Reducing Fuel Consumption through Semi-Automated Platooning with Class 8 Tractor Trailer Combinations

Project Objective

The objective of this project is to evaluate the fuel-saving potential of semi-automated truck platooning. Platooning involves reducing aerodynamic drag by having vehicles operate in a line, mimicking the behavior between bees through the use of identical coupling, which allows multiple vehicles to accelerate or decelerate at the same rate.

Demonstration System Specifications

Vehicle Specifications

- Cab-over design
- Dual-trailer trailer
- 80,000 lb GVWR

Enabling Technologies for Semi-Automated Platooning

- Dedicated short-range communications
- Autonomous truck control
- Vehicle-to-vehicle communications
- Platooning control

Test Vehicles

- Lead vehicle (control tractor)
- Trailing vehicle

Enabling Technologies for Test Vehicles

- Dedicated short-range communication
- Autonomous truck control
- Vehicle-to-vehicle communications
- Platooning control

Track Testing Plan

- Test procedure requires a minimum of 100 miles of data collection
- Data collected includes:
 - Fuel consumption
 - Brake activity
 - Vehicle speed
 - Cooling system status

Test Truck Specifications

- Lead Truck: Class 8, 53' van, 60,000 lb GVWR
- Trailing Truck: Class 8, 53' van, 60,000 lb GVWR

SAE J1321 Type II Fuel Consumption Test Method

- Test procedure requires a minimum of 100 miles of data collection
- Data collected includes:
 - Fuel consumption
 - Brake activity
 - Vehicle speed
 - Cooling system status

Fuel Savings Results

- Team fuel savings ranged from 3.1% to 6.5%
- Trailing truck saw savings from 2.8% to 9.7%
- Fuel savings increased as following distance decreased

Fuel Consumption Results: Individual Fuel Savings

- 0.2% to 0.5% savings @ 65 mph, 65k, 30'
- Higher 2015 regularly reported fuel savings
- grill following distance cannot be known for the testing condition

Key Findings

- Platooning improved fuel economy at all speeds and conditions
- Heavy payloads affect the percent savings from platooning, but still result in a reduction in fuel consumption

Acknowledgements

This work was supported by the U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity through Intertek Testing Services, North America, and would not have been possible without the generous donation of time and vehicles from Peloton, Inc. The authors wish to thank Lee Slezak and David Anderson at DOE and Josh Switkes at Peloton for their support.