related Background Work: NREL Evaluation for GM of Replacing NiMH Batteries with Ultracapacitors in the 42-V Saturn Vue BAS HEV

- Motivation: Ucap potential for superior cycle life, cold temperature performance, and long-term cost reductions
- Bench tested Ucaps and retrofitted vehicle to operate in 3 configurations

Findings: 42V HEV with ultracapacitors performed at least as well as the stock configuration with a NiMH battery

BAS = belt alternator starter ("mild" HEV)
Additional Background: NREL Analysis for USABC of Full-HEV Fuel Savings Sensitivity to Energy Storage Size

- NREL performed simulations and analyzed test data in conjunction with an EES TT Workgroup
 - Re-evaluating ESS targets established in the late 1990s / early 2000s

- Results suggested power-assist HEVs can still achieve high fuel savings with lower energy and potentially lower-cost ESS – see:

- USABC established targets and began supporting device developers
 - See: http://www.uscar.org/guest/article_view.php?articles_id=87
 - Open to any ESS technology (very high power batteries, electrochemical double-layer capacitors, or asymmetric supercapacitors)

USABC = United States Advanced Battery Consortium
EES TT = The FreedomCAR/USDRIVE Electrochemical Energy Storage Technical Team
Current Project:
Hardware Evaluation of Potential Full-HEV LEESS Devices

- Set up a reusable vehicle test platform using a 2012 Ford Fusion Hybrid
 - Cooperative research and development agreement (CRADA) with Ford to facilitate
- Second set of production Ford control modules to interface with LEESS cells
 - Custom state estimator sends instantaneous state of charge (SOC) and power capability information to vehicle controller
- Maintain stock operating capability (using production NiMH cells)
 - Able to switch between operation using the stock battery and using the LEESS device under test
 - Provides back-to-back performance comparison
Bench Testing of First LEESS under Evaluation

- JSR Micro provided LIC modules
 - Asymmetric storage device with battery and ultracapacitor-type characteristics
 - 3.8 V max/cell, and doubled volumetric capacitance due to lithium doping

- Conversion pack sizing

<table>
<thead>
<tr>
<th></th>
<th># of Cells</th>
<th>Nominal Voltage</th>
<th>Total Energy (Wh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock Sanyo NiMH*</td>
<td>204</td>
<td>275</td>
<td>1,370</td>
</tr>
<tr>
<td>8 JSR 192 F LIC Modules</td>
<td>96</td>
<td>300</td>
<td>260**</td>
</tr>
</tbody>
</table>

**Assuming 175 V – 350 V maximum in-vehicle operating window
JSR LIC Pack Characterization

- Bench cycling at multiple temperatures
 - Static capacity test
 - Hybrid pulse power characterization (HPPC)
 - US06 drive profile
- Impedance 2–3x less than NiMH*

*Based on calculations from INL fact sheet
OCV = open circuit voltage

Photo by John Ireland, NREL
US06 Stock Vehicle (NiMH) & LEESS (JSR LIC) Lab Comparison

Stock battery data courtesy of Argonne National Laboratory (ANL) chassis dynamometer testing

US06 = aggressive drive cycle with high speeds and accelerations
US06 Profile Comparison: Stock Battery (in vehicle) vs. JSR Micro LIC (in lab)
LEESS Control and Vehicle Interface: MABx, LIC State Estimation, and Vehicle Communication

- Controls for LIC state estimation, safety, etc. implemented via rapid control prototyping with dSpace MicroAutoBox (MABx)
- Adaptive state estimation model used to monitor LEESS pack state and estimate power capabilities
- State estimation and power capabilities were validated against bench test data from LIC modules undergoing US06 and HPPC cycles
- MABx interfaces with LEESS modules and with the Ford hybrid controller over the vehicle controller area network (CAN) bus
In-Vehicle Comparison: 0–60 mph Accelerations
Stock Battery (NiMH) & LEESS (JSR LIC)

No significant difference found between acceleration times while in NiMH configuration vs. LEESS configuration

* Run with extra mass of both ESSs and at high altitude

Photo by Petr Sindler, NREL
In-Vehicle Comparison: Dynamometer Testing

Test Schedule

• Performed standard drive cycles with vehicle in NiMH and LEESS configurations
 o Test cycles included:
 – FTP/UDDS
 – HWFET
 – US06
 – Cold (20°F) FTP
 o Vehicle CAN traffic recorded using the MABx

Dynamometer Facility

• Testing details
 o CAN fuel rate calibrated to bag measurements for comparisons

FTP/UDDS = Federal Test Procedure/Urban Dynamometer Driving Schedule (city testing)
HWFET = Highway Fuel Economy Test
In-Vehicle Comparison: Dynamometer Testing Production NiMH vs. 3 LIC configurations

- Evaluated several LIC scenarios in addition to the production configuration
 - LIC-High: Energy constrained only by vehicle and device voltage limits
 - LIC-Med: Artificially reduced upper voltage limit to constrain energy
 - LIC-Low: Further reduced upper voltage limit for most constrained evaluation

Voltage Levels During UDDS Testing

[Graphs showing distribution of voltage levels for LIC-Low, LIC-Med, LIC-High, and NiMH configurations]
In-Vehicle Dynamometer Testing: Fuel and Energy Use Comparisons

- Small fuel use differences between the HEV configurations—all show significant savings compared to the non-hybrid vehicle.
- Also measure energy window used by each ESS configuration for each cycle.

![Diagram showing fuel consumption and energy window comparison between different ESS configurations.]

- In-use “Energy Window” defined by (max – min) for the particular cycle.
- Cumulative ESS Wh to vehicle.
- Energy return from charging/regen.
- Charge sustaining over cycle (no net energy use).

![Bar chart showing HEV UDDS fuel consumption and energy out for electric launch/assist.]
In-Vehicle Dynamometer Testing: Comparing NiMH and LIC-High Scenario

UDDS Fuel Use and Energy Window

- **NiMH Case Speed**
- **NiMH Energy Profile**
- **NiMH Case Fuel**
- **LIC Case Speed**
- **LIC Energy Profile**
- **LIC Case Fuel**

Charging (regenerative braking)

Discharging (assist)

- ≈ 170 Wh
- ≈ 120 Wh
In-Vehicle Dynamometer Testing: Comparing NiMH and LIC-Low Scenario

UDDS Fuel Use and Energy Window

Charging (regenerative braking)

Discharging (assist)

NiMH Case Speed
NiMH Energy Profile
NiMH Case Fuel

LIC Case Speed
LIC Energy Profile
LIC Case Fuel

≈ 170 Wh

≈ 60 Wh
In-Vehicle Dynamometer Testing: Comparing NiMH and LIC-Low Scenario

UDDS Fuel Use and Energy Window

Charging (regenerative)

Discharging (assist)

NiMH Case Speed
NiMH Energy Profile
NiMH Case Fuel
LIC Case Speed
LIC Energy Profile
LIC Case Fuel

Spd [mph], Energy Profile [Wh], Fuel [g/10]

-600 0 200 400 600 800 1000 1200 1400 1600

-60 -40 -20 0 20 40 60 80 100 120 140

time [sec]
In-Vehicle Dynamometer Testing: Fuel Use and Energy Window Observations

Comparison over 75°F and 20°F City Test Cycles

Negligible fuel consumption difference from significantly reduced energy window
In-Vehicle Dynamometer Testing: Comparing NiMH and LIC-Low Scenario

HWFET Fuel Use and Energy Window

- NiMH Case Speed
- NiMH Energy Profile
- NiMH Case Fuel
- LIC Case Speed
- LIC Energy Profile
- LIC Case Fuel

Charging (regenerative braking)
Discharging (assist)

≈ 110 Wh
≈ 50 Wh
In-Vehicle Dynamometer Testing: Fuel Use and Energy Window Observations

Comparison over Highway and High Speed/Acceleration Test Cycles

Small energy window provides level HWFET fuel consumption and slightly increased US06 fuel consumption.
In-Vehicle Dynamometer Testing: Comparing NiMH and LIC-Low Scenario

US06 Fuel Use and Energy Window

Charging (regenerative braking)

Discharging (assist)

Spd [mph], Energy Profile [Wh], Fuel [g/10]

NiMH Case Speed
NiMH Energy Profile
NiMH Case Fuel
LIC Case Speed
LIC Energy Profile
LIC Case Fuel
Significantly reduced energy window resulted in negligible fuel consumption difference on most cycles and small increase on US06 test.
Summary

• HEVs are effective at reducing per-vehicle fuel use
• ESS cost reductions/performance improvements \(\rightarrow\) improved vehicle-level cost vs. benefit
 o Increase market demand and aggregate fuel savings
• LEESS considerations
 o Technical evaluation
 - Road testing showed no differences in acceleration times
 - LIC configurations even with very small energy windows showed negligible fuel consumption difference to the production NiMH configuration for many cycles, and slight increases on the US06 cycle only
 ▪ LIC calibration improvements may improve efficiency and drive quality
 o As long as engine can be started under worst-case conditions, considerable ESS downsizing may minimally impact fuel savings
 - Potential to achieve cost savings
 - Alternative technologies may allow downsizing while still satisfying life, power, and cold temperature performance requirements
Potential Next Steps

• Wrap up JSR LIC testing
 o 95°F SC03 for air conditioning comparison case
 o Very cold (e.g., -10°F ≈ -23°C) operation

• Bench testing followed by in-vehicle evaluation with additional LEESS devices
 o Next system will be ultracapacitor modules

• Consider possible changes if vehicle designed around a LEESS device – e.g., higher power motor

• Combine evaluation results with supplier cost estimates to refine business case assessment
Acknowledgments

• JSR Micro
 o Providing modules for evaluation
 o Related technical information and support
• Ford Motor Company
 o CRADA facilitating vehicle conversion
• U.S. Department of Energy
 o Cost-shared support between two Vehicle Technologies Office activities
 – Energy Storage (ES)
 – Vehicle Systems Simulation and Testing (VSST)
• USABC
 o Collaborated on precursor analysis to this effort and established LEESS performance targets for power-assist HEVs
• Maxwell Technologies
 o Providing double-layer capacitors as next system to test
Questions?

Author contact:

Jeff Gonder
Jeff.Gonder@NREL.gov
303-275-4462