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1 Introduction 
The integration of renewable energy into the power system is an ongoing project in the United 
States. Important factors for the integration of variable generators, such as wind and solar power, 
include the geographic distribution of the generators, how the power produced at each site 
changes over time, and how well their production can be forecast. In the case of wind energy, 
this generation is driven by the variation of the wind over many different timescales; therefore, it 
is essential to have a clear understanding of both the wind and the turbine performance at spatial 
and temporal resolutions that are important for balancing authorities and utilities. This need in 
turn implies spatial resolutions of data from 2 km to multiple states and from a few minutes to 
several years. This data is not commonly available for integration studies from either public or 
private sources; instead, current integration studies typically simulate winds or weather over a 
wide area and then model the response of artificially located turbines to these simulated 
conditions. This modeling approach provides the resolution, scale, and realistic responses, which 
are essential to a useful integration study. 

Previous integration studies include the Western Wind and Solar Integration Study (WWSIS) 
(see GE Energy 2010 and 3Tier 2010) and the Eastern Wind Integration Study (EWITS) (see 
EnerNex Corporation 2011). These studies used high-quality wind data sets to create time series 
of the power produced by a large number of wind power plants spread across the United States. 
The WWSIS and EWITS data sets provide realistic representations of the variability, ramping 
characteristics, and forecast performance of wind power plants that operate using today’s 
technology. WWSIS covered the western United States with a seamless, 1-arc-min resolution 
meteorological grid at 10-min resolution for the years from 2004 to 2006 (Potter et al. 2008). The 
EWITS study data set had a resolution of 10 km by 10 km at 5 min for the same time period and 
covered the eastern United States. Although this spatial resolution was sufficient at the time, 
experience has shown that realistic simulation of wind integration into the U.S. grid requires data 
at finer resolution and for a longer period. In addition, these two data sets did not cover the entire 
continental United States with a consistent modeling approach; therefore, a new meteorological 
and power data set was required. 

The Wind Integration National Data set (WIND) Toolkit, described herein, is an update for and 
expansion of the WWSIS and EWITS data sets, and it is intended to support the next generation 
of integration studies. 

1.1 The WIND Toolkit 
The WIND Toolkit includes meteorological conditions and turbine power data for more than 
126,000 sites in the continental United States for the years from 2007 to 2013. Reanalysis of 
weather observations and mesoscale climate data using the Weather Research and Forecasting 
(WRF) model version 3.4.1 was used to create an underlying meteorological data set (Skamarock 
et al. 2008). The meteorological data set has a finer spatial (2 km by 2 km) and temporal (5 min) 
resolution than the existing data sets and covers a longer period of time (2006 to 2013) while 
modeling the entire continental United States. 

As part of the WIND Toolkit project, turbine locations were selected using a 30-y mean annual 
wind speed data set. Wind turbine power curves were also developed for those locations. The 
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process of site selection and the power curve development is summarized in this document. For 
full details, please see Creating the WIND Toolkit Data Sets (3Tier forthcoming). 

Three main data sets are included in the WIND Toolkit: 

• The meteorological data set includes basic information on the weather conditions in each 
2-km x 2-km grid cell. The meteorological data set also includes parameters such as wind 
profiles, atmospheric stability, and solar radiation data in those cells. 

• A power data set was created using the wind data and site-appropriate turbine power 
curves to estimate the power produced at each of the turbine sites. This document focuses 
on the creation and validation of the power data set. 

• A forecast data set includes forecasts for 1-h, 4-h, 6-h, and 24-h forecast horizons. 

The WIND Toolkit has been funded by the U.S. Department of Energy, Office of Energy 
Efficiency and Renewable Energy, Wind and Water Power Technologies Office and was created 
through the collaborative efforts of the National Renewable Energy Laboratory and 3Tier. The 
data set is to be made publicly available at no cost to foster the development of the next 
generation of wind integration studies. 

1.2 The Need for Validation 
Experience with the EWITS and WWSIS data sets showed that careful validation of the data is 
essential. This validation must be carried out on both the meteorological data set and the power 
data set. This is needed to avoid modeling artifacts that can create unreasonable data time series 
because of temporal or geographical seams in the modeling framework. 

1.2.1 Validation of the WIND Toolkit Meteorological Data Set 
An analysis of the meteorological data set that validated the model wind speed characteristics 
with actual measurements has been carried out for a small number of sites across the continental 
United States (Draxl et al. forthcoming). Diurnal and seasonal statistical analyses were 
performed and demonstrated that the model produced reasonable results when compared to 
actual measurements from validation sites. 

1.2.2 Validation of the Power Data Set 
The EWITS and WWSIS data sets showed that artificially produced spatially and temporally 
resolved power data sets could be impacted by the underlying meteorological data. For example, 
problems with merging short-duration meteorological simulations in those studies led to 
occasional artificial ramps or dips in power as simulations were overlain. Diurnal and seasonal 
variations in wind speed were sometimes impacted by model effects as well, leading to non-
physical variations in power output through the course of the day or year. These effects could be 
both local and regional. Because these effects are not physical but have important impacts on the 
power system, it is essential to confirm that the power data set does not contain these artificial 
artifacts.  

1.3 About This Document 
This document focuses on the creation and validation of the WIND Toolkit power data set.  
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Section 2 describes the process of defining wind turbine power curves and deciding how many 
and what type of turbines will be installed in each of the WIND Toolkit’s 2-km by 2-km grid 
cells. Section 3 describes how these sites are combined with the meteorological data to create the 
power data set. Section 4 describes the creation of a data set that is used in Section 5 to validate 
the WIND Toolkit power data set. Section 6 describes how the power data set can be used. 
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2 Wind Turbine Performance and Locations 
The WIND Toolkit provides power time series data for sites across the United States. The power 
data are based upon the meteorological data set at wind power plant locations. Each wind power 
plant has different power curves that were chosen according to the estimated long-term wind 
conditions at each site. This section describes the process by which different power curves were 
developed and how wind power plant locations were chosen. 

2.1 Wind Turbine Power Curves 
This study used generic power curves to estimate the power that might be available at different 
locations across the United States. Generic turbine power curves were developed for turbines on 
sites with different average annual wind speeds. The turbines are described as Class I, Class II, 
or Class III, depending on the annual average wind speed following the classes described in the 
International Electrotechnical Commission (IEC) 61400-1 (IEC 2005). An offshore class has also 
been developed. The generic power curves were developed for an update to the EWITS data set 
(Pennock 2012) in preparation for the Eastern Renewable Generation Integration Study (ERGIS). 

The generic power curves have cut-in wind speeds, rated power, and rated speeds that are similar 
to commercially available turbines (Table 1). Each turbine is assumed to have a rated power of 
2.0 MW and a hub height of 100 m. 

Table 1. Wind Turbines Used to Create Composite IEC Power Curves 

 
 
The normalized power curves for the different classes are listed in Table 2 and plotted in Figure 
1. A normalized power curve could apply to a single turbine, in which case the normalized power 
curve is the turbine output power divided by the rated power (2.0 MW for all classes), or to 
multiple co-located turbines of the same type, in which case the normalized power is the total 
output divided by the sum of the turbines’ rated power. 
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Table 2. Normalized Power Curves Used in Each Grid Cell 

 
 

 
Figure 1. Power curves used to convert modeled wind speeds to power for onshore Class I 

through Class III locations and offshore locations 
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2.2 Wind Turbine Locations 
Grid cells that would be populated with wind turbines were selected on the basis of geography 
and wind resource. The site selection process is detailed in Creating the WIND Toolkit Data Sets 
(3Tier forthcoming) and summarized here for completeness.  

First, a 30-y data set from 3Tier was used to estimate the mean annual wind speed in 2-km by 2-
km grid cells across the United States. Then the power curves described in the previous section 
were assigned to cells based on the long-term average wind speed in that cell according to the 
IEC class definitions. It was assumed that at most, eight 2-MW turbines, all of the same class, 
could be present in each grid cell. Next, the area of buildable land in each cell (accounting for 
buildable land and exclusions) was used to estimate how much of the resource in each cell could 
be harvested. Combining the wind speed distribution, power curve information, and available 
area gives an estimate of the energy that can be produced in each grid cell. 

Having identified the energy potential in each cell, the next step was to identify likely wind 
power plant locations. To do this, the cells were ranked by energy production, and the 110,000 
best-performing cells were chosen. Grid cells that corresponded to built sites and sites that were 
included in WWISS and EWITS were selected. Then the best-performing cell in every county in 
the lower 48 states was selected. Offshore cells at least 8 km from shore in water less than 30 m 
deep were also chosen. This process identified a total of 112,471 onshore cells that would be 
populated with one or more wind turbines and 14,221 offshore grid cells (Figure 2). The 
locations of these cells and the number and type of turbines in each cell were used to create the 
power data set. 

 
Figure 2. Locations of the 126,692 wind power plant sites 
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This siting process ensured that cells with wind turbines are dispersed across the United States 
and that the turbines are sited in areas with a potentially viable wind resource. Although not all 
of the wind turbines might be in locations that would be considered commercially viable, the 
locations represent a state of high penetration of wind generation in the continental United 
States.  
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3 The WIND Toolkit Power Data Set 
After the locations of the wind power plants were identified using the low-temporal resolution 
data, it was possible to create the high-temporal resolution power production data set. 

The power production data set was created using wind data from the meteorological data set, and 
the power curves for each of the more than 126,000 wind power plant sites were identified. The 
process for estimating the power production was as follows: 

1. Remove the bias from the wind speeds in the high-resolution WIND Toolkit 
meteorological data set. The adjustments to wind speed for bias and wake losses are 
discussed in detail in the final report for this project (3Tier forthcoming). 

2. Reduce the wind speeds in each grid cell from the meteorological data set value (𝑈𝑀𝑒𝑡) to 
account for the effects of wakes. This was done by 3Tier using an empirical function: 

𝐶𝑤𝑎𝑘𝑒 = 1 −  
1

20 �
𝑛𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑠 − 1

7 � 
where 𝑈𝑐𝑒𝑙𝑙 = 𝐶𝑤𝑎𝑘𝑒 × 𝑈𝑀𝑒𝑡, and 𝑛𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑠 is the number of turbines in each grid cell.  
Because the maximum number of turbines per grid cell is eight, the wind speed reduction 
in each cell due to wakes to is limited to 5%. 

3. Apply the wind power plant site-specific power curves for each site to estimate the power 
for each 5-min data point. 

This process allows the 5-min meteorological data set to be converted into a power production 
time series of 5-min temporal resolution for each of the 126,000-plus sites. Similarly, the 
forecast data was converted into simulated operational forecasts for 1-h, 4-h, 6-h, and day-ahead 
forecast horizons at the 126,000-plus sites selected. No statistical adjustments were made to the 
power data at the time of this report. 

The power data set also includes wind speed, air density, and wind direction at 100 m, 2 m 
temperature, and surface pressure.  
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4 Power Validation Data Set 
Very little production data from actual wind power plants is available in the public domain, 
which makes comparing modeled sites to actual sites very difficult. These actual data are rarely 
made public because of the commercial nature of the data. Broad aggregate data for several 
market areas are available for comparison only because the Midcontinent Independent System 
Operator (MISO) and the Electric Reliability Council of Texas (ERCOT) both publish wind 
production data. Therefore, it was necessary to create a validation data set that can be used to 
compare the WIND Toolkit to the limited data that is available. 

A validation data set was developed by 3Tier with input from NREL to provide a representative 
sample of sites across the country. This validation data set was developed with a preference for 
locations with existing or planned wind power plants. Additionally, the validation data set was 
selected to have representation from most of the lower 48 states, including sites in the Southeast. 
The data set consists of 284 plants across the model footprint. These wind power plants are 
aggregates of individual sites of varying sizes. A plant could be as small as a single grid site 
from the base data set or tens of sites with the power curves of each combined into a single 
production profile. Some of these plants are meant to represent existing wind power facilities; 
others are hypothetical plants useful for the purpose of statistical analysis. As part of this project, 
a tool is provided that automates the process of building these plants; this tool was used to build 
the test data set. 

When a wind power plant included different grid cells and different turbines, a composite wind 
speed and a composite power time series were created. The composite speed is the weighted 
average of the wind speeds at each site, with the weights proportional to the nameplate capacity 
of each site. The power is a simple summation of the expected power output for each site in the 
plant. 

The validation data set consists of 5-min wind and power data for the 284 sites from 2007 
through 2012. Figure 3 shows the location of the test plants. Of the 284 sites, 24 are offshore. 
Validation sites are frequently found in the upper Midwest and Texas, because these are areas 
with highly developed wind resources. In addition to the validation plants shown in Figure 3, 
three plants are located in Hawaii. 
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Figure 3. Map of wind power plants in the validation data set. There are also three plants in Hawaii 

(not shown). 

 
The Northeast is dominated by offshore plants near New Jersey, Connecticut, Massachusetts, and 
in Lake Erie. The Plains states have a concentration of plants in Iowa and southern Minnesota. 
There is a relatively small representation in the Southeast states, where the wind resources are 
the poorest. More information about the test data set plant information is provided in Table 3. 

Table 3. Summary of Plants in the Test Data Set 
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5 Results of the Power Validation 
The analysis reported here deals with the broad parameters of the power data. We examined the 
conversion of wind speed to power and observed the plant power curves for some of the plants in 
the test data set. We then computed and compared capacity factor information across broad 
regions and compared the regional capacity factors to previous data sets. Finally, we examined 
the variability of the power data in close detail to look for modeling anomalies and artifacts that 
were observed in the EWITS and WWSID wind data sets (Pennock 2012). 

5.1 Mapping Wind Speed to Power 
Analysis during the creation of the power data set showed that there were some problems in the 
algorithms dealing with the conversion of wind speed to power when certain anomalous 
conditions were encountered in the raw database. The problems were identified and corrected, 
and it is assumed that the conversion of wind speed to power is correct across all of the sites in 
the 126,000-plus domain. 

As mentioned above, the data set available for this validation does not include individual grid 
cell sites but rather aggregations of those sites. This made it difficult to verify the 
implementation of the power curves presented in the introduction. However, it was interesting to 
examine the power curve that was implied for the aggregated sites. This was done by plotting 
each average wind speed and power pair for a plant and examining the cloud of points that 
resulted. The wind speed is the weighted average speed experienced at each time point by each 
of the turbines that comprise the plant. The power is the aggregate of all of the turbines. 

Figure 4 shows the implied power curve for a small 6-MW plant in the Southeast. This plant was 
classified as IEC Class 2. All 672,768 data points for the plant in the simulated years from 2007 
through 2012 are represented on the graph. Cut-in speed is 3 m/s with a maximum power output 
of approximately 13 m/s. The cut-out speed is 25 m/s, and a hysteresis was applied so that after a 
turbine has shut down as a result of a cut-out, the wind speed must drop to 20 m/s before that 
turbine is permitted to restart. Each of these points can be clearly identified in the plot. There is a 
dispersion of points in the nonlinear portion of the power curve. This is because each of the 
turbines experienced slightly different wind speeds. The theoretical power curve is superimposed 
on the data in square red markers. 
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Figure 4. Aggregate power curve for a sample 6-MW wind power plant with theoretical power 

curve (red markers) 

 
As the plant size and the number of turbines comprising the plant increases, the diversity among 
the turbines increases and the aggregate power curve becomes more diffuse. Figure 5 shows the 
power curve for a 300-MW plant. Again, the speed axis is the weighted average speed 
throughout the plant. The cut-in speed is no longer a clear point but an area where some turbines 
had started and others had not. The high wind cut-out shows that some plants continued to 
operate as the average wind speed exceeded the cut-out speed, because some turbines in the plant 
were experiencing lower wind speeds. Note that there is some discrepancy between the 
theoretical power curve (red dots) and the WIND Toolkit data near the top of the power curve. 
The differences in the results shown between the theoretical power curve and the WIND Toolkit 
data are because not all of the sites in this sample wind power plant that were modeled with the 
Class 3 turbine power curve are shown in the figure. 

 
Figure 5. Aggregate power curve for a sample 300-MW wind power plant with theoretical power 

curve (red markers) 
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Figure 6 shows the implied plant power curve for a 1,008-MW offshore wind power plant. Many 
individual turbines comprise this plant, which covers a significant geographic area, 
approximately 250 km2. There was significant diversity in the wind across the plant, which led to 
a broad power curve. Again, each turbine in the plant experienced different wind speeds.  

 
Figure 6. Aggregate power curve for a sample 1,008-MW offshore wind power plant with 

theoretical power curve (red markers) 

 
5.2 Daily Production Profiles 
Two limited data sets are available to compare production on a regional basis: those from 
ERCOT and MISO, both of which publish the wind production information about their systems. 
ERCOT provides 5-min data, and MISO provides 1-h data. 

Figure 7 and Figure 8 show the comparison of the average daily production profiles of the WIND 
Toolkit data to the measurements for ERCOT and MISO, respectively.  

The shapes of the profiles for ERCOT as shown in Figure 7 correlate well but suggest that the 
WIND Toolkit calculated significantly higher power output for the fleet of plants. The difference 
in production is explored in the next section, on capacity factor, but it is influenced by more 
modern turbine power curves and the assumption that all turbines have a hub height of 100 m. 
Also, some curtailment is included in the ERCOT measurements that would not be reflected in 
the Toolkit data. 

There is less agreement in the shapes of the profiles for MISO, in which the measured data is 
much flatter than the WIND Toolkit data. Again, the measured data shows lower production than 
the WIND Toolkit data. 
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Figure 7. Comparison of average daily production profiles of the WIND Toolkit to the measured 

data in ERCOT 

 

 
Figure 8. Comparison of average daily production profiles of the WIND Toolkit to the measured 

data in MISO 

 
5.3 Seasonal and Regional Capacity Factors 
Capacity factor is a significant characteristic of synthesized wind power data. It measures the 
amount of energy that a site produces over time compared to the capacity of that facility. Some 
earlier data sets have been criticized for low capacity factors in areas where plants exist, but only 
anecdotal evidence has been offered to support this. Little rigorous analysis has been possible 
because of the lack of measured data from existing facilities. However, meteorological validation 
suggests good agreement of this data set to the measured data for a number of validation sites 
across the country. (See meteorological validation documentation.) 



15 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

The average seasonal and annual capacity factors for various regions in the United States are 
presented in Figure  9 and Table 4. Winter and spring present a general pattern as being the 
seasons of highest production in the central and eastern parts of the country. In the West, 
production is lowest in the winter and highest in the spring and summer.  

 
Figure 9. Seasonal capacity factors by region 

 
Table 4. Seasonal Capacity Factors by Region 

 
 
The high capacity factors in the Southeast are somewhat surprising, but they can be explained by 
the small number of sites and by the fact that those are the best sites found in the Southeast. Only 
13 plants in this region, with at a total capacity of slightly more than 1,500 MW. This includes 
700 MW of offshore capacity with a capacity factor of more than 40%. 

The Northeast region is dominated by offshore sites both off the Atlantic Coast and in Lake Erie. 
A comparison was done within the northeastern region to further understand the onshore and 
offshore capacity factors. Figure 10 shows this comparison. 

During all seasons, the capacity factor was higher for onshore wind than it was for offshore 
wind. This was a surprising result, because earlier studies have found that offshore wind has a 
higher capacity factor than onshore wind. For instance, in the NREL eastern data set (AWS 
Truepower 2012), the average onshore capacity factor for the Northeast was approximately 37%; 
whereas the average offshore capacity factor was 42%. 
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Figure 10. Seasonal capacity factors for onshore and offshore wind power plants in the Northeast 

 
To further explore the comparison of the WIND Toolkit to other data sets, regional information 
was extracted from the EWITS and WWSIS wind data sets. An attempt was made to line up the 
284 sites from the test data set to the sites from the older data sets to make the comparison as 
even as possible. The aggregate capacity factors were then computed for each of the regions 
shown in Figure 9. This was not possible in the Southeast, because the EWITS data set did not 
develop any data in this region. Also, note that the EWITS sites in Texas are concentrated in the 
non-ERCOT area of the panhandle of the state; whereas the Wind Toolkit covers the entire state 
with a large number of sites in both West Texas and the Gulf Coast. 

Figure 11 shows the results of this comparison. In all regions except Texas, the WIND Toolkit 
sites showed significantly higher capacity factors than those in the EWITS or WWSIS sites. The 
difference was greatest in the Southwest, but it was also large in the Northwest. Detailed data for 
this chart are given in Table 5. It was assumed that the differences in Texas were because of the 
differing wind regimes in the WIND Toolkit and EWITS data sets, as described above.  

 
Figure 11. Comparison of WIND Toolkit capacity factors to those in previous study data sets 
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Table 5. Comparison of WIND Toolkit Regional Capacity Factors to Older Study Data Sets 

 
 
Two market regions in the United States publish historic wind data measurements: MISO and 
ERCOT. The data about these two system operators was obtained from their respective websites1 
and analyzed with information about the installed capacities of each system so that capacity 
factors could be calculated. Because of apparent data quality problems, we used ERCOT data 
from April 2012 through January 2014, which has eight months of overlap with the WIND 
Toolkit data. The MISO data were available for the calendar year 2012. These data sets were 
compiled from the websites by 3Tier. 

Seasonal and annual capacity factors were calculated and averaged over the appropriate 
intervals. Figure 12 and Figure 13 show the comparisons of the regional values to the WIND 
Toolkit values. The WIND Toolkit values were approximately 8 to 10 percentage points higher 
in most seasons for both regions. This is a slightly larger difference than that shown in the 
comparisons of the WIND Toolkit data to older data sets. The additional differences can be 
easily explained by availability issues (curtailment, scheduled and unscheduled maintenance) 
and thus suggests fairly good agreement between the WIND Toolkit data set, older data sets, and 
measured values for MISO and ERCOT. 

A number of factors contribute to the difference in capacity factors. First, the turbine power 
curves that were used to model the production are the most modern and efficient on the market 
compared to the variety of older turbines in the field. Second, the WIND Toolkit models all 
turbines at a hub height of 100 m, which is an aggressive assumption compared to the existing 
fleet. Analysis of production data has shown that the difference in production between turbines 
with a hub height of 80 m compared to those with a hub height of 100 m can be as much as six 
percentage points of capacity factor for some turbine classes. Also, because only total capacity 
and not available capacity are included in the ERCOT and MISO totals, it is expected that the 
theoretical 100% availability assumption in the WIND Toolkit data would give a higher capacity 
factor. Yet another factor is that electrical losses are not included in the WIND Toolkit 
production data. Taken together, these factors seem to explain the capacity factor differences in 
the WIND Toolkit data compared to the measured data. 

                                                 
1 https://www.misoenergy.org/  and http://www.ercot.com/ 

https://www.misoenergy.org/
http://www.ercot.com/
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Figure 12. Comparison of WIND Toolkit capacity factors to available measurement data in ERCOT 

 

 
Figure 13. Comparison of WIND Toolkit capacity factors to available measurement data in MISO 

 
Table 6. Detailed Data for WIND Toolkit and Measurement Capacity Factors 
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5.4 Variability Analysis 
Previous efforts at producing synthesized wind production data (WWSIS, EWITS) succeeded in 
producing what seemed to be reasonable data; however, when the variability of that data was 
scrutinized, serious deficiencies were apparent. Most frequently, there were periodic spikes in 
variability at model geographic or temporal seams or at times when new measurement data were 
fed into the model. This manifested as unrealistic ramps at and around those times. 

Special care was taken when designing the model for this study. First, there are no geographic 
seams; the model is one grid across the continental United States. Next, the model was run for 
one month at a time with a full day of overlap at the beginning and end of each month. This 
minimized the number of temporal seams while allowing ample overlap for smooth blending at 
those seams. 

In previous efforts, variability spikes were not found when analyzing a single site or an 
aggregation of a small number of sites. As the number of sites included in the aggregation 
increased, the patterns became more pronounced. This is because the model artifacts were 
correlated; whereas the more natural variability was not correlated across broad areas. 

Spectrum analysis was done with both the power output and on the variability to understand 
what periods of time would be of interest in looking for repeating phenomena in the data set. 
Figure 14 shows the Fourier transform for a single site from the test data set. This particular site 
is a 500-MW plant, but the plot was normalized so the size is not material. Note that constant 
components (zero frequency) were not included in the plots. The axes were plotted as log-log 
coordinates to show detail at shorter time frames and lower magnitudes. 

The labels on the plot show the significant peaks. These peaks suggest repeating behavior at 
those frequencies. When looking at the single site, there are very few peaks. The daily peak 
suggests that there is a diurnal pattern in the data. That is a natural outcome, because most areas 
do have diurnal patterns. The next peaks, at 12 h and 8 h, are not as easily explained. It is likely 
that these times correspond to times when the numerical model had significant events, such as 
feed-in of measurement data. However, these peaks are relatively small, and as long as they are 
not correlated across sites they should not become any more significant as more sites are 
aggregated. 
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Figure 14. Frequency spectrum for power from a single site 

 
We also examined the variability associated with the power shown in Figure 14 by obtaining the 
interval-to-interval changes and performing a similar Fourier analysis. Figure 15 shows these 
results for the same plant as that shown in the previous plot. 

Again, peaks at 1 d, 12 h, and 8 h were present. There was also a sharp but significant decline in 
variability at 1 h, which seemed to be an artifact of this plant. This decline did not appear in the 
larger aggregation, which suggests that this was not correlated across multiple plants. 

 
Figure 15. Normalized variability Fourier transform for a single site 
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The same analysis was repeated with the aggregated output of all 284 plants in the sample set to 
look for correlated phenomena. Figure 16 shows the normalized Fourier output for the 
aggregated power. Note that the constant component was left off of the plot. 

Note that a number of new peaks appeared. There are two reasons that these peaks appeared in 
the aggregated output. First, the uncorrelated components were reduced in relative magnitude 
compared to the single plant case from above. This allowed the correlated components to be 
more prominent. Second, and more importantly, because they are correlated, the components 
increased with aggregation, which made them bigger in absolute magnitude.  

For the most part, the peaks that occurred at 3 h, 4 h, 5 h, 6 h, 8 h, and 12 h appeared to be 
related to the modeling, because natural processes would not normally repeat on the hour. It is 
odd that there was a peak at 5 h, because there were reportedly no processes within the model 
that were repeated at this interval. It is assumed that this peak was an artifact of resampling for 
the Fourier analysis. 

A particularly odd peak appeared at approximately 15 min. Consultation with the scientists at 
3Tier determined this peak to be an artifact of the model operation. It was explained that 
irradiance was forced into the model every 15 min, which caused a step change in the output at 
those times. This phenomenon will be explored in more detail in the time domain in upcoming 
discussions. 

 
Figure 16. Frequency spectrum of power for an aggregated plant  

 
Figure 17 shows the Fourier analysis of the variability for the aggregated data. The peaks are 
similar to those in power. Note that the dip at 1 h in the single-site analysis is no longer apparent 
in the data. 
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Figure 17. Fourier transform for aggregate variability for 284 plants showing a 15-min peak 

 

In the analysis above, we found no significant peaks above the period of 1 d. To further explore 
the peaks shown, we analyzed the data in the time domain. To do this, the standard deviations of 
the 5-min changes in production were calculated for each 5-min interval of the day throughout 
all of the years of data in the WIND Toolkit.  

First, we observed the variability for the single 500-MW plant used in the frequency domain 
analysis above. Figure 18 shows these results. Note that the time axis is labeled in Coordinated 
Universal Time (UTC). This was done because the model was run using UTC, with various 
processes coordinated to that time standard. Variability peaked at noon and again at midnight, 
showing the 12-h cycle. This is an important feature, as will be demonstrated. The 8-h cycle was 
much harder to identify in the plot. There appeared to be a pattern in the afternoon that was close 
to a 4-h cycle. 

 
Figure 18. Daily variability for a single wind power plant 
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The average 5-min variability was calculated for the aggregate output of the 284 sample sites. 
Figure 19 shows the resulting data. The 15-min signal in the frequency domain when the plants 
were aggregated was very prominent. It was not present during the nighttime hours, but it was 
highly prominent during the morning hours when the solar radiation increased at its most rapid 
rate. Although this is clearly an artifact of the modeling, the magnitude was relatively small 
(.05% of rating) and should not affect the performance of the analysis using the power series. 
However, caution should be used in calculating 5-min ramp statistics, because this will have a 
small but definite effect on the results. If time averaging is applied and the data are used at a 30-
min resolution or greater, this artifact does not affect the results at all. 

The 12-h cycle was again clear, with peaks near noon and midnight. Note that noon in UTC is 7 
a.m. Eastern Daylight Time, or approximately average sunrise in the East. The noon peak 
extended for 4 h or so, possibly reflecting sunrise across the footprint of the wind power plants 
from east to west. This would suggest a relationship of this peak to sunrise, and the behavior was 
correlated throughout the plants. It has been suggested that this is because of the meteorological 
process related to boundary layer physics surrounding dawn. 

This also corresponded to the steepest decline in wind power production, as shown in the plot. 
This suggests that the effect is simply because of the average ramping occurring at the same 
time, seemingly a side effect of the meteorological processes. However, a similar but opposite 
ramp occurred slightly after midnight UTC that had a corresponding steep decrease in variability. 
This decrease in variability continued as production ramped down from 4:00 UTC and 11:00 
UTC. This suggests that the production ramp rate is not necessarily the only predictor of 
variability. 

 
Figure 19. Daily variability for the aggregation of the entire test data set 
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To further investigate the prominent peak near noon UTC, a subset of plants was selected to 
narrow the effect of sunrise time on the results. The Plains region was selected because of the 
significant capacity installed there, and because it spans only one time zone and is relatively 
compact from north to south. This should have led to a minimal range of times for sunrise and 
sunset throughout the region and during yearly intervals.  

Figure 20 shows the aggregate variability and average production for the Plains states region. For 
comparison to Figure 19, note that the time axis is given in Central Standard Time (local time to 
the region) and that the time difference from UTC is 6 h, making noon UTC equal to 06:00 CST. 
Again, the 15-min artifact was clearly shown in the variability. In this case, however, the 
variability tended to follow the magnitude of the slope of the average production fairly closely.  

 
Figure 20. Average 5-min variability profile for the Plains states region 

 
The publicly available measured data from ERCOT provided a very useful comparison of the 
resolution and duration to the WIND Toolkit in this analysis. The data are provided at a 5-min 
resolution for 21 months (May 2012 through January 2014) for the aggregate wind in the 
ERCOT region.  

Figure 21 shows the results of the variability analysis for the measured ERCOT data. In this case, 
we saw a similar double hump in the variability: one hump near 8:00 CST and the other at 
approximately 19:00 CST. 
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Figure 21. Average 5-min variability and production for ERCOT 

 
Although the variability from the measured ERCOT data was considerably more volatile, the 
general shape did support the theory that the highest variability was at approximately sunrise and 
sunset. This helped validate the notion that the broad atmospheric processes are driving the 
double hump in variability and that that phenomenon is highly correlated across broad 
geographic areas. 
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6 Conclusions 
Meteorological validation of the WIND Toolkit data sets showed that the meteorological 
parameters including wind speed at hub height are reasonable (Draxl et al. forthcoming). In 
previous data sets (EWITS, WWSIS), modeling artifacts and other data flaws have been 
identified by examining the data after it has been converted to power through the turbine power 
curves. In this report, we presented analysis of the power data. 

The power data were shown to follow the theoretical turbine power curves. The implied plant 
power curves matched very well to the turbine curves for the Class 2 and offshore turbines. 
Some discrepancies were found for Class 3 turbines. Those discrepancies could be because of a 
mixture of turbine types in the plant model. 

Capacity factors were found to be universally higher than both earlier simulated data sets and the 
limited measurement data available to this study. It was suggested that the differences were 
because of the use of advanced turbine power curves and the modeling assumption that all 
turbines in the WIND Toolkit are at a hub height of 100 m. 

The WIND Toolkit data set exhibits some numerical artifacts, but those are deemed small 
relative to broader effects for the subset of data examined. Those artifacts are a direct result of 
the modeling techniques utilized and have been investigated by the researchers at 3Tier. Some of 
the artifacts are a result of the periodic introduction of reanalysis data during the simulations 
(using grid nudging with ERA Interim data). It was found that another was a result of the actual 
processes in the modeling, which caused a 15-min oscillating signal that was particularly 
apparent during the morning and evening sun ramps.  

Variability in the data set was shown to have a double-peak pattern when a significant number of 
sites were aggregated together. These peaks tended to occur approximately in sync with the 
morning down- and evening up-ramps that were found in the average daily production profile. 
The ERCOT measurement data set was analyzed, and it also demonstrated this behavior.  

The higher variability during predawn hours was found to be partially the result of average 
production down-ramps across all sites in the morning and slower up-ramps in the afternoon. 
The breadth of the variability hump seemed to be related to the geographic spread of the wind 
sites and the averaging period used in the analysis. This was deemed a real effect, because 
variability peaks during ramping were observed in measured data. It was correlated throughout 
all sites and related to broad atmospheric processes. 

A few overarching considerations should guide the use of this data: 

• This is a research data set. It is not meant to be a site investigation tool.  

• The modeling resolution is 2 km by 2 km, which can exclude the local effects of ridges 
and other landscape features. The WIND Toolkit data cannot be expected to exactly 
model a real plant that is located in the same place. 

• Caution must be used when analyzing maximum ramping statistics, because modeling 
artifacts and inaccuracies may be present. The maximum and minimum values should not 
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be utilized; instead, a confidence interval of some value less than 100% would be 
appropriate. 

• It is important to respect the temporal limitations of the data set. For example, the 
smallest time step for this data set is 5 min; therefore, it would be inappropriate to utilize 
the data for a study of wind power plants serving on an automatic generation control 
signal (at 4-s resolution) by simply interpolating between the points. 

• Spatial smoothing of wind power data has been extensively noted in the literature (e.g., 
Li et al 2007; McNerney and Richardson 1992; Nanahara et al. 2004); therefore, it would 
be inappropriate to scale up the power output from a single 10-MW site to a 100-MW 
plant by simply multiplying the power output by a factor of 10. 

• The same weather phenomena that drive wind power output also drive solar and load 
data; therefore, load, wind, and solar data utilized should be time synchronized. 

• As noted in the section on capacity factors, there are strong differences in seasonal wind 
power output; therefore, we recommend examining at least one full year of data. 

• There is annual variability in a single site’s capacity factor; this is one of the main 
reasons that the data set provided is 6 y long. Further examination is required before 
utilizing a single year as representative.  

Given these caveats and the assumptions underlying the production of the data, the data set was 
found to acceptably model the power output of wind resources. This data can be used with 
reasonable confidence that it is generally representative of production by modern turbines at a 
hub height of 100 m. 
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