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Importance of Thermal Management  
 

• Excessive temperature degrades the performance, life, 
and reliability of power electronics and electric motors.   

• Advanced thermal management technologies enable  
– keeping temperature within limits 
– improved reliability 
– higher power densities 
– lower cost materials, configurations and system. 
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DOE APEEM Program Mission 
• Department of Energy Vehicle Technologies Office (VTO) 

– Develop more energy-efficient and environmentally-friendly  
highway transportation technologies that enable America to use less petroleum. 

• Advanced Power Electronics and Electric Motors (APEEM) 
– Develop APEEM technologies to enable large market penetration of electric-drive 

vehicles. 

 

Domestic Automotive 
Original Equipment 

Manufacturers 

Industry, Automotive 
Suppliers and University 

Interactions 

Lead: APEEM Thermal Management 

Research Laboratories 
Lead: Power Electronics and Electric Motors 

Oak Ridge National Laboratory 

Others: Argonne National Laboratory, 
Ames Laboratory 
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VTO APEEM Electric Drive System 
Targets 

(on-road status) 
• Discrete Components 
• Silicon Semiconductors 
• Rare-Earth Motor Magnets 

• Fully Integrated Components 
• Wide-Bandgap (WBG) Semiconductors 
• Non Rare-Earth Motors 
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Advanced 
Packaging 
Reliability 

Electric Motor 
Thermal 

Management 

Power 
Electronics 

Thermal 
Management 

NREL APEEM Research Focus Areas 

Research Focus Areas Will Reduce Cost, Improve Performance and Reliability 

Enabling Materials 
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Power Electronics Thermal  
Management Strategy  
• Packages based on WBG devices require advanced  
    materials, interfaces, and interconnects  

• Higher temperature capability 
• Higher effective thermal conductivity  

 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 

• Low-cost techniques to increase heat transfer rates are required 
• Coolants – water-ethylene glycol (WEG), air, transmission coolant, refrigerants 
• Enhanced surfaces 
• Flow configurations 

Module Packaging Design with Integrated Cooling 

Device 

Metalized Substrate 
Substrate 

Attach 

Integrated Base/Cold Plate 

Die Attach 

Interconnect Encapsulant 

Enclosure 
Terminal 

Coolant 
Inlet 

Coolant 
Outlet 
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Thermal Resistance of Various 
Non-Bonded TIMs 
 

• Red dashed line in the two figures above is the target thermal resistance 
(3 to 5 mm2K/W). 

• Most non-bonded TIMs do not come close to meeting thermal 
specification of 3 to 5 mm2K/W thermal resistance at approximately 100-
μm bond line thickness. 
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Thermal Resistance of Sintered 
Silver and Solder 

• The thermal resistance tests were 
performed using the NREL ASTM TIM 
apparatus 
– Average sample temperature ~ 65°C, 

pressure is 276 kPa (40 psi). 
 

• The silvered silver and lead-free solder 
both showed promising results. 
 

• Bonded interface resistance in the range 
of 1 to 5 mm2K/W is possible. 
• Materials developed in the DARPA 

nTIM Program are in this range. 
 

 

Samples Thickness 
(µm)  

Resistance 
(mm2K/W) 

Silvered 
Cu-Cu 
sintered 
interface 
 

20  5.8 

27        8.0 

64  5.4 

Cu-Cu 
soldered 
interface 
(SN100C) 

80        1.0 

150  4.8 

200  3.7 

ASTM test fixture 
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Thermal Resistance of  
Thermoplastics 

• Thermoplastics with embedded carbon fibers show very good 
thermal performance. 

• Thermal performance characterized via the transient 
thermoreflectance technique. 
 

 
 

Thermoplastic 
film                        

HM-2  
Bondline 
thickness 
(µm) 

60 

Bulk thermal 
conductivity 
(W/m·K) 

44.5 ± 8.0 

Contact 
resistance 
(mm2·K/W) 

3.1 ± 1.1 

Total thermal 
resistance 
(mm2·K/W) 

7.5 ± 1.9 
Photo: Courtesy of  BtechCorp 
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Transient Thermoreflectance  
Technique Setup 



Integrated Module Heat Exchanger 

• Up to 100% increase in power 
per die area 

• Up to factor of 8 increase in 
coefficient of performance 

NREL integrated module heat exchanger  
Patent No.:  US 8,541,875 B2  (Kevin Bennion 

and Jason Lustbader)  
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Liquid Jet-Based Plastic Heat 
Exchanger 

Metalized  
substrate 

Base plate 

Plastic manifold  

 Device 

Bonded interface 
material (BIM) 

Wire/ribbon  
bonds 

WEG jets 

Enhanced 
surface 

• Up to 12% increase in 
power density 

• Up to 36% increase in 
specific power 
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Two-Phase Cooling for Power 
Electronics 

Fundamental 
Research 

Module-Level 
Research 

Inverter-Scale 
Demonstration 

Vapor Liquid

Evaporator

Characterized performance of 
HFO-1234yf and HFC-245fa. 

Achieved heat transfer rates of 
up to ~200,000 W/m2-K. 

Reduced thermal resistance by 
over 60% using immersion two-

phase cooling of a power 
module. 

Quantified refrigerant volume 
requirements. 

Dissipated 3.5 kW of heat with 
only 180 mL of refrigerant. 

Predicted 58%-65% reduction in 
thermal resistance via indirect 

and passive two-phase cooling. 

Power electronics 
modules

Evaporator

Air-cooled 
condenser

Photo Credit: Bobby To, NREL 
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Air Cooling for High-Power  
Electronics 
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Heat Dissipation for Optimized Case  
(6 modules) 
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Shows the potential for air cooling 

* without inverter housing 



Bonded Interface Material 
Reliability 

• Thermoplastics 
yield very good 
reliability. 

 
• Reliability of 

sintered silver 
is better than 
solder. 
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Bonded Interface Material 
Reliability 

• Thermoplastics 
yield very good 
reliability. 

 
• Reliability of 

sintered silver 
is better than 
solder. 
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Electrical Interconnects Reliability 

Ribbon Bonding 

400 
µm 

2,000 µm x 200 µm 

400 
µm 

400 
µm 

Three 400-µm wires can be 
replaced by a single 2,000-µm 
x  200-µm ribbon for equivalent 
current carrying capability 

Traditional Power Electronics 
Package 

Wire Bonding 

Device 

Metalized Substrate 
Substrate 

Attach 

Base Plate 

Die Attach 

Interconnect Encapsulant 

Enclosure 
Terminal 
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Electric Motor Thermal 
Management Strategy  

• Advanced materials and 
interfaces are required 
• Lower cost (less rare earth) 

materials 
• Higher effective thermal  
 conductivity 
 

• Low-cost techniques to 
increase heat transfer rates 
are required 
• Coolants – water-ethylene 

glycol (WEG), air, 
transmission coolant, 
refrigerants 

• Enhanced surfaces 
• Flow configurations 
• Reduce temperature 

 
 
 

 

 
 

Motor Cooling 
Section View Cut side view 
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Transmission Oil Jet Heat 
Transfer Characterization 

• Heat transfer coefficients on all target 
surfaces at 50°C inlet temperature. 

• At lower impingement velocities, all 
samples achieve similar heat transfer. 

18 AWG surface target 

Note: Heat transfer coefficient calculated from the base projected area (not wetted area) 

Top View 

Side View 
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Lamination Stack Effective 
Thermal Conductivity 

Measured Stack Thermal 
Resistance 

Lamination-to-Lamination 
Thermal Contact Resistance 

Effective Through-Stack 
Thermal Conductivity 
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Summary 

• Low-cost, high-performance thermal management technologies are 
helping meet aggressive power density, specific power, cost and 
reliability targets for power electronics and electric motors. 
 

• NREL is working closely with industry and research partners to help 
influence development of components which meet aggressive 
performance and cost targets 

– Through development and characterization of cooling technologies. 
– Passive stack materials and interfaces thermal characterization and 

improvements. 

 
• Thermomechanical reliability and lifetime estimation models are 

important enablers for industry in cost-and-time-effective design. 
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For more information, 
contact: 

NREL APEEM Task Leader 
Sreekant Narumanchi 
sreekant.narumanchi@nrel.gov 
Phone: (303) 275-4062 
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