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Nomenclature 
A, Am amplitude of a regular incident wave, amplitude of 

the mth wave with frequency ωm 
A, Aij Hydrodynamic added-mass matrix, (i,j) component 

of hydrodynamic-added-mass matrix 
A0 water-plane area of the support platform when it is 

in its undisplaced position 
B, Bij Radiation damping matrix, (i,j) component of the 

radiation damping matrix 
C, Cij linear hydrostatic restoring matrix, (i,j) component 

of the linear hydrostatic restoring matrix  
D diameter of structure 

Platform
idF  ith component of the total external load acting on a 

differential element of cylinder in Morison’s 
equation, other than those loads transmitted from 
the wind turbine and the weight of the support 
platform 

Viscous
idF  ith component of the viscous-drag load acting on a 

differential element of cylinder in Morison’s 
equation 

dz length of a differential element of cylinder in 
Morison’s equation 

fv vortex shedding frequency 
fij radiation force coefficient for a force in ith system 

degree of freedom, associated with a motions in the 
jth system degree of freedom 

Fext,i wave excitation force in ith system degree of 
freedom 

𝐹𝑒𝑥𝑡,𝑖
(1)   first-order wave excitation force in ith system degree 

of freedom 
𝐹𝑒𝑥𝑡,𝑖

(2)   second-order wave excitation force in ith system 
degree of freedom 

g gravitational acceleration constant 
h water depth 
Hs significant wave height 
i when not used as a subscript, this is the imaginary 

number, 1−  
κ wave number of an incident wave 
Kij (i,j) component of the matrix of wave-radiation-

retardation kernels or impulse-response functions of 
the radiation problem 
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Lij (i,j) component of the matrix of alternative 
formulations of the wave-radiation-retardation 
kernels or impulse-response functions of the 
radiation problem 

Mij (i,j) component of the body-mass (inertia) matrix 
n discrete-time-step counter 
qj system degree-of-freedom j (without the subscript, 

q represents the set of system degrees of freedom) 
jq  first time derivative of system degree-of-freedom j 

(without the subscript, q  represents the set of first 
time derivatives of the system degrees of freedom) 

jq  second time derivative of system degree-of-freedom 
j (without the subscript, q  represents the set of 
second time derivatives of the system degrees of 
freedom) 

S one-sided power spectral density of the wave 
elevation per unit time 

t simulation time 
tn discrete-time step 
Tp peak-spectral period 
V wind speed 
x,y,z set of orthogonal axes making up a Cartesian 

reference frame  
xB, yB, zB coordinates of the center of buoyancy  
xG, yG, zG coordinates of the center of gravity   
β incident-wave propagation heading direction 
γ peak shape parameter in the JONSWAP spectrum 
δij (i,j) component of the Kronecker-Delta function 

(i.e., identity matrix), equal to unity when i j=  and 
zero when i j≠  

ζ instantaneous elevation of incident waves 
𝜁(1) first-order instantaneous elevation of incident waves 
𝜁(2) second-order instantaneous elevation of incident 

waves 
ξ platform motion amplitude 
ξ  platform velocity 
ξ  platform acceleration 
π the ratio of a circle’s circumference to its diameter 
ρ water density 
ωj the angular frequency of an incident wave or 

frequency of oscillation of mode of motion j of the 
platform 

ωp peak-spectral angular frequency 
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Executive Summary 
Offshore winds are generally stronger and more consistent than wind on land. A significant part 
of the offshore wind resource, however, can be found in deep water—where floating turbines are 
the only economical means of harvesting the energy. The design of offshore floating wind 
turbines uses design codes that can simulate the entire coupled system behavior. At the present, 
most codes include only first-order hydrodynamics, which induce forces and motions varying 
with the same frequency as the incident waves. Effects due to second- and higher-order 
hydrodynamics are often ignored in the offshore industry, because the forces induced typically 
are smaller than the first-order forces. Second-order hydrodynamics, however, do induce forces 
and motions at the sum-frequency and difference-frequency of the incident waves. Because of 
the frequency content, second-order hydrodynamics can excite eigenfrequencies of the system, 
leading to large oscillations that strain the mooring system or to vibrations that cause fatigue 
damage to the structure. Observations of supposed second-order responses in the DeepCwind 
model tests performed in spring 2011 sparked interest about how second-order excitation affects 
wind turbines. 

In this report, first- and second-order hydrodynamic analysis used in the offshore oil and gas 
industry is applied to two different wind turbine concepts—a spar and a tension leg platform 
(TLP). The results are calculated in the frequency domain using WAMIT, with system matrices 
derived from linearization of turbine models in FAST. The second-order forces and motions are 
compared to first-order forces and motions (and also to time-domain response and loads induced 
by aerodynamic loading as solved by FAST). Further, it presents an analysis of second-order 
effects in the DeepCwind model tests, including a comparison of the model test results to 
WAMIT results, an assessment of how wind loading influences the second-order response and an 
assessment of how second-order effects influence system loads. The comparison to WAMIT 
results showed relatively large differences. The last part of this report discusses reasons for these 
differences, as well as important limitations to the second-order calculations in WAMIT. 
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1 Introduction 
Every part of an advanced society depends on a reliable supply of electrical power. Traditionally, 
this energy has been supplied by non-renewable fossil fuels such as oil, natural gas, coal, and 
nuclear materials. Facing climate change and depletion of natural resources, the only sustainable 
option is to “decarbonize” the energy supply by switching to renewable energy. Wind energy 
generation has been growing quickly for more than a decade, and wind now is the second-largest 
renewable energy sector after hydropower [12]. Generation capacity has increased from 24 GW 
in 2001 to 240 GW today, with 2011 being a record year with 42 GW of new installed 
capacity [42]. Wind energy not only provides clean electricity, it also generates local jobs and 
increases the security of future supply by decreasing the dependence on fossil fuels and the 
countries that provide them. 

In many parts of the world, the wind resource available on land is located far away from urban 
load centers, in regions where vacant land is scarce, or in areas that cannot be used for wind 
parks due to environmental protection. In Europe, the need to place wind turbines where they do 
not disturb people or wildlife has led to the construction of offshore wind parks. Other reasons 
for building offshore turbines are that the offshore wind resource generally is characterized by 
stronger and more consistent winds, and that the resource often is found close to major load 
centers. The trade-off is higher investment cost, more complicated construction, and more 
expensive maintenance. Nevertheless, the installed offshore wind power capacity in Europe is 
now 3,813 MW, with an additional 2,375 MW under construction and projects accounting for 
2,910 MW being prepared [7]. 

Almost all offshore wind turbines installed to date are built on 
fixed foundations, typically monopile or jacket structures, in 
shallow or transitional water less than 60 m deep. In many 
countries - including Norway, the United States and China - the 
main portion of the offshore wind resource is found in deeper 
water, where fixed-bottom structures are not an economically 
viable option. In the United States, the offshore resource in deep 
water is estimated to be 2,451 GW, accounting for more than 60% 
of the wind energy potential offshore [29]. To exploit this portion 
of the wind resource, several floating wind turbine concepts have 
been proposed, utilizing technology and experience from the 
offshore oil and gas industry. Some designs currently are in the 
prototype stage, in which a single turbine is tested offshore. These 
projects include the full-scale projects Statoil’s Hywind in Norway 
(Figure 1) and Principle Power’s WindFloat in Portugal. That it is 
possible to build and operate floating wind turbines with success 
already has been proven through these pilot projects. For the 
technology is to be utilized on a broader scale, the cost must be 
reduced significantly. It is hoped that with economies of scale and 
by finding the right level of safety (the offshore oil and gas 
industry and its verifiers typically are accustomed to very stringent 
safety requirements), the price of construction and installation will 
decrease.  

Figure 1. The Hywind 2.3 MW 
floating turbine by Statoil. 

Photo by Line Roald 
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Designing, building, and maintaining offshore wind parks requires knowledge about both wind 
turbines and the marine environment in which they are to function. Important tools for finding 
the optimal design for a floating turbine are design codes that allow for a coupled simulation of 
the turbine. A coupled simulation in this case means a time-domain simulation of the entire 
turbine system, including aerodynamics, hydrodynamics, structural elasticity, and the turbine 
control system. The codes used for offshore simulations are typically codes which were created 
for land-based turbines, and augmented with a hydrodynamic module to account for wave 
interactions, platform motions, and the mooring system later on. The codes that were verified 
through the OC3 code-to-code comparison project include (among others) FAST by NREL, GH 
Bladed by GL Garrad Hassan, and HAWC2/SIMO and Riflex by Risoe/MarinTek. 

The hydrodynamic modules of most floating wind design codes are limited to calculations using 
first-order radiation and diffraction, Morison’s equation, or a combination of both. Morison’s 
equation is a rather empirical but commonly used equation for wave loading on slender 
structures. It includes viscous drag but uses a long wavelength approximation for the scattering 
of incident waves. The radiation and diffraction approach incorporates wave reflection and 
scattering, but ignores all viscous effects by assuming potential flow. Assuming a small wave 
slope, the radiation and diffraction problem is expanded using a perturbation series, and is split 
into a first-order, a second-order, and a higher-order part. These parts then can be solved 
separately. In the offshore industry, it is common to solve only the first-order problem and 
neglect all other terms. This approach has been adopted for the wind turbine simulation codes 
mentioned above, and is the reason why only first-order radiation and diffraction has yet been 
included in the codes. Due to the linearity of the problem, the forces and motions from the first-
order problem oscillate at the same frequency as the incident waves.  

The second-order terms of the perturbation series form the second-order hydrodynamic problem, 
which is the topic of interest for this report. The second-order problem addresses interactions 
between two harmonically oscillating components, resulting in forces and motions at the sum-
frequency and difference-frequency of the incident waves. The second-order forces typically are 
orders of magnitude smaller than the first-order forces, which is why they often are ignored. 
They can however cause problems due to their frequency content. Offshore structures normally 
are designed such that their eigenfrequencies are outside the range at which first-order incident 
waves contain significant energy—above or below 0.25 to 1.25 rad/s (periods of 5 to 25 s). The 
sum-frequency and difference-frequency forces can excite these eigenfrequencies, and if the 
damping of the eigenmodes is sufficiently small, the result can be large oscillations or 
problematic vibrations.  

The effects of the second-order forces depend heavily on system eigenfrequencies and floater 
geometry, and should therefore be studied for a number of different structures. The three main 
concepts for floating wind turbine platforms are a spar buoy, a semi-submersible, and a tension 
leg platform (TLP), with some hybrid versions (Figure 2). The main difference between the 
concepts is the method used to achieve stability. The spar buoy is stabilized by a low center of 
gravity and the semi-submersible mainly by a large waterline area. The TLP relies on the 
combination of excess buoyancy and its mooring system for stability. Excess buoyancy of the 
platform keeps the tension legs (typically called “tendons”) under tension, leading to a very stiff 
mooring system with high restoring coefficients in heave, roll, and pitch. While the spar and the 
semi-submersible usually are moored in a manner that allows the structures to move relatively 
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freely in all six degrees of freedom, the motion of the TLP is restricted in heave, roll, and pitch. 
This results in fundamentally different dynamics. For more compliant systems, such as the spar 
or semi-submersible, the eigenfrequencies are typically designed to be lower than the incident 
wave frequencies. The same is the case for the unrestricted modes of the TLP, i.e., motion in 
surge, sway, and yaw. The restrained modes of the TLP have eigenfrequencies that are usually 
higher than the incident wave frequencies. 

Figure 2. Concepts for floating offshore wind turbines 
and their ways to achieve stability [15]. 

For the degrees of freedom that have low eigenfrequencies, the difference-frequency loads can 
cause large, slow oscillations if the damping is low. Additionally, the difference-frequency loads 
have a mean force component that comes from two incident waves of the same frequency 
(resulting in a difference-frequency equal to 0). This is called the mean-drift force, and it induces 
a mean offset of the structure. If the mean position of the structure is changed, the mooring 
system properties will change because the mooring system characteristics typically are nonlinear. 
This impacts the system eigenfrequencies. In [37], a mean offset brought about by wind thrust 
changed the eigenfrequency in pitch for the OC3-Hywind, leading to controller-induced 
instabilities, because the controller was tuned to stabilize pitching motions only within a certain 
frequency range. For a TLP, the extreme offset (which is likely to increase when taking 
difference-frequency effects into account) is a key design parameter for the mooring system and 
has considerable economic impact [6]. In shallow water, the extreme horizontal offset also 
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impacts the air gap of the TLP, which is reduced due to a set-down associated with the horizontal 
movement. The air gap required to keep the turbine rotor out of the waves under any condition 
therefore must be increased for a larger extreme offset. This influences the required tower height, 
the system dynamics, and the cost of the turbine. Even though difference-frequency forces cause 
mean forces and slow oscillations, the rotor thrust on a turbine might have the same effect. The 
mean thrust that caused the horizontal offset observed in [37] might be of much greater influence 
than the second-order hydrodynamics. Therefore, a comparison of the second-order effects and 
the aerodynamic forces is part of the scope of this work.  

For a system with high eigenfrequencies, the sum-frequency effects called springing become 
important. In [38] it is stated that the sum-frequency responses are non-Gaussian, and are 
determined both by the excitation QTF and the wave damping. The greatest responses typically 
are generated by groups of short wave components with wave periods “tuned” to half the 
eigenfrequency of the TLP. Ref. [22] also says that the most important contributions come from 
short wave pairs where in which both waves have similar wave periods, because the waves tend 
to cancel each other if the frequency difference gets too large. This means that the largest 
responses are generated in moderate (frequently occurring) sea states. These descriptions suit the 
observations of oil and gas TLPs. The sum-frequency effects are known to have significant 
impact on the fatigue of TLP tendons due to increased loads per cycle and the high number of 
cycles [32], [22]. The sum-frequency forces also can lead to excitation of eigenmodes in other 
parts of the structure. Of special concern for wind turbines is the eigenfrequency of the tower. In 
the UMaine TLP model-scale tests, a coupling between the pitch and tower natural frequencies 
led to high responses of both the platform and the tower, as reported in [9] and [10]. It also is 
expected that the sum-frequency forces can induce resonant response in the tower for other 
platforms. 

1.1 Previous Research 
Difference-frequency effects on offshore structures have been studied since the 1960s, to 
understand the large scale, slow oscillations induced by difference-frequency forces. The mean-
drift forces have been of interest to ocean engineers for an equally long time. The complete 
formulation of the second-order problem and the computational power needed to solve it was 
developed during the ’80s, partly in reaction to the need for prediction of sum-frequency loads 
and responses that were observed on the first TLP platforms. Second- and higher-order 
hydrodynamic effects, and the development and validation of programs to simulate them, were 
subjects of extensive research in the early 1990s and still remain active research topics today. 

There are very few previous studies applying second-order theory to floating wind turbines. A 
paper from the UpWind project [26] provides a summary of the theory of second-order 
hydrodynamics, and results for first- and second-order hydrodynamic coefficients for the OC3 
Hywind and a semisubmersible. This work also includes short timeseries of excitation forces and 
motions in different regular and irregular waves. Agarwal [2] looks at second-order effects on a 
monopile structure in shallow water, and uses second-order wave kinematics in combination 
with Morison’s equation to compare linear with non-linear effects. This approach works well as 
long as the structures are bottom-mounted slender cylinders, but is less accurate for more general 
structures. In the DeepCwind model tests performed at the MARIN wave basin in Wageningen, 
Holland, second-order effects were thought to have been observed, as reported in [9] and [10]. 
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The significance of these effects inspired new interest in the loads and responses of floating wind 
turbines that are induced by second-order hydrodynamics, and is one of the reasons for the 
choice of topic for this report. 

1.2  Goals, Objectives, and Scope 
The task of this work is to apply second-order analysis commonly used in the offshore oil and 
gas industry to two different wind turbine concepts. The first concept is the OC3-Hywind, a spar 
buoy concept based on Statoil’s Hywind design and modified by NREL for use in the OC3 
project. The second concept is the DeepCwind TLP designed by the University of Maine. The 
objectives are: 

• to gain general insight in the field of second-order hydrodynamics and the implications 
for floating wind turbines 

• to analyze and draw conclusions from the spar and TLP results that give an indication of 
if/when second-order hydrodynamics are important for floating offshore wind turbines 

• to provide a pre-study for the possible implementation of second-order hydrodynamics in 
FAST. 

 

2 Hydrodynamics 
The interactions between a floating platform and the water that surrounds it are vitally important 
to the design of such structures. The determination of loads and motions caused by these 
interactions is the main subject of the field of marine hydrodynamics. The hydrodynamics can be 
split into two parts: The influence of fluid motions such as current or waves on the structure, and 
the influence of the moving structure on the water, which leads to generation of waves. 
Hydrostatics also must be accounted for to include effects of buoyancy and hydrostatic restoring. 

Hydrodynamic loading usually is calculated in terms of integrated dynamic pressure over the 
wetted surface of the structure. The total forces include contributions from added mass, linear 
damping (from wave radiation), non-linear drag (from viscosity), buoyancy (hydrostatic 
restoring), and forces due to both undisturbed and scattered1 incident waves. 

Hydrodynamics is based on the Navier Stokes equations, as all fluid-dynamic problems. To be 
able to solve practical problems, the mathematical descriptions must be simplified based on 
assumptions specific to the field of offshore hydrodynamics. The hydrodynamic models 
commonly used in the offshore industry are therefore all based on assumptions that limit their 
range of validity. The choice of an appropriate model is important, and depends on parameters 
such as the characteristic size of the structure and the wave length and wave height of the 
incident waves. Figure 3 [8] shows what forces are important in different flow regimes. When 
the size of the structure is large compared to the wave length, wave diffraction and radiation are 
                                                 
1 In this report, the term “scattering” is used for forces due to waves that are reflected by a (fixed) structure, and 
“diffraction” is used for the total forces experienced by a fixed structure, e.g., due to both scattered and undisturbed 
waves. This definition is commonly used, but there are many texts that swap the definitions of “scattering” and 
“diffraction.” 
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important. The forces are influenced by how the waves are scattered by the structure, and wave 
radiation dominates the damping term. With decreasing size, the structure becomes less “visible” 
to the waves and the importance of wave scattering and radiation decreases. As the wave height 
(and relative slenderness of the structure) increases, so does the importance of viscous effects. In 
high waves, viscous drag dominates the damping term, and radiation damping becomes 
negligible. 

 

Figure 3. Characterization of importance of different hydrodynamic phenomena 
based on structure size, wave height, and wave length [8]  

The model used in this report is derived from potential flow theory and an expansion of terms 
with respect to wave height. The name “second-order hydrodynamics” is a product of this 
approach; the second-order solution is accurate to the wave amplitude squared. Section 2.3 is 
devoted to the explanation of the theory behind this model, and the response analysis that arises 
from the solution. It includes both wave radiation and diffraction, but does not take viscous 
effects into account. This limits the validity of this model to the lower part of Figure 3; i.e., 
where the wave height is relatively low compared to the diameter of the structure. This is the 
typical second-order analysis applied in industry. 

Other models are available for problems in which viscous effects are significant. One of the most 
commonly used approaches is Morison’s equation. Morison’s equation is part of a group of 
methods called strip theory. Different from potential flow theory that is based on the solution of 
a velocity potential, the strip-theory methods calculate loads directly from incident wave 
kinematics. This allows for (empirical) incorporation of viscous drag as well as more flexibility 
with respect to wave modeling. Morison’s equation is based on the assumption of a slender 
structure, meaning that the feedback from the structure to the incident waves is negligible. It uses 
the long wavelength approximation to simplify the scattering, and neglects radiation of waves. 
Although many of the current wind turbine problems might be well approximated as slender 
structures, Morison’s equation is not applied for the purpose of this report. Although it includes 
some non-linear terms and can be used to calculate second-order hydrodynamics on a slender 
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cylinder by considering second-order wave kinematics in the incoming waves, it does not allow 
for proper determination of second-order force contributions on other types of structures. Note 
also that the definition of slender must be reconsidered in the presence of second-order waves, as 
the involved wave lengths are significantly shorter. 

To describe the interactions between structure and waves, a mathematical description of the 
waves must be provided. Therefore, an overview of different wave models and their range of 
validity is presented. The first- and second-order incident wave potentials are presented along 
with the generalization of linear regular waves to an irregular sea state to provide a basis for 
description of first- and second-order loads in subsequent sections. The following section is 
based on [4], [8], [23] and [34] unless another source is cited. 

2.1 Wave Representation 
Ocean waves are of irregular nature, and have random height, shape, length, and propagation 
speeds. To determine the wave loading and motion response of an offshore structure, engineers 
mainly rely on two different types of wave descriptions: Deterministic, regular waves of a given 
wave length, wave height, and wave period; and random, irregular sea states defined by a wave 
spectrum. 

2.1.1  Regular Waves 
Regular waves often are used to simulate extreme waves or to gain information about the 
behavior of the system at a given incident wave frequency. Important parameters for a regular 
wave include the following. 

• wave period, T [s] 

• wave length, λ [m] 

• wave angular frequency, ω = 2Π/T[rad/s] 

• wave number, κ = 2Π/λ [1/m] 

• wave height, H [m] 

• wave crest height, AC [m] 

• wave trough depth, AT [m] 

• water depth, d [m] 
There exist several theories for describing regular waves, including linear wave theory, Stokes 
wave theory, cnoidal wave theory, and stream function wave theory. Which theory is applicable 
for a specific problem is determined by the wave steepness and water depth. Figure 4 shows a 
schematic representation of the validity ranges of the different theories. The applicability range 
of cnoidal theory widely coincides with the stream function of order greater than 5. 
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Figure 4. Validity ranges of different wave theories; the horizontal axis is a measure of 
shallowness and the vertical axis a measure of wave steepness [4]. 

Linear wave theory is the simplest regular wave theory. It can be derived from the first-order 
hydrodynamic problem for potential flow described above, assuming that there is no body 
present in the waves. This means that it assumes that the wave amplitudes are small compared to 
both the wave length and the water depth. It describes the waves as sine waves dependent on 
time and position, giving the following expression for the wave elevation 

ζ(t,x,y) = A sin (ωt+ κ(xcosβ + ysinβ)) , (2-1) 

where t is time and (x,y) is the position on the free surface, A is the wave amplitude, ω is the 
wave angular frequency, and β is the wave heading. The wave number κ depends on the water 
depth h, the wave frequency ω and the gravitational acceleration g, and is given by 

κ = ω2/g   for infinite water depth, (2-2) 

κtanh (κh) = ω2/g  for finite water depth. (2-3) 

The velocity potential Φ1 for a sinusoidal wave is known, and is given by Equation 2–4. 

𝜙𝐼 =
𝑔𝐴
𝜔
𝑍(𝜅𝑧) sin(𝜔𝑡 + 𝜅(𝑥𝑐𝑜𝑠𝛽 + 𝑦𝑠𝑖𝑛𝛽)) 

(2-4) 
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The function Z(κz) describes the depth dependence of the potential, and is given by  

Z(κz) = eκz   for infinite water depth, (2-5) 

𝑍(𝜅𝑧) = cosh (𝜅(𝑧+ℎ))
cosh (𝜅ℎ)

  for finite water depth. (2-6) 

An important characteristic of the linear wave is the rapid decay of the velocity potential with 
water depth—meaning that the influence of the incident waves is limited to the region near the 
free-surface. This is especially true for shorter waves with a high wave number. For a linear 
wave, the water particles travel along closed trajectories, and this is why the depth penetration of 
the potential changes with water depth. In deep water, the water particles travel along circular 
trajectories. As the water depth decreases, the trajectories become increasingly flatter ellipsoids. 

Because the wave is sinusoidal, wave crest height AC is equal to wave trough height AT. They are 
both equal to the wave amplitude AC = AT = A = H/2. The phase velocity c of the wave is given 
by  

𝑐 = �𝑔
𝜅
𝑡𝑎𝑛ℎ(𝜅𝑑) for general water depth, 

(2-7) 

c = gT/(2Π)  for deep water. (2-8) 

Be aware that the wave length and wave period do not depend explicitly on wave height—which 
means that a range of different wave heights is possible for a given wave period. The maximum 
possible wave height for a given wave period is determined by the breaking wave limit, as shown 
in Figure 4. In the case of steep waves close to the breaking limit, linear wave theory generally is 
not a good model, and the wave should be modeled using non-linear wave theory. One general 
characteristic of non-linear regular waves is that they have steeper crests and wider troughs than 
linear waves, with Ac > AT.  

Cnoidal theory is generally valid for shallow water (e.g., wave amplitude is not required to be 
small compared to water depth), and Stokes theory is applicable for steep waves in deep water. 
Stream function is a purely numerical theory that has a wider application range. Stokes wave 
theory builds on the potential flow assumption given above, whereas cnoidal or stream function 
waves do not require the formulation of a velocity potential. More information and other 
references for these wave theories can be found in [4].  

2.1.2  Irregular Waves 
Irregular wave theory describes the waves as they are observed on the ocean: random and 
irregular. A typical assumption is that the surface elevation is part of a statistically stationary 
process with duration of from 20 minutes to 6 hours. The conditions throughout this period are 
called “sea state.” A sea state is characterized by a set of parameters, i.e., the significant wave 
height HS and the peak-spectral period Tp. The significant wave height is defined as the average 
wave height of the highest one-third of the waves, and is similar to the wave height perceived by 
humans [30]. The peak period is the period related to the peak of the spectrum, i.e., Tp = 2Π/ωp, 
where ωp is the wave frequency at the spectrum peak. 
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Irregular waves are modeled as a summation of linear wave components. The simplest model for 
an irregular sea state is the linear long-crested wave model, where the first-order wave elevation 
ζ is given by 

𝜁(𝑡) = 𝑅𝑒��𝐴𝑗𝑒𝑖𝜔𝑗

𝑁

𝑗=1

� . 
(2-9) 

Here 𝐴𝑗 = 𝑎𝑗𝑒𝑖𝜑𝑗 is the complex wave amplitude belonging to the wave frequency ωj, with 
magnitude 𝑎𝑗 and random phase 𝜑𝑗. The number of wave components used to describe the sea 
state is designated N. The random phases are uniformly distributed between 0 and 2Π, and the 
magnitudes are defined through a wave spectrum S(ω) by the relation 

𝑎𝑗2 = 2 𝑆(𝜔𝑗)Δ𝜔𝑗 , (2-10) 

where Δωj is the difference between two successive frequencies. If the equal-frequency spacing 
is used, it is important to be aware that the wave elevation will repeat itself after 2Π/ω s. For 
long simulations it is practical to use other frequency spacing methods, such as choosing the 
frequency randomly in the interval (ωj –Δω/2,ωj + Δω/2) [8] or using the equal-energy spacing 
method [35]. 

The second-order wave elevation can be modeled as a correction to the first-order wave 
elevation. Because the second-order wave elevation depends on the sum-frequency and the 
difference-frequency of the first-order waves, the correction has N2 components for the sum-
frequencies of the respective wave pairs and N2 components for the difference-frequencies. The 
overall wave elevation in long-crested waves can be expressed as the sum between the first-order 
wave elevation and the second-order correction ζtot = ζ(1) + ζ(2), where ζ(2) is given by  

𝜁(2) = 𝑅𝑒 �� �𝐴𝑚𝐴𝑛𝐸𝑚𝑛+ 𝑒𝑖(𝜔𝑚+𝜔𝑛)𝑡 + 𝐴𝑚𝐴𝑛𝐸𝑚𝑛− 𝑒𝑖(𝜔𝑚−𝜔𝑛)𝑡
𝑁

𝑛=1

𝑁

𝑚=1

� . 
(2-11) 

The quadratic surface elevation transfer functions 𝐸𝑘𝑚
± = 𝐸𝑘𝑚

± (𝜔𝑘,𝜔𝑚) are used for the sum-
frequency and difference-frequency components. For long-crested waves in deep water (which is 
representative for the water depths analyzed in this work) the transfer functions can be found in 
[4], and are given by  

𝐸𝑚𝑛− = 1
4𝑔

|𝜔𝑚2 − 𝜔𝑛2| ,  and  𝐸𝑚𝑛+ = 1
4𝑔

(𝜔𝑚2 + 𝜔𝑛2) . (2-12) 

To illustrate how the second-order wave contributes to increased crest height and wider troughs, 
and to show the relative magnitudes of first- and second-order waves, a time series of the wave 
elevation is plotted in Figure 5. 
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Figure 5. Wave elevation with and without second-order correction 

The formulation of the velocity potential of the second-order waves in an irregular sea state has 
to take into account the interaction between different wave components with different frequen-
cies. The velocity potentials 𝜙𝐼+ and 𝜙𝐼− at finite depth, resulting from two wave components 
with frequencies ωm and ωn found in [20] is given by  

𝜙𝐼+ =
1
2

(𝛾𝑚𝑛+ + 𝛾𝑛𝑚+ )
cosh�𝜅+(𝑧 + ℎ)�

cosh(𝜅+ℎ) 𝑒𝑖𝜅+(𝑥𝑐𝑜𝑠𝛽+𝑦𝑠𝑖𝑛𝛽) 
(2-13) 

with 

𝛾𝑚𝑛+ − 𝑖
𝑔𝐴𝑚𝐴𝑛

2𝜔𝑚
𝜅𝑚2 (1 − tanh2(𝜅𝑚ℎ)) + 2𝜅𝑚𝜅𝑛(1 − tanh(𝜅𝑚ℎ) tanh(𝜅𝑛ℎ))

𝜈+ − 𝜅+ tanh(𝜅+ℎ)  , 
(2-14) 

And by 

𝜙𝐼− =
1
2

(𝛾𝑚𝑛− + 𝛾𝑚𝑛− ∗)
cosh�𝜅−(𝑧 + ℎ)�

sinh(𝜅−ℎ) 𝑒𝑖𝜅−(𝑥𝑐𝑜𝑠𝛽+𝑦𝑠𝑖𝑛𝛽) (2-15) 

with 

𝛾𝑚𝑛− − 𝑖
𝑔𝐴𝑚𝐴𝑛∗

2𝜔𝑚
𝜅𝑚2 (1 − tanh2(𝜅𝑚ℎ)) − 2𝜅𝑚𝜅𝑛(1 + tanh(𝜅𝑚ℎ) tanh(𝜅𝑛ℎ))

𝜈− − 𝜅− tanh(𝜅−ℎ)  .  (2-16) 

The asterisk in (2-16) represents the complex conjugate, and v+ and κ± are defined by v+ = ω±2/g 
and κ± = κm ±  κn. As for the second-order Stokes wave, the second-order sum-frequency 
potential vanishes in deep water where κmh, κnh >> 1 [20]. The depth penetration of the second-
order sum-frequency and difference-frequency wave potentials are determined by κ+ and κ–, 
respectively. This means that the difference-frequency potential reaches far deeper than the sum-
frequency potential, especially when the frequency difference is small. The difference-frequency 
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potential therefore can be expected to have an effect on structural members deeper in the water, 
such as the pontoons of a semi-submersible platform.  

As noted, the formulations for the velocity potentials are derived for long-crested seas, and the 
analysis in this work is performed for such conditions. Long-crested seas means that the waves 
comes only from one direction, and essentially can be treated as two dimensional. The equations 
given above for long-crested seas, however, can easily be extended to include directionality and 
short-crested waves. Details on how to do this are found in [34] and [4]. 

2.1.3  Wave Spectrum 
There are several wave spectra that are commonly used for design of offshore structures 
depending on the environmental condition at the site. Important parameters are wind fetch, wave 
types, and water depth. 

When the wind starts blowing and waves start forming, it takes some time before equilibrium 
between the energy added to the waves by the wind and the energy dissipated by the ocean is 
reached. A sea state in which this balance prevails is called a fully developed sea state. There are 
several reasons why this equilibrium might not be reached. It might be that the wind only has 
been blowing for a short time, in which case the sea state is described as a developing sea state. 
It also could be that the distance across which the waves are allowed to build up is limited; a 
condition that creates a fetch-limited sea state. Another factor that impacts the frequency content 
of a wave spectra is the distribution of swell and wind waves. Wind waves are waves created by 
local wind conditions, as described above. Swells are waves that have travelled from where they 
were generated into the considered area, and have no relationship to local winds. 

The Pierson-Moscowitz spectrum SPM(ω) is a two-parameter spectrum created for fully 
developed seas. It was created based on wind and wave records from British weather ships 
positioned in the North Atlantic and was published in 1964, and is given by 

𝑆𝑃𝑀(𝜔) =
5

16
𝐻𝑠2𝜔𝑝4𝜔−5𝑒𝑥𝑝 �−

5
4
�
𝜔
𝜔𝑝
�
−4

� . 
(2-17) 

The formulation is based on only two parameters, the significant wave height HS and the peak-
spectral frequency ωp = 2Π/Tp. 

The JONSWAP spectrum was developed as part of the Joint North Sea Wave Project and 
published in 1973. The spectrum describes a developing sea in a limited-fetch situation. It is 
given by 

𝑆𝐽(𝜔) = 𝐴𝛾 𝑆𝑃𝑀(𝜔) 𝛾
𝑒𝑥𝑝�−12�

𝜔−𝜔𝑝
𝜎 𝜔𝑝

�
2
�

 , (2–18) 

 
where Aγ = 1 – 0.287ln(γ) is a normalizing factor and σ is a spectral width parameter with σ = σa 
for σ ≤ ωp and σ = σb for σ > ωp. Because of the many parameters, the JONSWAP spectrum can 
be more flexibly fitted to measured site data than the Pierson-Moscowitz spectrum. For this 
work, the average values for the JONSWAP spectrum given in [4] are used: γ = 3.3, σa = 0.07 
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and σa = 0.09. The peak shape parameter γ determines the height of the peak of the spectrum. 
This is illustrated by the plot in Figure 6, where the JONSWAP spectrum is plotted for different 
values of γ. If the chosen value of γ = 1, Sj(ω) = SPM(ω). 

 

Figure 6. JONSWAP spectrum with different peak factors 

For shallow water, the finite water-depth TMA spectrum provides a corrected version of the 
JONSWAP spectrum. Ochi-Hubble and Torsethaugen spectra are common two-peak spectra. A 
two peak spectrum combines two sea states to take both wind sea and swell into account. For this 
study, neither shallow water conditions nor two-peak spectra are considered. These spectra 
therefore are not described further in this report. 

All of the spectra described above only include first-order waves. When a first-order spectrum is 
used, the second-order wave can be included by adding the second-order correction described by 
Equation 2–11. A time series derived in this fashion is shown in Figure 5. If a simulation of the 
wave elevation includes second-order waves that are derived from a first-order spectrum, then 
the sea state contains more energy than the spectrum originally used to generate the first-order 
waves. The contribution, however, is not very large. A wave spectrum with and without the 
second-order contribution, derived from the different realization of a wave elevation time series, 
is shown in Figure 7. 
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Figure 7. Spectrum of wave elevation, with (black) and without (blue) second-order correction, for 
a sea state with Hs = 3.66 m and Tp = 9.7 s 

 
2.2 The Hydrodynamics Problem for Potential Flow 
By assuming potential flow, any viscous effects such as viscous drag or flow separation are not 
accounted for. Furthermore, the flow is assumed to be governed by the velocity potential Φ(𝒙�, t) 
that satisfies the Laplace equation in the fluid domain: 

∇2Φ = 0 . (2–19) 

Here 𝒙� = (x,y,z) is the Cartesian coordinates of a point relative to a reference origin at still water 
level. The coordinate system is a defined by the component vectors ēx, ēy, and ēz that form a 
right-hand system; ēx is the direction of a wave with wave heading angle 0, and ēz points in 
vertical upward direction. The origin of the coordinate system is at the mean free surface defined 
by z = 0. The fluid velocity is given by the gradient of the velocity potential, 

v(𝒙�, t) = ∇Φ =
∂Φ
∂x

e�x +
∂Φ
∂y

e�y +
∂Φ
∂z

e�z. (2-20) 

The dynamic pressure in the fluid can be expressed in terms of the velocity potential using 
Bernoulli’s equation,  

p(𝒙�, t) = −ρ�
∂Φ
∂t

+
1
2
∇Φ ∙ ∇Φ + gz� . (2-21) 

Here ρ is the fluid density and g is the gravitational acceleration. Forces are found through the 
integration of the dynamic pressure over the wetted surface, and motions are found by solving 
the equations of motion. Although the velocity potential and fluid motions are defined in the 
global inertial coordinate system, the forces and motions are determined in the body-fixed 
coordinate system. According to normal terminology, motions along the x- , y- , and z-axes are 
called “surge,” “sway,” and “heave,” respectively. Rotations with respect to the same axes are 
called “roll,” “pitch,” and “yaw.” In this report, the body coordinate system is chosen such that it 
coincides with the global coordinate system when the body is at rest in its mean position.  



15 

2.2.1 Boundary Conditions 
Boundary conditions are imposed on the free surface, on the body surface and on the seabed. At 
the solid surfaces a no flow condition is imposed. For the sea bed, this implies that the normal 
velocity at the boundary must be zero, i.e., 

𝑣𝑧 = 𝜕𝛷𝑧
𝜕𝑧

= 0  when z = –h, (2-22) 

or that the velocity potential converges to zero for infinite water depth, 

∇Φ →0 when z →∞ . (2-23) 

The impermeability condition requires the relative velocity at the body boundary to be zero: 

𝑣𝑛 = 𝜕𝛷𝑛
𝜕𝑛�

= 𝑢𝑛 = 𝒖 ∙ 𝒏 at body surface (2-24) 

Here, n is the normal vector of the surface and u is the velocity of the structure (which is 0 if the 
structure is fixed). At the free-surface there are two different boundary conditions. The first is the 
dynamic boundary condition, which ensures that the pressure on the surface is equal to the air 
pressure. This is derived from the Bernoulli equation, assuming that the pressure is the same all 
over the free surface: 

− 1
𝜌

(𝑝 − 𝑝𝑎) = ∂Φ
∂t

+ 1
2
∇Φ ∙ ∇Φ + gz = 0   at the free-surface z = 𝜁. (2-25) 

The second condition is the kinematic free-surface boundary condition,which requires a particle 
on the free-surface to have the same vertical velocity as the free-surface itself. It is is derived by 
requiring that the substantial derivative of the difference between the free-surface elevation ζ and 
the instantaneous vertical position of the particle z vanishes, leading to  

0 = 𝐷
𝐷𝑡

(𝑧 − 𝜁) = 𝜕𝛷
𝜕𝑧
− 𝜕𝜁

𝜕𝑡
− 𝜕𝛷

𝜕𝑥
𝜕𝜁
𝜕𝑥
− 𝜕𝛷

𝜕𝑦
𝜕𝜁
𝜕𝑦
− 𝜕𝛷

𝜕𝑧
𝜕𝜁
𝜕𝑧

    at the free-surface z = 𝜁 . (2-26) 

The two free-surface boundary conditions can be combined to give a single condition for the 
velocity potential,  

∂Φ
∂t2

+ g
∂Φ
∂z

+ 2∇Φ ∙ ∇
∂Φ
∂t

+
1
2
∇Φ ∙ ∇(∇Φ ∙ ∇Φ) = 0 , 

(2-27) 

which applies on the exact free-surface as given by 

𝜁(𝑥,𝑦) = −
1
𝑔
�
∂Φ
∂t

+
1
2
∇Φ ∙ ∇Φ�

𝑧=𝜁
 . 

(2-28) 

The last conditions (2-18) is the radiation condition at infinity. The radiation condition is needed 
for the solution to be unique because there are no prescribed initial conditions, only a assumption 
of sinusoidal time dependence at all previous time. The radiation condition states that all waves 
other than the incident waves are due the presence of the body, and must radiate away from it. 
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Using energy conservation, the waves at infinity must be of the general form given in Equation 
2–29 for all potentials except the incident wave potential. 

𝛷 ∝ 𝑅−1 2⁄ 𝑒−𝑖𝑘𝑅,  as  𝑅 = (𝑥2 + 𝑦2)1 2⁄ → ∞ (2-29) 

2.2.2 Assumptions 
Apart from the assumptions that enable the use of potential flow theory for the description of the 
problem, there are two requirements that are crucial to the further derivation. First, the wave 
amplitude is assumed to be small compared to the wave length, i.e., we assume that the wave 
slope is small. Second, the motion amplitudes also are assumed to be small, in the same order of 
magnitude as the wave amplitude. With these conditions fulfilled, the following conclusions can 
be drawn. 

• Assuming a small wave, amplitude is consistent with the use of linear wave theory. 

• A sufficiently small wave amplitude justifies the expansion of the problem in terms of 
wave slope. 

• With small motion amplitudes and small waves, it is possible to divide the 
hydrodynamics problem into sub-problems (hydrostatics, radiation, and diffraction) and it 
is possible to use superposition of different parts of the wave-structure interactions to 
obtain the overall solution in regular waves. 

• The results obtained in regular waves ultimately can be generalized to more 
representative motions in irregular waves by superposition of sinusoidal components. 

For simplicity, the theory is presented for a single structure, ignoring possible interactions with 
walls or other structures. It also is assumed that all motions are rigid-body motions, and that all 
waves propagate in the same direction.  

2.2.3  Perturbation Series 
To facilitate the solution of the hydrodynamics problem described above, the velocity potential is 
expressed as a perturbation series in terms of the incident wave slope as given by 

Φ(𝐱�, t) = Φ(1)(𝐱�, t) + Φ(2)(𝐱�, t) + … (2-30) 

Here, Φ(1) and Φ(2) are the first- and second-order velocity potentials with respect to the wave 
amplitude, such that Φ(1) ~ A and  Φ(2) ~ A2. The other hydrodynamic quantities also are 
expanded, leading to first- and second-order expressions for the free-surface elevation, pressure, 
and motions. The first- and second-order wave elevation is given by  

𝜁(1)(𝑥,𝑦) = −
1
𝑔
∂Φ(1)

∂t 𝑧=0
 , 

(2-31) 

𝜁(2)(𝑥,𝑦) = −
1
𝑔
�
∂Φ(2)

∂t
+

1
2
∇Φ(1) ∙ ∇Φ(1) −

1
g
∂Φ(1)

∂t
∂2Φ(1)

∂z ∂t
�
𝑧=0

 , 
(2-32) 
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where the right-hand sides are evaluated at the mean free-surface z = 0. The first-order pressure 
and second-order pressure are defined by  

𝑝(1)(𝒙�, 𝑡) = −𝜌
∂Φ(1)

∂t
 , 

(2-33) 

𝑝(2)(𝒙�, 𝑡) = −𝜌�
∂Φ(2)

∂t
+

1
2
∇Φ(1) ∙ ∇Φ(1)� . 

(2-34) 

The assumption of small motion amplitudes also allows the hydrodynamics problem to be split 
into three separate problems: Radiation, diffraction, and hydrostatics. 

In the radiation problem, the structure is assumed to move with forced harmonic oscillations in 
still water (Figure 8 left). The oscillations take place in each mode of motion successively, and 
cause the structure to generate waves. The radiation problem is the source of load contributions 
from added-mass and damping. In the diffraction problem, the structure is kept at a fixed 
position and subjected to regular, incident waves (Figure 8 right). The resulting velocity potential 
due to both incident and scattered waves is the source of wave excitation loads.  

In addition to the hydrodynamics, contributions from hydrostatics and their impact on system 
stability should be considered. In first-order hydrodynamics, all terms that are of O(ζa

2) are left 
out, which allows for substantial simplifications. The first-order solution is discussed in Section 
2.3. Second-order hydrodynamics is exact to second-order, with terms of O(ζa

3) omitted. The 
theory is presented in Section 2.3. 

 
 

Figure 8. Oscillating platform in still water (left: radiation problem) and 
fixed-platform in incident waves (right: diffraction problem) 

2.3 First-Order Hydrodynamics 
The characteristic feature of a first-order hydrodynamic problem is its linearity. The system is 
excited in the form of sinusoidal, linear waves, therefore the response of the system is also 
sinusoidal at the same frequency, although generally with a phase shift. Assuming that the 
structure is subjected to an irregular sea state composed of linear waves, the total first-order 
velocity potential Φ(1) can be written as the sum over the velocity potentials at each wave 
frequency: 

𝛷(1)(𝒙�, 𝑡) = 𝑅𝑒∑ 𝜙𝑗𝑒𝑖𝜔𝑗𝑡𝑗  . (2-35) 
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Here, Φj is the complex velocity potential belonging to the frequency ωj. For simplicity, this 
section omits the index j that notifies the relation to frequency ωj, with a lowercase Φ referring 
to the velocity potential belonging to one specific frequency. The velocity potential Φ can be 
split into the radiation potential ΦR and the diffraction potential ΦD. The diffraction potential can 
be further decomposed into an incident wave potential Φ1 and a scattered wave potential ΦS   as 
given by 

𝜙 = 𝜙𝑅 + 𝜙𝐷 = 𝜙𝑅 + 𝜙𝐼 + 𝜙𝑆 . (2-36) 

The total velocity potential and all the separate components satisfy the Laplace equation. 
Another important simplification in the first-order problem is the linearization of the free-surface 
boundary condition, which can be expressed as 

𝜕𝜙
𝜕𝑧
− 𝜔2

𝑔
𝜙 = 0  on z = 0 . (2-37) 

2.3.1 Radiation Problem 
A structure that moves around in fluid experiences force contributions from added-mass and 
damping. When a free surface is present, the motion also causes wave generation. This wave 
radiation leads to a memory effect and an outgoing energy flux that damps the motion. The force 
in direction i due to a sinusoidal motion of unit amplitude in direction j is given by the force 
coefficient 𝑓𝑖𝑗(𝜔), computed as  

𝑓𝑖𝑗(𝜔) = −𝜌∬ 𝜕𝜙𝑖
𝜕𝑛
𝜙𝑗𝑑𝑆𝑆𝐵

 ,  𝑖, 𝑗 =  1, 2, … , 6 . (2-38) 

The potentials Φi and Φj are the radiation potentials connected to the forced oscillation of 
frequency 𝜔 in direction i and j, respectively. They are found by solving the boundary value 
problem described above, with the boundary condition at the wetted body surface SB being 

𝜕𝜙𝑗
𝜕𝑛

= 𝑖𝜔𝑛𝑗 ,     j = 1, 2, 3 (2-39) 

𝜕𝜙𝑗
𝜕𝑛

= 𝑖𝜔(𝒓 × 𝒏)𝑗−3 ,   j = 4, 5, 6 (2-40) 

where n is the surface normal vector and r is the position vector (x, y, z). The force coefficients 
take the form  

𝑓𝑖𝑗(𝜔) = 𝜔2𝐴𝑖𝑗(𝜔) − 𝑖𝜔𝐵𝑖𝑗(𝜔) (2–41) 

with Aij  being the contribution from added mass and Bij the damping contribution from wave 
radiation damping. The total force can be written as 

𝐹𝑖(𝜔) = 𝑅𝑒 �∑ 𝜉𝑗𝑒𝑖𝜔𝑡𝑓𝑖𝑗6
𝑗=1 (𝜔)�             , for  𝑖, 𝑗 =  1, … , 6 

           = −∑ �𝐴𝑖𝑗(𝜔)𝑈̇𝑗 + 𝐵𝑖𝑗(𝜔)𝑈𝑗�6
𝑗=1   , for 𝑖, 𝑗 =  1, … , 6 

(2–42) 
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From the last formulation, it is clear that the added mass Aij adds to the system inertia term as it 
is multiplied with the body acceleration. The damping contribution also is recognized easily as a 
term proportional to the velocity. Because the coefficients are real, they are in phase with the 
motions. Both Aij and Bij are symmetric, such that fij = fji. The damping coefficients Bij are 0 at 
the infinite and zero frequency limits, whereas the added-mass coefficients Aij have non-zero 
limits. 

2.3.2 Diffraction Problem 
The wave-excitation forces created by an incident wave of frequency ω can be found from the 
integral of the pressure over the wetted surface SB. Written in terms of the velocity potentials, the 
force coefficient  Xi is given by 

𝑋𝑖 = −𝜌∬ (𝜙𝐼 + 𝜙𝑆) 𝜕𝜙𝑖
𝜕𝑛

𝑑𝑆𝑆𝐵
 ,  i = 1, 2, …, 6 . (2–43) 

The force coefficient Xi which describes the force in direction i for a regular wave of unit 
amplitude and frequency ω. The potentials Φi are the radiation potentials of Equation 2–39 and 
Equation 2–40. As long as only terms of first-order are of interest, this integral can be evaluated 
at the mean position of the body. This means that the first-order wave excitation forces are 
independent of whether the structure is freely floating, moored, or fixed, and that the distinctions 
between these arrangements are of second-order or higher.  

The velocity potential of the first-order incident wave Φi is given by Equation (2-4). Because the 
incident wave potential already is known and the diffraction problem is solved assuming that the 
structure is at its mean position, the boundary condition for the scattering potential ΦS  at the 
body boundary can be rewritten in terms of the incident wave potential: 

𝜕𝜙𝑆
𝜕𝑛

= −
𝜕𝜙𝐼
𝜕𝑛

 . 
(2-44) 

With this boundary condition and some mathematics, the integral of Equation 2–43 can even be 
rearranged to be independent of the scattering potential. To obtain the force from a “real” wave, 
the force coefficient must be multiplied with the complex amplitude of the incident wave A. The 
proper expression for the wave excitation load 𝐹𝑒𝑥𝑖 in time domain is then 

𝐹𝑒𝑥𝑖 = 𝑅𝑒�𝐴𝑋𝑖𝑒𝑖𝜔𝑡� ,   i = 1, 2, …, 6 (2-45) 

For an irregular sea state, the wave excitation forces 𝐹𝑒𝑥
(1) are calculated through superposition 

of the forces from all 𝑛𝑊 wave components.  

𝐹𝑒𝑥𝑖 = 𝑅𝑒�∑ 𝐴𝑗𝑋𝑖,𝑗𝑒𝑖𝜔𝑗𝑡𝑗 � ,   i = 1, 2, …, 6  and j =1, …, 𝑛𝑤 (2-46) 

2.3.3  Hydrostatics 
The hydrostatic forces and moments keep a structure floating and in a stable position. Buoyancy 
forces, gravity restoring terms and changes in the submerged portion of the structure all 
contribute to the hydrostatic stability. The complete hydrostatic force can be found from the 
integral of the static pressure over the wetted surface of the body. It is given by 
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𝐹𝑖 = (𝜌𝑉0 − 𝑚)𝑔𝛿𝑖3 − (𝑚𝑦𝐺 − 𝜌𝑉0𝑦𝐵)𝑔𝛿𝑖4 + (𝑚𝑥𝐺 − 𝜌𝑉0𝑥𝐵)𝑔𝛿𝑖5 −�𝑐𝑖𝑗𝜉𝑗

6

𝑗=1

 , (2-47) 

with i = 1, 2, …, 6. The first three terms are the contributions from the gravity and buoyancy 
needed to keep the platform in its mean position. The terms (𝑥𝐺 , 𝑦𝐺 , 𝑧𝐺) and (𝑥𝐵, 𝑦𝐵 , 𝑧𝐵) are 
the position of the center of gravity (CoG) and center of buoyancy (CoB) when the turbine is in 
the mean position, and V0 is the displaced volume (for a freely floating body pV0 = m, the mass 
of displaced water equals the mass of the body). The cij in the last term is the components of the 
hydrostatic stiffness matrix that induce a force or moment as soon as the structure moves and the 
displacements 𝜉𝑗 are no longer 0. 

𝐶 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0 0 0

0 0 0
0 0        𝜌𝑔𝐴0      

0      0     0
0      0     0

  𝜌𝑔�𝑦
𝐴0

𝑑𝐴0                                     −𝜌𝑔�𝑥
𝐴0

𝑑𝐴0                                0

0 0 𝜌𝑔�𝑦
𝐴0

𝑑𝐴0

0 0 −𝜌𝑔�𝑥
𝐴0

𝑑𝐴0

0 0 0

𝜌𝑔�𝑦2

𝐴0

𝑑𝐴0 + 𝜌𝑔𝑉0𝑧𝐵 − 𝑚𝑔𝑧𝐺 0 −𝜌𝑔𝑉0𝑥𝐵 + 𝑚𝑔𝑥𝐺  

0 𝜌𝑔�𝑥2

𝐴0

𝑑𝐴0 + 𝜌𝑔𝑉0𝑧𝐵 − 𝑚𝑔𝑧𝐺 −𝜌𝑔𝑉0𝑦𝐵 + 𝑚𝑔𝑦𝐺  

0 0 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
(2-48) 

 

Here A0 is the waterplane area of the undisplaced structure, and the waterplane moments in 𝑥 
direction are ∬ 𝑥𝐴0

𝑑𝐴0 and ∬ 𝑥2𝐴0
𝑑𝐴0. 

This matrix can be simplified for most cases. If the CoG and CoB lie on the centerline of the 
structure, then there is no coupling from yaw to pitch and roll, and the matrix is symmetric (i.e., 
(4,6) and (5,6) are 0). Further, if the xz-plane is a symmetry plane, then the (3,4) and (4,3) 
components are 0. If the yz-plane is also a symmetry plane, the only non-zero components are 
(3,3), (4,4), and (5,5), and there is no coupling between the modes. 

The restoring terms in the hydrostatic stiffness matrix can be divided into three groups:  

1. Hydrostatic restoring due to the waterplane moments (all terms that include a surface 
integral over A0), 

2. Hydrostatic restoring due to buoyancy force (all terms that include either xB, yB, or zB), 
3. Gravity restoring (all terms that include either xG, yG, or zG). 

It is important to be aware that hydrostatics only provides restoring for heave, roll, and pitch. 
The other modes must be restored by the mooring system. For the body to be statically stable, the 
coefficients in C have to oppose small displacements ξj. The necessary condition in heave, roll, 
and pitch is that the corresponding diagonal term is positive. For heave, this always is the case if 
the waterline area is not 0. For roll and pitch it is a necessary and sufficient condition that the 
metacentric heights are positive, which is the case when the metacenters zY and zX (given by 
Equation 2-36) lie above zG. 
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𝑧𝑦 = �∬ 𝑦2𝐴0
𝑑𝐴0� 𝑉0� + 𝑧𝐵  and  𝑧𝑥 = �∬ 𝑥2𝐴0

𝑑𝐴0� 𝑉0� + 𝑧𝐵 (2-36) 

For a surface-piercing structure, the metacenter always is above the center of buoyancy due to 
the contribution from the waterplane area, A0. This approach, in which the linear coefficients are 
used to account for the hydrostatics, is possible only when the motions are relatively small. If the 
motions are significant enough to cause abrupt changes in water plane area, a different approach 
in which the instantaneous coefficients of C are calculated must be considered. This, however, is 
not the case for any of the analyses considered here. 

2.3.4  Equations of Motion 
The coefficients for hydrodynamic excitation forces, added mass, damping, and hydrostatic 
restoring from the frequency domain can be used to solve the equations of motion. This can be 
done either in frequency or time domain. The two different methods are based on different 
assumptions, which make them suitable for different purposes; both are presented below.  

When solving the equations in time domain, results from the frequency domain are used to 
derive time-domain coefficients. For a structure subjected to regular incident waves, which by 
definition propagate in one direction with a single frequency and amplitude, the equation of 
motion is given by 

(𝑀 + 𝐴(𝜔))𝑞̈ + (𝐵(𝜔) + 𝐵𝑒𝑥𝑡)𝑞̇ + �𝐶ℎ𝑦𝑑𝑟𝑜 + 𝐶𝑒𝑥𝑡�𝑞 = 𝐹𝑒𝑥
(1)(𝜔) , (2-49) 

where 𝑞 is the instantaneous position of the platform, and is assumed to be a sinusoidal motion 
𝑞 = 𝑞� sin(𝜔𝑡). Further, 𝑞̇ denotes the velocity and 𝑞̈ is the acceleration. M is the mass matrix, A 
and B are the hydrodynamic added-mass and potential damping at the given frequency, and 
Chydro is the (frequency-independent) hydrostatic restoring matrix from Equation 2–48. Fex

(1) (ω) 
is the first-order wave excitation force at the frequency of the incident waves is  Fex

(1)(ω). Bext 
and Cext  are external damping and stiffness of the system. In this case, external means any 
sources of damping or stiffness that is not due to hydrodynamics. Two sources of external 
damping or stiffness for a wind turbine are the mooring system and the rotor aerodynamics. 

When considering irregular waves, the assumption of a single, regular incident wave is no longer 
correct and Equation 2–49 is not applicable, because the frequency-domain coefficients are no 
longer directly applicable. They can be used, however, to derive the time-domain coefficients. In 
this case, the governing equation that must be solved becomes Equation 2–50. 

(𝑀 + 𝐴)𝑞̈ + � 𝐾(𝑡 − 𝜏)𝑞̇(𝜏)𝑑𝜏
𝑡

0
+ 𝐵𝑒𝑥𝑡𝑞̇ + (𝐶ℎ𝑦𝑑𝑟𝑜 + 𝐶𝑒𝑥𝑡)𝑞 = 𝐹𝑒𝑥(1) (2-50) 

M, Bext, Cext, and Chydro are frequency independent and are the same as in Equation 2–49. The 
wave excitation forces Fex

(1) are calculated through superposition of the forces from all wave 
components at each time step, as given in Equation 2–46. 

The term ∫ 𝐾(𝑡 − 𝜏)𝑞̇(𝜏)𝑑𝜏𝑡
0  is related to the radiation problem, and requires some special 

considerations. Only a brief overview is provided here, however; a more thorough explanation 
can be found in [15], p. 27. Because the body generates waves there is a memory effect related to 
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the free-surface, and all wave radiation loads depend on the motion history of the platform. To 
use superposition in the radiation problem means that motions are viewed as responses to a 
succession of individual impulses occurring very close together in time. They all must be taken 
into account and considered with an appropriate time lag. This is done using a convolution 
integral in which the function K is called the radiation-retardation kernel, ∫ 𝐾(𝑡 − 𝜏)𝑞̇(𝜏)𝑑𝜏𝑡

0 . 

The equation ∫ 𝐾(𝑡 − 𝜏)𝑞̇(𝜏)𝑑𝜏𝑡
0  accounts for contributions from both added-mass and damping. 

The total contribution from the radiation problem can only be found by considering both terms 
arising from the radiation problem, ∫ 𝐾(𝑡 − 𝜏)𝑞̇(𝜏)𝑑𝜏𝑡

0  and 𝐴𝑞̈. Because the two terms are 
interrelated the formulations for the added mass term and the damping term have to be chosen 
with regard to each other, and different formulations exist. Another way of expressing the 
memory effect of the free-surface would for example be by using the acceleration formulation 
with the convolution kernel L. The two formulations are related to each other as shown in 
Equation 2–51. 

� 𝐾(𝑡 − 𝜏)𝑞̇(𝜏)𝑑𝜏
𝑡

0
= � 𝐿(𝑡 − 𝜏)𝑞̈(𝜏)𝑑𝜏

𝑡

0
 

(2-51) 

Although there are different ways of accounting for the added-mass and damping, what’s 
important is that all contributions are taken into account without any duplication. Some methods 
are more common than others, such as that used in HydroDyn [15]. In this case, the added-mass 
used in the time-domain equation is simply the infinite-frequency limit of the added-mass 
(Equation 2–52). 

𝐴 = lim
𝜔→∞

𝐴(𝜔) = 𝐴(∞) (2-52) 

In this case, the radiation-retardation kernel K can be found from either the frequency-domain 
added-mass (Equation 2–53) or from the frequency-domain potential damping (Equation 2–54). 

𝐾𝑖𝑗(𝑡) = −
2
𝜋
� 𝜔�𝐴𝑖𝑗(𝜔) − 𝐴𝑖𝑗(∞)� sin(𝜔𝑡)𝑑𝜔
∞

0
 (2-53) 

𝐾𝑖𝑗(𝑡) =
2
𝜋
� 𝐵𝑖𝑗(𝜔) cos(𝜔𝑡)𝑑𝜔
∞

0
 (2-54) 

Equation (2-54) is more commonly used, as it is easier to handle numerically [15]. 
When all the coefficients are derived using Equation 2–51 through Equation 2–54, Equation 2–
50 can be solved. 

The other method for deriving time-series from frequency-domain results is to solve the 
equations of motion directly in frequency domain. This requires the additional assumption of 
periodic steady-state motions. The first-order equation of motion for a regular incident wave of 
frequency ω [41] is shown in Equation 2–55. 
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��−𝜔2 �𝑀𝑖𝑗 + 𝐴𝑖𝑗(𝜔)�+ 𝑖𝜔�𝐵𝑖𝑗(𝜔) + 𝐵𝑒𝑥𝑡,𝑖𝑗� + 𝐶𝑖𝑗 + 𝐶𝑒𝑥𝑡,𝑖𝑗�
6

𝑗=1

𝑥𝑗 = 𝑎𝑋𝑖(𝜔) (2-55) 

Here, 𝑥𝑗 is the amplitude of the motion, a is the amplitude of the incident wave, and 𝑋𝑖 is the 
force coefficient. The rest of the coefficients are the same as those used in Equation 2–49. This 
equation results in a complex amplitude of motion called a linear transfer function (LTF) or a 
response amplitude operator (RAO), as shown in Equation 2–56. 

𝜉𝑗 =
𝑥𝑗
𝑎

= �
𝑋𝑖

�−𝜔2�𝑀𝑖𝑗 + 𝐴𝑖𝑗� + 𝑖𝜔�𝐵𝑖𝑗 + 𝐵𝑒𝑥𝑡,𝑖𝑗� + 𝐶𝑖𝑗 + 𝐶𝑒𝑥𝑡,𝑖𝑗�

6

𝑗=1

 (2–56) 

The magnitude of ξj is the motion amplitude per incident wave amplitude. The phase of ξj 
describes the phase shift between the motion and the wave elevation. The time series of motion 
can be derived by taking the real value of a multiplication between the instantaneous wave 
elevation and the RAO. For an irregular sea state, the time series of motion is found by summing 
over all wave frequencies at each time step, similar to the approach to find wave forces. 

𝑞𝑗(𝑡) = 𝑅𝑒��𝐴𝑗𝜉𝑗𝑒𝑖𝜔𝑗𝑡
𝑁

𝑗=1

� (2-57) 

As noted above, only periodic steady-state solutions can be computed in the frequency domain. 
Transients and external force cannot be accounted for, with the result that all motions have the 
same frequency as the incident waves. When the equations are solved in the time domain, other 
sources of loading (such as aerodynamics on the rotor) can be included by adding an additional 
force to the left-hand side of Equation 2–50. Due to the many sources of coupled dynamics and 
importance of transient behavior, solving the equations in time domain is more precise for a wind 
turbine.  

2.4  Second-Order Hydrodynamics 
In the second-order hydrodynamic problem, interactions between two harmonically oscillating 
components—such as two incident linear waves or a wave and the body oscillating at a first-
order frequency—are considered. The result is forces and motions at the sum-frequency and 
difference-frequency of the incident waves. The velocity potential also has a sum-frequency and 
a difference-frequency part. The total second-order potential takes the form 

𝛷(2)(𝒙�, 𝑡) = 𝑅𝑒��𝜙𝑘𝑙
+𝑒𝑖(𝜔𝑘+𝜔𝑙)𝑡 + 𝜙𝑘𝑙

−𝑒𝑖(𝜔𝑘−𝜔𝑙)𝑡

𝑙𝑘

, (2-58) 

where, Φkl
+ and Φkl

- are the velocity potentials at the sum frequencies ωk +  ωl and difference 
frequencies ωk  –  ωl. The potentials (and the other second-order quantities) fulfill the symmetry 
relations given by 
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𝜙𝑘𝑙
+ = 𝜙𝑙𝑘

+  and  𝜙𝑘𝑙
− = 𝜙𝑙𝑘

−∗, (2-59) 

where ωk ≥  ωl ≥ 0. Using a similar decomposition as for the first-order problem, the second-
order potential can be split into an incident ΦI

(2), a scattering ΦS
(2), and a radiation ΦR

(2) 
potential. At second order, this decomposition generally is not unique, but has the significant 
advantage that it leaves all complicated second-order effects to the diffraction problem with 
velocity potential ΦD

(2) = ΦI
(2) + ΦS

(2). Therefore, the radiation problem does not have to be 
solved specifically for the second-order solution. The radiation coefficients are the same as for 
the first-order solution, they just must be measured for an oscillating motion at the respective 
sum-frequency or difference-frequency. Hydrostatics also only depends on the motion of the 
body, and if the second-order motion is included when the equations of motions are solved then 
the second-order hydrostatic contribution is taken into account. 

The diffraction problem is the only part of the hydrodynamics problem that must be solved 
specifically at second order. It accounts for second-order potential and all quadratic contributions 
from first-order terms on the body and the free-surface, and is consistent with the definition of 
the first-order diffraction problem in the sense that it provides the total second-order wave 
excitation forces and moments (also called “second-order forces”). The second-order forces 𝐹𝑒𝑥

(2) 
from the diffraction problem can be split into a contribution due to the second-order potential Fp 
and a contribution due to the first-order quadratic interactions Fq such that 𝐹𝑒𝑥

(2) is given by 

𝐹𝑒𝑥
(2) = 𝐹𝑝 + 𝐹𝑞 (2-60) 

The main difficulty of the second-order problem is related to the solution of the second-order 
potential, which must fulfill inhomogeneous free-surface and body boundary conditions. The 
incident wave potential, which is independent of the structure and its motions, can be derived 
using the first-order incident potential and is given by Equation 2–13 and Equation 2–15. The 
only potential that must be solved is the scattering potential. The boundary-value problem for the 
scattering potential at the sum-frequency and difference-frequency of two bichromatic waves can 
be expressed as  

𝛻2𝜙𝑆
± = 0     in the entire fluid domain , (2-61) 

𝜕𝜙𝑆
±

𝜕𝑧
= 0    at the sea bed z = -h , (2-62) 

−𝜔±2 + 𝑔 𝜕𝜙𝑆
±

𝜕𝑧
= 𝑄±   on the free-surface z = 0 , (2-63) 

𝜕𝜙𝑆
±

𝜕𝑛
=  −𝜕𝜙𝐼

±

𝜕𝑛
+ 𝐵±   on the body surface , (2-64) 

and an additional radiation condition at infinity. The free-surface forcing functions 𝑄± are given 
by  

𝑄+ = 1
2
(𝑞𝑚𝑛+ + 𝑞𝑛𝑚+ )   and   𝑄− = 1

2
(𝑞𝑚𝑛− + 𝑞𝑛𝑚− ∗) . (2-65) 
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with 

𝑞𝑚𝑛+ = −𝑖
𝜔𝑛
2𝑔

𝜙𝑛
(1) �−𝜔𝑚2

𝜕𝜙𝑚
(1)

𝜕𝑧
+ 𝑔

𝜕2𝜙𝑚
(1)

𝜕𝑧2
� + 𝑖𝜔𝑛∇𝜙𝑚

(1)∇𝜙𝑛
(1) − 𝑞𝐼𝐼𝑚𝑛+  (2-66) 

𝑞𝑚𝑛− = 𝑖
𝜔𝑛
2𝑔

𝜙𝑛
(1)∗ �−𝜔𝑚2

𝜕𝜙𝑚
(1)

𝜕𝑧
+ 𝑔

𝜕2𝜙𝑚
(1)

𝜕𝑧2
� − 𝑖𝜔𝑛∇𝜙𝑚

(1)∇𝜙𝑛
(1)∗ − 𝑞𝐼𝐼𝑚𝑛−  (2-67) 

Here, 𝑞𝐼𝐼𝑚𝑛+ and 𝑞𝐼𝐼𝑚𝑛−  are the forcing functions for the incident wave problem in absence of the 
structure. The formulation for the forcing functions B± at the body boundary depends on the first-
order motions. They can be derived from the body boundary forcing function given by 

𝐵 ≡ 𝒏 ∙ �
𝜕𝑯
𝜕𝑡 𝒓� − 𝒏 ∙ ��𝜩(1) + 𝜶(1) × 𝒓� ∙ ∇�∇𝛷(1) + �𝜶(1) × 𝒏� ∙ �𝑉(1) − ∇𝛷(1)� . (2-68) 

Here, Ξ(1) represents the first-order translational motions, α(1) represents the first-order rotational 
motions and V(1) ≡ ∂/∂t (Ξ(1) + α(1) × r). H is a matrix with second-order elements that are 
quadratic products of first-order rotational motions, and is given by 

𝑯 = −
1
2
�
�𝛼𝑦2 + 𝛼𝑧2� 0 0
−2𝛼𝑥𝛼𝑦 (𝛼𝑥2 + 𝛼𝑧2) 0
−2𝛼𝑥𝛼𝑧 −2𝛼𝑦𝛼𝑧 �𝛼𝑥2 + 𝛼𝑦2�

� . (2-69) 

When the scattering potential is known, the second-order force contribution due to the second-
order potential can be calculated using Equation 2–70. 

𝐹𝑝 = −𝜌�
𝜕�𝜙𝐼(2) + 𝜙𝑆(2)�

𝜕𝑡𝑆𝐵
𝒏𝑑𝑆 (2-70) 

The other part of the second-order force—which is due to the quadratic interactions between 
first-order quantities—does not depend on the second-order potential. The total second-order 
quadratic force contribution is made up of terms that depend on only the first-order potential, that 
is, the second-order term from the Bernoulli equation, −1

2𝜌∇𝛷
(1) ∙ ∇𝛷(1), and terms that depend 

on both the first-order potential and the first-order motions. The total quadratic-force component 
is given by 

𝐹𝑞 = 1
2𝜌𝑔𝜌 ∫ �𝜁𝑟

(1)�
2
�1 − 𝑛𝑧2𝒏𝑑𝑙𝑤𝑙 − 𝜌∬ �12∇𝛷

(1) ∙ ∇𝛷(1) + �𝜩(1) + 𝜶(1) × 𝒙�∙ 𝜕𝜕𝑡∇𝛷
(1)�𝑆𝐵

𝒏𝑑𝑆 

         +𝜶(1) × 𝐹(1) − 𝜌𝑔𝐴0 �𝛼𝑥
(1)𝛼𝑧

(1)𝑥𝐵 + 𝛼𝑦
(1)𝛼𝑧

(1)𝑦𝐵� 𝜅 , 

(2-71) 

where 𝜁𝑟
(1) = 𝜁(1) − �𝛯𝑧

(1) + 𝛼𝑥
(1)𝑦 − 𝛼𝑦

(1)𝑥� is the relative first-order wave height, nz is the 
z component of the normal vector at z = 0 (and nz = 0 for wall-sided bodies). 
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The expressions for the second-order moments Mp and Mq that correspond to Equation 2–70 and 
Equation 2–71 can be found in [23]. Note that the free-surface (Q) and body surface (B) forcing 
functions that appear on the left-hand sides of the boundary conditions for the scattering potential 
require knowledge about the first-order motions, which are calculated using the frequency-
domain version of the first-order equations of motions (Equation 2–56). 

The second-order wave excitation forces typically are given as quadratic transfer functions for 
forces (force QTFs), with a force coefficient Xmk± for each pair of incident waves Am and Ak 
with frequencies ωm and ωk. The force coefficient is calculated assuming that both incident 
waves are of unit amplitude. To obtain the force in a real sea state, the coefficients must be 
multiplied by the complex amplitude of both incident waves. The force time series can be 
calculated through the sum over all incident wave pairs, given by 

𝐹𝑒𝑥
(2)(𝑡) = 𝑅𝑒 �� �𝐴𝑚𝐴𝑘𝑋𝑚𝑘+𝑒𝑖(𝜔𝑚+𝜔𝑘)𝑡 + 𝐴𝑚𝐴𝑘∗𝑋𝑚𝑘−𝑒𝑖(𝜔𝑚−𝜔𝑘)𝑡

𝑁

𝑘=1

𝑁

𝑚=1

� . (2-72) 

As mentioned, the hydrodynamic forces can be split into contributions from the first-order and 
second-order potential, typically indexed as q (for quadratic first-order contributions) and p (for 
second-order potential). 

𝑋𝑚𝑘± = 𝑋𝑞,𝑚𝑘
± + 𝑋𝑝,𝑚𝑘

± (2-73) 

As the computational effort needed to solve the second-order potential is substantial, there have 
been several attempts to find an approximate solution using only the quadratic term. (Another 
reason for approximate methods is that there existed no comprehensive solution of the second-
order problem until the late 1980s.) Both model tests and numerical simulations have shown that 
this generally is not a good approximation [19]. In some situations, the quadratic term, however, 
does dominate the potential term, e.g., for difference-frequency forces where the frequency 
difference is low. The mean-drift force—which is a special case of the difference-frequency 
problem with ωm = ωk—is even independent of the second-order potential, and can be derived 
from the first-order potential alone.  

Another, more commonly used attempt to reduce computational time was proposed by [34]. If 
the wave excitation can be assumed to be narrow banded, only terms where ωm ≈ ωk have an 
influence, and the solution can be restricted to these frequencies.  

The second-order forces are calculated as a correction to the first-order forces, similar to the 
correction for the wave elevation in Equation 2–11. In the frequency domain, the solution is 
given as quadratic transfer functions for motions (motion QTFs), and the time series of the 
second-order motions can be calulated from 

𝑞(2)(𝑡) = 𝑅𝑒 �� �𝐴𝑚𝐴𝑘𝜉𝑚𝑘
+𝑒𝑖(𝜔𝑚+𝜔𝑘)𝑡 + 𝐴𝑚𝐴𝑘∗𝜉𝑚𝑘

−𝑒𝑖(𝜔𝑚−𝜔𝑘)𝑡
𝑁

𝑘=1

𝑁

𝑚=1

� . (2-74) 
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Here, ξmk+ and ξmk
– are the motion QTFs for the sum-frequency and difference-frequency 

components. The time-domain equation is similar to the first-order time-domain equation of 
motion Equation 2–50, but with the second-order wave excitation force on the right-hand side. 

(𝑀 + 𝐴)𝑞̈(2) + � 𝐾(𝑡 − 𝜏)𝑞̇(2)(𝜏)𝑑𝜏
𝑡

0
+ 𝐵𝑒𝑥𝑡𝑞̇(2) + (𝐶ℎ𝑦𝑑𝑟𝑜 + 𝐶𝑒𝑥𝑡)𝑞(2) = 𝐹𝑒𝑥(2) (2–75) 

To calculate the total motions, the first-order and second-order motions can be superimposed 
linearly. Alternatively, the time-domain equation of motion can be solved to get the total motions 
directly by including the first-order wave excitation forces on the right-hand side. 

(𝑀 + 𝐴)𝑞̈𝑡𝑜𝑡 + � 𝐾(𝑡 − 𝜏)𝑞̇𝑡𝑜𝑡(𝜏)𝑑𝜏
𝑡

0
+ 𝐵𝑒𝑥𝑡𝑞̇𝑡𝑜𝑡 + (𝐶ℎ𝑦𝑑𝑟𝑜 + 𝐶𝑒𝑥𝑡)𝑞𝑡𝑜𝑡 = 𝐹𝑒𝑥(1) + 𝐹𝑒𝑥(2) 

(2-76) 

2.5 Limitations to the Potential Flow Formulation of the 
Hydrodynamics Problem 

The potential flow formulation presented above only partly describes the overall physics of the 
hydrodynamics problem. The assumptions inherent to the formulation and how they apply to a 
floating wind turbine have to be assessed. The implications of the different assumptions are 
discussed in more detail in this section. 

2.5.1 Potential Flow Assumption 
The single most important assumption for the formulation is the assumption of potential flow, 
which is necessary for the definition of a velocity potential. Potential flow theory means that the 
flow is irrotational and free of viscous effects, i.e., that there is no flow separation, no vortex 
shedding, and no influence of viscous drag. The three most important parameters to determine 
the flow regime and to assess whether the potential flow assumption applies to a specific 
problem are the Keulegan-Carpenter number, the oscillatory Reynolds number, and the diameter 
to wavelength ratio [14]. The Keulegan-Carpenter number is a dimensionless number that 
determines the relative importance of drag force to inertia forces, and is given by  

𝐾 =
𝑉𝑇
𝐷

 . (2-77) 

Here, T is the wave period, V is the fluid velocity amplitude normal to the cylinder and D is the 
diameter or characteristic length scale of the structure. The velocity V is given by  

𝑉 =
𝜋𝐻
𝑇

cosh (𝜅(𝑧 + ℎ))
sinh(𝜅ℎ)

 . 
(2-78) 

The wave number 𝜅 is calculated from the dispersion relation Equation 2–2 and Equation 2–3, h 
is the water depth and z the depth at which the velocity is calculated. Because the product 𝑉𝑇 is 
dependent mainly on the wave height H, the Keulegan-Carpenter number basically is a depth-
dependent (more accurate) version of the wave height to diameter ratio used for flow regime 
determination in Figure 3. A Keulegan-Carpenter number greater than 2 generally indicates flow 
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separation. The oscillatory Reynolds number describes the ratio between inertia and viscous 
forces, and is given by  

𝑅𝑒 =
𝑉𝐷
𝜐

 , (2-79) 

where 𝜐 is the viscosity of the fluid. The diameter to wavelength ratio D/λ determines the relative 
slenderness of the structure. If this parameter is less than 0.2, then the scattering of incident 
waves can be assumed to be unimportant, and the theory that assumes a slender structure can be 
used.  

2.5.2 Wave Modeling 
Because of the need to simplify the free surface boundary condition, first-order and second-order 
hydrodynamics based on potential flow assume that the waves are linear (first order) or weakly 
non-linear (second order). In this work, no higher-order waves are considered, such as third-
order or higher-order Stokes waves or wave models derived using stream-function theory.  

2.5.3 Viscous Drag 
Viscous drag and any other viscous effects are ignored in this work. Morison’s equation is a 
widely used approach to determine forces from viscous drag, if needed. As mentioned in the 
introduction to this section, the forces are determined directly from incident wave kinematics 
such that the method does not require the definition of a velocity potential. This more direct 
representation of the waves also allows for introduction of non-linear wave kinematics and 
current. The force on a cylinder per length is given by  

𝑑𝐹 = 𝜌(1 + 𝐶𝑎)
𝜋
4
𝐷2𝑢̇ +

1
2
𝜌𝐶𝑑𝐷𝑢|𝑢| . 

(2-80) 

The first term is the inertia force and the second term is the force from viscous drag, with Ca and 
Cd being the added mass and drag coefficients, D the cylinder diameter, and u and 𝑢̇ the velocity 
and acceleration, respectively. If the radiation-diffraction solution is used to calculate the mass 
force, then the first term should be omitted. Although Morison’s equation ignores any coupling 
terms in the added mass matrix, the first term is a reasonably accurate approximation of inertial 
loading for a slender structure.  The drag term commonly is used in conjunction with the 
radiation-diffraction solution to include viscous drag for slender members. The main problem 
lies within the determination of Cd which is dependent on many different flow parameters. Some 
typical values are however found in literature, and over decades successfully have been applied 
to hydrodynamic problems. 

2.5.4 Vortex-Induced Vibrations 
Vortex shedding is known to cause vortex-induced vibrations of floating platforms, especially 
for relatively slender structures such as a spar or TLP tendons. The vortex-shedding frequency, 
fv, is determined by the Strouhal number S, the cross-flow velocity U, and the structure diameter 
D and is given by 
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𝑓𝑣 = 𝑈
𝑆
𝐷 . (2-81) 

Vortex shedding is especially important when lock-in occurs, i.e., when the fv is close to an 
eigenfrequency of the system. Vortex shedding is not considered in this report.  

2.5.5 Assumption of Small Wave and Motion Amplitudes 
The theory presented here is based on the assumption of wave and motion amplitudes that are 
small compared to wave length, i.e., ζa / λ, ξ / λ « 1. The influence of aerodynamics on a floating 
wind turbine can be expected to lead to greater deviations from the mean position than as 
compared to the case with wave excitation only, thus increasing the ratio ξ / λ. 

Figure 9 shows typical wave lengths for ocean waves in two different depths. As can be seen, the 
typical wave is more than 100 m long. Even for a wind turbine, this is far longer than the 
maximum motion amplitudes. In lower sea states where the wave lengths are shorter, the wind 
velocity and corresponding turbine thrust also can be expected to be small enough to not violate 
the assumption of small motions.  

 
Figure 9. Wavelengths in two different water depths 

2.5.6 Higher-Order Effects 
When the hydrodynamics problem is solved to second-order, the terms 𝑂(𝜁𝑎3) are left out. These 
higher-order effects especially are important for TLPs, where they induce a phenomenon called 
ringing. Although the second-order effects (known as springing) are known to influence mainly 
fatigue life of a structure, ringing is associated with the highest waves of a sea state and influ-
ences the magnitude of the extreme loads. No higher-order effects are considered in this report. 

2.5.7 Short-Crested Seas 
As noted, only long-crested seas are considered in this work. Short-crested seas involve sea 
states in which there is a directional spreading of the waves. The assumption of long-crested 
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waves usually leads to overly conservative results. Ref. [4] assumes a reduction factor for wave 
forces and particle velocities—called the “wave kinematics factor”—to account for a reduction 
in the loads and velocities due to directional spreading. 

2.5.8 Interactions Between Columns 
If a floating platform has more than one surface-piercing column, then the structural loads and 
motions are influenced by interactions between the columns. The structures analyzed in this 
report include a spar buoy and a TLP, which only have one column penetrating the water surface. 
Therefore no interactions are seen. For other concepts, such as the semi-submersible, these 
interactions might be important. The analysis tools used in this work are capable of modeling 
such interactions, and these effects therefore could be included in the scope of future work 
without changing the methodology.  

3  Simulation Codes: Capabilities and Limitations 
The two most important tools used for analysis in this report are the wind turbine simulation 
code FAST and the hydrodynamics program WAMIT. A brief overview of the capabilities and 
limitations of these programs is given here. 

3.1 FAST 
FAST is a wind turbine design code developed by the National Renewable Energy Laboratory 
(NREL). The code is open source and can be downloaded from the National Wind Technology 
Center (NWTC) website [31]. The code predicts the coupled dynamic response of an entire 
wind-turbine system in the time domain, taking into account aerodynamics, structural elasticity, 
control system, and hydrodynamics. The structure of the program is outlined in Figure 10. As 
shown, FAST consists of several submodules. The main module—which also is called FAST—
solves the structural equations of motion of the coupled wind-turbine system at each time step, 
taking structural elasticity and control-system effects into account.  

Aerodynamic loading is accounted for by AeroDyn [28]. AeroDyn is called by FAST at every 
time step, receiving local blade motions and velocities as inputs. It calculates aerodynamic forces 
and moments and sends these values to FAST. AeroDyn also computes important wind-turbine 
parameters such as rotor thrust, generator torque, and power coefficient. Additionally, local 
quantities such as wind speed or induction factors can be written to the output file. The program 
can read several different types of wind input, enabling the use of another NREL open-source 
program, TurbSim [13], as a preprocessor to generate turbulent wind fields. 

The hydrodynamics module, HydroDyn, is the subroutine added to FAST most recently. It was 
developed to meet the need for simulation of offshore wind turbines, including both fixed and 
floating structures. HydroDyn handles effects due to platform-wave interactions, including 
hydrodynamic loads, platform motions, and the mooring system. 
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Figure 10. FAST program structure [18]. 

The hydrodynamic loading is computed using forces from first-order radiation and diffraction, 
and the viscous drag term from Morison’s equation. The first-order radiation and diffraction 
problem must be solved in WAMIT or a similar program providing frequency-dependent added-
mass, damping, and force coefficients. The hydrostatic restoring matrix also is computed in 
WAMIT, but it is crucial that gravitational restoring terms be excluded because these are 
accounted for internally in FAST. To solve Morison’s equation, the only input required is the 
viscous drag coefficient (which is assumed to be constant) and an effective diameter. 

To include mooring system restoring, the mooring-line configuration and stiffness must be 
included in the HydroDyn input file. The restoring force provided by the mooring system is 
computed using a quasi-static mooring system model, which does not account for mooring 
system inertia or potentially important viscous damping. The wave model—which can be either a 
linear regular wave or a linear irregular sea state—is chosen by the user, and the wave 
kinematics are computed within HydroDyn. 

FAST calls HydroDyn at every time step, and provides platform displacements and velocities as 
inputs. The hydrodynamic and hydrostatic forces, the hydrodynamic added mass, the mooring 
system contribution, and the drag term of Morison’s equation are computed and added to the 
total hydrodynamic force. More on the exact formulations of these can be found in Jonkman 
(2007). The results are sent back to FAST, and used them to solve the equations of motion for 
the next time step. In addition to solving the equations of motion in the time domain, FAST can 
linearize the system, allowing for determination of the system matrices and eigenfrequencies. 

FAST code originally was developed to simulate wind turbines. Wind turbines are highly 
dynamic systems with strong coupling effects, and the existing capability for land-based 
simulations made the code suitable for inclusion of new sources of dynamic loading. One of the 
main benefits of FAST is that the equations of motions are solved in the time domain. This is the 
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key characteristic that allows for inclusion of transient behavior and coupled dynamics of the 
platform, tower, and rotor. The main limitation of FAST in this context is that it cannot include 
the influence of second-order hydrodynamics. For wave loading, FAST depends mainly on linear 
coefficients that must be generated externally. Another limitation is that it is not possible to 
include wave spreading in the wave model, and all sea states therefore are modeled as long-
crested seas. 

3.2 Wave Analysis at Massachusetts Institute of Technology (WAMIT) 
Wave Analysis at MIT (WAMIT) is a three-dimensional panel code designed to compute 
hydrodynamic loading from the radiation and diffraction problem in the frequency domain. It is a 
commercial code that is used widely in the offshore industry, and is capable of solving both the 
first-order and second-order hydrodynamic problem for a structure with arbitrary geometry. 

When solving the first-order problem with WAMIT, possible outputs include added-mass, 
damping, and first-order wave excitation force coefficients. The hydrostatic restoring matrix is a 
default output, and there are several other options to select output fluid-domain properties such 
as fluid pressure or particle velocities. The motion RAOs (defined by Equation 2–56, also can be 
chosen as an output. Moreover, the second-order mean-drift force can be computed as part of the 
first-order problem, because it depends on quadratic contributions from the first-order potential 
only. Solving the second-order problem with WAMIT provides second-order force QTFs and 
second-order motion QTFs. It also is possible to output other properties, e.g., the second-order 
pressure or incident wave elevation.   

The specific incident wave frequencies and wave headings for which the radiation and 
diffraction problem should be solved must be specified to generate any output from WAMIT. It 
is important to choose wave frequencies that at least cover the most important range (i.e., with 
the highest wave energy levels) from 0.25 to 1.25 rad/s. In many cases, a broader range of 
frequencies is needed, e.g., when WAMIT output is used as an input to FAST. For the 
frequency-to-time-domain transforms used within HydroDyn to work correctly, frequencies up 
to 5 rad/s typically are needed. The second-order problem must be solved for all pairs of wave 
frequencies, therefore the number of frequencies should be kept relatively small for a second-
order simulation to keep computational efforts within bounds.  

A suitable representation of the body geometry is needed to run WAMIT. Depending on the type 
of simulation used, the geometry can be modeled by a mesh of quadrilateral panels or by using 
more sophisticated methods, such as a CAD model from MultiSurf. In this report, the geometry 
usually is modeled with quadrilateral panels. WAMIT is indifferent to anything above the 
surface, therefore only the geometry of the platform below the waterline must be modeled. To 
prevent numerical errors at high frequencies and avoid problems with non-physical waves, the 
free-surface inside the body also should be meshed. For the second-order problem, the free-
surface outside the body also must be meshed to allow the inhomogeneous free-surface condition 
to be enforced. 

To ensure that the chosen discretization is sufficient for obtaining meaningful results, a 
convergence test should be performed. This is done by running a set of simulations in which the 
discretization is consistently refined. The accuracy of the first-order quantities primarily is 
influenced by the number of body panels. The arrangement of the panels also has a smaller 
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impact on the accuracy. Cosine spacing from the waterline to the draft is regarded as the meshing 
method that gives the most accurate results for a given number of panels. The second-order 
quantities are influenced by both body discretization and free-surface discretization, so the 
convergence should be tested for both. 

If the first-order motion RAOs are required as an output, then WAMIT must solve for equations 
of motion. For this purpose, the center of mass and the system inertia, external damping, and 
external stiffness matrices must be specified. It is important to be aware that formulating the 
second-order potential requires the first-order body motions as an input, and that the system 
matrices always must be specified for a second-order simulation. 

The damping and stiffness matrices referred to as external contain all damping and stiffness 
contributions that are not due to hydrodynamic effects, such as mooring system stiffness and 
aerodynamic damping from a wind turbine. If the body is freely floating without any external 
damping or stiffness, the system inertia can be specified by the radii of gyration and the vertical 
position of the center of gravity. The rest is calculated within WAMIT. In any other case, the full 
6 x 6 matrices for mass, external damping, and external stiffness must be input. The matrices 
should account for the inertia and stiffness and damping effects that are induced by the turbine 
mounted on top of the platform, although this turbine is not modeled in WAMIT. It also should 
account for mooring-system stiffness. These matrices can be computed through a linearization of 
the wind turbine model in FAST, however, they only are approximate representations of the 
unsteady aerodynamic loading or the non-linear mooring-system stiffness of a real turbine. 

The WAMIT code originally was created to compute hydrodynamic loading for structures where 
other sources of loading are negligible in comparison, and where the platform natural frequencies 
and first-order wave frequencies are the only frequencies important to the motion response. 
These assumptions might be viable for an oil platform or a ship, but are problematic for 
analyzing turbines. 

The frequency-domain approach assumes a periodic steady-state motion that is not viable for a 
turbine that is subject to unsteady aerodynamic loading. This means that the motion response 
calculated in WAMIT only is an approximation of the true response, since the aerodynamic 
forces are not accounted for. For first-order simulations, this problem can be avoided by using 
only the frequency-domain forces (calculated at the mean position of the body) as an input to the 
time-domain simulations, which is t the approach taken in FAST. 

For second-order simulations it is more difficult to get around the inaccuracies of the frequency-
domain calculations. The formulation of the second-order problem requires knowledge about 
first-order motions. Because only hydrodynamic loading is included in WAMIT, the first-order 
motions calculated internally in WAMIT do not include motion contributions from 
aerodynamics. This means that the second-order hydrodynamic force is computed without 
accounting for any motions due to aerodynamics. For the calculation of the second-order forces, 
this is however acceptable if the motion amplitudes of the platform are not too great. 

Another consequence of computing the motion amplitudes in WAMIT is that only the platform 
degrees of freedom can be included. For a large turbine with a high tower, the tower-bending 
frequency comes into a range where it starts interacting with platform eigenfrequencies. The 
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primary advantage of using WAMIT is that it is capable of modeling both first-order and second-
order hydrodynamics (and does so in a manner that is consistent with the definitions and theory 
presented in Section 2 of this report). 

4 Environmental Conditions 
Throughout the design process for an offshore structure, the environmental data measured at the 
specific site is important in determining both extreme conditions and normal conditions that 
impact fatigue. Wave data for a specific site usually is presented as a scatter diagram, in which 
the number of observed sea states for a given HS and Tp are listed. Scatter diagrams can be used 
to identify typical sea states (helpful for designing fatigue simulations). They also can be used to 
approximate extreme sea states or extreme wave height for a given return period. One of the 
disadvantages of the scatter diagram is that it does not provide any directional data, and thus do 
not contain any information about which direction the waves come from. This information is 
given as a wave rose when needed. Neither the scatter diagram nor the wave rose diagram 
provide any information about the wind speeds corresponding to the sea states. 

For the present study, two different sources were used to obtain information about typical sea 
states. The first data set was obtained from buoy data downloaded from on the National Data 
Buoy Center website [30]. The measurement data spans from 2001 to 2010, and was supplied by 
two buoys (number 44005 and 44008), both situated off the northeast coast of the United States. 
Their respective position can be seen in the map in Figure 11. These particular buoys were 
chosen because they provide data that is representative for the Gulf of Maine, one of the areas in 
the United States with the greatest potential for deepwater offshore wind-energy. Another 
important reason for choosing these buoys is that the buoys have historical data available from 
the past 10 years. 

 
Figure 11. Buoy positions on the northeast U.S. coast 

The scatter diagrams are presented in Figure 12 for buoy 44005 and in Figure 13 for buoy 44008. 
As might be expected, the scatter diagram generated for the more sheltered position (44005) 
shows less severe sea states than those in the scatter diagram from the buoy located in more open 
sea (44008). The choice of the sea states for analysis is based on the most frequent and extreme 
observations shown in both scatter diagrams. Extrapolation to find extreme values with a given 
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return period is not considered because a significant number of invalid measurements would 
have to be removed from the data. 

Figure 12. Scatter diagram for buoy 44005—Gulf of Maine; Hs = significant wave height in meters, 
Tp = peak spectral period in seconds 

 

Figure 13. Scatter diagram for buoy 44008—Nantucket; Hs = significant wave height in meters, 
Tp = peak spectral period in seconds 

The second set of sea states were obtained from literature. Ref. [40] provides a list of typical 
fully developed sea states with corresponding wind speeds. The Hs and Tp values in Table 1 are 
a selection of these sea states, chosen to be representative of the most common sea states in the 
scatter diagrams and to provide a broad range of frequencies and wave heights. It includes all of 
the sea states used in [14] and four additional sea states to better represent the range of wave 
periods. The wind speeds in Table 1 are not taken directly from [40], but are determined using 
three additional sources. The wave heights are plotted against wind speeds for all three sources in 
Figure 14. The first source is [25], which provides a table of annual sea state occurrences in open 
sea in the North Atlantic (plotted as ‘North Atlantic’). These wind speeds are scaled from the 
measurement height of 19.5 m to the 90-m hub height using the 1/7 power law, given by 

𝑉(𝑍) = 𝑉(𝑍𝑟) �
𝑍
𝑍𝑟
�
1
7

. (4–1) 
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Here, Zr is the height of the measurements, V(Zr) is the wind speed at this reference height, and 
V(Z) is the wind speed at height Z. The second source is the wave height–wind speed relations 
given at a North Atlantic reference site in [15], page 77 (plotted as “Reference Site”). These 
wind speeds already are converted to the 90-m hub height. The third source is the previously 
mentioned wind-wave correlations from [40] (plotted as “Fully Developed”). It is not listed 
explicitly at which height these measurements are performed, but it is assumed that the 
measurement height is 3 m, which is common for buoy measurements. These measurements are 
extrapolated from 3 m to 90 m in by the same power law given in Equation 4–1.  

The different sea state–wind speed correlations were analyzed based on Figure 14. For the 
reference site used in [15], even very low wind speeds lead to a high significant wave height. 
This could be due to contributions from swell waves that travel to the area from nearby locations, 
and does not have any relation to the local wind speed. The sea state–wind speed correlations 
derived using the assumption of fully developed seas gives very low Hs for wind speeds of less 
than 10 m/s. This is as expected for sea states in which the wind is the only source of wave 
generation. Assuming a fully developed sea, however, seems to overpredict the significant wave 
height at wind speeds greater than 25 m/s. This might be because winds of this strength seldom 
prevail for a long enough period to establish equilibrium. This impression is strengthened by the 
fact that the data from [25], which is representative of annual occurrences of sea states in the 
north Atlantic, contains sea states far less severe at the same wind speeds. Because the data 
points from [25] seem most general, with both low sea states at low wind speeds as well as a less 
steep gradient at greater wind speeds, interpolation between these points was used to 
approximate the relation between wind speed and wave height.  

 
Figure 14. Relations between wind speed and wave height, from different sources; blue: data from 

reference site [15], light blue: data for fully developed sea [40], black: representative annual 
occurrences in the North Atlantic [25], green: interpolated data used for further analysis. 

The sea states and the corresponding wind speeds used for analysis in this report are listed in 
Table 1. The sea states are taken from [40], and the wind speeds at the 90-m hub height are 
calculated based on significant wave height (explained above). 
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Table 1. Environmental Conditions Selected for Investigation 

Sea State Number Significant Wave Height [m] Peak Period [s] Wind Speed [m/s] 
1 0.09 2 2.5 
2 0.67 4.8 7.5 
3 0.88 5.4 8.6 
4 1.40 6.5 10.5 
5 1.86 7.2 12.1 
6 2.44 8.1 13.6 
7 3.66 9.7 17.6 
8 4.57 10.5 22.0 
9 5.49 11.3 25.8 

10 6.71 12.1 30.1 
11 9.14 13.6 35.1 
12 15.24 17 42.9 

 
5 Spar Analysis 
5.1  Spar Modeling 
The first floating-turbine system analyzed in this report is a spar. To achieve stability, a spar 
relies on a low CoG. The CoG is designed to lie below the CoB, such that a restoring moment 
builds up when the structure tilts in pitch or roll. The low-water plane area and the slenderness of 
the structure create only small hydrodynamic restoring and damping in heave, but are beneficial 
for reducing the first-order wave-excitation forces. The particular model used in this analysis is 
the OC3-Hywind. It is a modified version of the full-scale 2.3 MW floating wind turbine built 
and operated by Statoil near the southwest Norwegian coast. The platform model was created by 
NREL based on input from Statoil. It was used by the OC3 code collaboration in the process of 
code-to-code verification of floating wind turbine simulation codes. The OC3-Hywind platform 
is designed to carry the NREL 5-MW reference wind turbine, which was developed to provide 
specifications for a model representative of a utility-scale multi-megawatt wind turbine [17]. The 
tower of the reference turbine was changed slightly to fit on the floating platform. The properties 
of the new tower, as well as other properties that are specific to the floating system are described 
thoroughly in [14]. Table 2 lists the main parameters of the floating turbine. 

5.1.1 FAST Model 
The FAST model of the OC3-Hywind can be downloaded from the NWTC website [31]. This 
model was used for all simulations of the OC3-Hywind in FAST, including system linearization 
and verification of the WAMIT frequency-domain model. The directory also contains a special 
FAST executable that includes additional stiffness and damping terms. These damping and 
stiffness contributions are due to a special mooring system design that is used in the real system 
built by Statoil, but which is not possible to model in FAST. For this report, the normal FAST 
executable was used and the additional damping and stiffness values were not included. 
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Table 2. Main Properties of the OC3-Hywind Turbine 

 
 
5.1.1.1 Derivation of System Matrices 
The mass matrix, the position of the CoG, and the external stiffness and damping matrices are 
required as inputs to WAMIT to solve the equations of motions, and were derived through the 
FAST linearization process described in Equation A–1 in the Appendix. It was decided that a 
case without aerodynamics would be used for the investigations. By turning off the 
aerodynamics (in FAST, CompAero = False) and setting the rotor speed to zero, there are no 
contributions to the inertia, damping, and stiffness matrices from the turbine other than 
additional mass. This condition was chosen because it is the condition for which WAMIT and 
FAST are most comparable. It also is expected that the case without aerodynamics will be the 
“worst case,” because additional aerodynamic damping decreases the system motions. Increased 
stiffness and inertia due to aerodynamics could change the eigenperiods of the system slightly. 
The mass matrix used for the WAMIT simulations is shown in Equation 5–1.2 

𝑀 =

⎣
⎢
⎢
⎢
⎢
⎡
      8073232    0    0

        0    8073247    0
        0    0   8068249

0 −629065612 0
 629066535  0 −144800

0   144800     0
       0 629066227 0

−629065202 0 144800
0 −144800 0

68086674750 0 16700000
0 67986603000 0

11670000 0 189600000⎦
⎥
⎥
⎥
⎥
⎤

 (5–1) 

                                                 
2 The mass matrix here is that used for calculations for the spar in this report. Note, however, that the mass is not the 
same in surge, sway, and heave (i.e., M11 ≠ M22 ≠ M33), which is physically incorrect. Additional calculations yielded 
the mass matrix as shown below. 

 𝑀  =

⎣
⎢
⎢
⎢
⎢
⎡
      8066000    0    0

        0    8066000    0
        0    0   8066000

0 −629200000  0
 629200000  0 −121900

0   121900     0
       0 629200000 0

−629200000 0 121900
0 −121900 0

68030000000 0 14150000
0 68010000000 0

14150000 0 189600000⎦
⎥
⎥
⎥
⎥
⎤

 

The difference between this mass matrix and the matrix used for this report is very minimal, and is assumed to not 
have significantly affected the calculations and results. 
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From the mass matrix, the CoG position is calculated according to [34], p. 149. The CoG 
position of the system is (0.0179, 0, -77.968). The external damping is 0, because there are no 
contributions from the rotor, and viscous drag has been set to 0. The external stiffness matrix is 
shown in Equation 5–2. 

 

𝐾 =

⎣
⎢
⎢
⎢
⎢
⎡
          41180       0 0

         0        41180 0
         0       0 11940

   0      −2821000            0 
 2821000         0             0

   0      0           0
0 2816000   0

−2816000 0   0
0 0   0

          
311100000 1483 0

0 311100000 0
−186800 0 189600000  ⎦

⎥
⎥
⎥
⎥
⎤

 (5–2) 

 
It first was thought that the term coupling the roll displacement with a yaw force was due only to 
numerical errors. To verify the existence of this term, a sensitivity test was performed on the 
perturbation used in the computation of the linearized matrices. The test showed that all terms in 
the matrix shown in Equation 5–2 are relatively insensitive towards changes in the perturbation. 
This term does not disappear even when using another calculation method—for example, 
calculation through the direct force-displacement relation as described in the Appendix—
therefore it was determined that the term is physical. The coupling terms, however, are very 
small as compared to the other terms. 

5.1.1.2 Derivation of System Eigenfrequencies 
The system eigenfrequencies are derived using the method outlined in [16]. Because WAMIT 
cannot model the turbine, no coupling effect between the tower or blades and the platform 
eigenfrequencies is taken into account. It therefore is considered important to know how the 
eigenfrequencies change depending upon whether the tower and blade degrees of freedom are 
included, and the eigenfrequencies are computed for both cases. As shown in the tables below, 
the eigenfrequencies of the spar change very little if the tower and blade degrees of freedom are 
included in the calculation. 

 
Table 3. Eigenfrequencies of the OC3 Hywind 

with Rigid Tower 

 

Table 4. Eigenfrequencies of the OC3 Hywind 
with Flexible Tower 
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5.1.2  WAMIT Model 
The geometry of the Hywind is modeled with quadrilateral panels. The spar has two planes of 
symmetry, therefore only one quarter of the structure must be modeled, leading to shorter 
simulation time within WAMIT. To achieve more accurate results from the simulations, use 
cosine spacing for the panels that are close to sharp edges or close to the free surface (this is 
especially important for second-order hydrodynamic loads). The geometric data file which 
contains the coordinates of the four vertices of each panel is generated using a MatLab script. 
This script is based on an existing script developed by Jonkman, but required modification to 
create a cosine-spaced mesh. 

5.1.2.1  First-Order Convergence Tests 
To determine how many panels are needed to model the structure and to get an overall 
impression of the accuracy of the results, a common procedure is to perform a convergence test 
in WAMIT. This test helps to assess the convergence of the results with finer discretizations. The 
accuracy of the first-order quantities (added mass, hydrodynamic damping, and first-order 
excitation force coefficients) is influenced almost only by the number of body panels. The 
arrangement of the panels also has a lesser impact on the accuracy, with cosine spacing from the 
waterline to the draft regarded as the meshing method and producing the most accurate results 
for a given number of panels. 

The first-order convergence tests are performed with regard to the number of body panels and 
always with cosine spacing. As suggested in literature, four different meshes where the panel 
size is reduced consistently from one mesh to another were used. The length of the panel sides 
was halved in both directions from a coarser to a finer discretization. The four meshes had 
respectively 195; 931; 4,035; and 9,315 body panels to represent a quarter of the spar. The mesh 
for the 931 panels is shown in Figure 15. 

Convergence tests are performed for added-mass and hydrodynamic-damping coefficients, as 
well as for wave-excitation force coefficients. These coefficients are frequency dependent, 
therefore the test must be performed for a range of frequencies. Wave periods from 5 s to 25 s 
are chosen, because these are the periods at which ocean waves contain significant energy. Also, 
the zero-frequency and infinite-frequency limits are compared (although these are non-zero only 
for the added mass). Due to the symmetry of the spar, only head-on waves are considered. To 
illustrate the results from the tests, values for the damping coefficient B33 is shown in Figure 16.  

In the case using 4,035 panels, the simulation results have converged to within 1% for all values 
(with the solution for 9,315 panels used as a reference value). The situation is the same for 931 
panels except for damping in heave, for which the difference is less than 2%. These results only 
are valid if yaw added mass and damping are not taken into account. The value of yaw added 
mass and damping are in the order of 10-19, such that even though the results do not converge 
consistently, the effect of the differences is insignificant. The differences are assumed to be due 
to the inaccuracies that arise from representing a curved surface with flat panels.  
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Figure 15. Mesh with 931 panels 

 
There is little difference between the results for the discretizations with 4,035 and 931 panels, 
but there is a considerable difference in the computational effort. The calculations for one wave 
period and one wave heading take about 10 s for 931 panels, and 7 minutes for 4,035 panels. 
Therefore, 931 panels was chosen as the discretization for further analyses of the first-order 
quantities. 
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Figure 16. Convergence test for hydrodynamic damping in heave; the black line shows the results 
using 9,315 body panels (NPAN = 9,315), the red crosses are the 4,035-panel results, the blue dots 

show the 931-panel results, and the green triangles are the 195-panel results 

 
5.1.2.2 Second-Order Convergence Tests 
For second-order analysis, the convergence tests take more effort than for the first-order analysis. 
The wide range of frequencies and corresponding wavelengths that must accounted for 
complicate the discretization of the body. Also in the second-order solution, the non-
homogeneous free-surface condition must be fulfilled. Because of these requirements, both the 
body-surface and the free-surface must be discretized. 

The free-surface discretization consists of a mesh of quadrilateral panels from the body out to a 
circle with radius R. Outside of this area, an analytic solution of the integrals is used with the 
assumption of approaching infinity. When using the automatic free-surface mesh option in 
WAMIT, as was done here, two parameters are important. These parameters are PARTR (which 
is the radius R of the free-surface area covered with quadrilateral panels) and SCALE (which 
determines the average size of the free-surface panels); SCALE is multiplied with the average 
size of the panels in the waterline. Additionally, a separate convergence test for the second-order 
forces with regard to the number of body panels (NPAN) must be performed, because the con-
vergence of the second-order forces is different from the convergence of the first-order forces.  

Due to all these dependencies three tests are performed. In each test, two of the three parameters 
(PARTR, SCALE, NPAN) were kept constant and the third parameter was varied. This type of 
1-D convergence test was necessary to keep the computational effort within bounds. Also, only a 
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small subset of all combinations of first-order frequencies could be examined. For the sum-
frequency convergence test, two monochromatic waves were considered: ω1 = 1 rad/s and ω2 = 
1.35 rad/s, with corresponding sum-frequencies (ω1 + ω1) = 2 rad/s and (ω2 + ω2) = 2.7 rad/s. 
For the difference-frequency convergence test, three wave frequencies were considered: ω1 = 1 
rad/s, ω2 = 1.05 rad/s, and ω3 = 1.15 rad/s, resulting in three difference-frequency solutions: 
(ω1 – ω1) = 0 rad/s, (ω2 – ω1) = 0.05 rad/s, and (ω3 – ω1)=0.15 rad/s. The choice of frequencies 
was inspired by [33] and [24]. Due to the symmetry of the structure, only head-on waves were 
considered. Additionally, only surge, heave, and pitch were compared because they are the only 
non-zero components. 

5.1.2.3 PARTR Convergence Test 
In the convergence tests, the number of body panels was kept constant at 931 and SCALE was 
kept at 2. Simulations were performed with the partition circle radius PARTR equaling 25 m, 
50 m, 100 m, 120 m, 140 m, 160 m, 200 m, and 300 m. 

• Sum-frequency forces: The convergence of the results with finer discretization is 
consistent, except for the smallest values of PARTR. At PARTR equal to 140 m, all 
results have converged within 6.5%, with the most significant differences being those for 
heave and pitch. 

• Difference-frequency forces: The results converge consistently, and are much less 
sensitive toward the choice of partition circle radius than are the sum-frequency forces. 
Results change less than 0.5% for a PARTR that is greater than 50 m.  

The results from the test using PARTR are as expected. Ref. [33] states that the accuracy—
especially the heave and pitch forces—depends on a large partition radius. The surge force, 
however, is more sensitive towards the body discretization close to the free-surface (and as such 
profits more from the cosine spacing). The sum-frequency components require a larger partition 
circle than do the difference-frequency components; this also is consistent with the 
recommendations in [41]. 

5.1.2.4 SCALE Convergence Test 
The 931 panels are used to represent the body geometry, and the partition radius is kept constant 
at 140 m. The tests were performed with SCALE parameters equal to 1, 1.5, 2, and 3 (SCALE = 
1 is the finest and SCALE = 3 is the coarsest free-surface grid). 

• Sum-frequency forces: The tests show less sensitivity against SCALE than against 
PARTR. With SCALE equal to 2, all results seem to have converged to within 2%. 

• Difference-frequency forces: The convergence is consistent, and all components change 
less than 0.5% for SCALE parameters smaller than SCALE equal to 2. The results are 
slightly more sensitive towards SCALE than towards PARTR. 

5.1.2.5 NPAN Convergence Test 
The tests were performed with SCALE equal to 2 and PARTR equal to 140 m. The 
discretizations were similar to the first-order convergence tests, with NPAN equal to 195, 931, 
and 4,035. No solution with 9,315 panels could be computed due to lack of computational power 
(computer did not have enough memory). It should be noted that the most sensitive parameters in 



44 

the first-order convergence tests were the added mass and damping, whereas a second-order 
solution only is computed for the force components. Even though the second-order forces 
converge slower, NPAN equal to 4,035 is expected to give reasonable results for comparison. 
Comparing these results with results found in literature, the typical range for the number of body 
panels used an NPAN equal to 931 as the discretization chosen for analyses, and an NPAN 
equaling 4,035 used as a comparison in the convergence tests. 

• Sum-frequency forces: The convergence is more or less consistent, and the maximum 
difference between the results for 931 panels and 4,035 panels is 6%. 

• Difference-frequency forces: The convergence is consistent, and the maximum difference 
between the 931-panel solution and 4,035-panel solution is 2%. 

Generally, it is found that the difference-frequency components are less sensitive than the sum-
frequency components. This also results in the choice of two different free-surface 
discretizations for the two problems. In the subprogram POTEN, which solves the velocity 
potentials, only the body discretization is used. Therefore POTEN can be run once to solve for 
the velocity potentials, and the sum-frequency and difference-frequency components can be 
solved in separate FORCE runs. For the sum-component, the chosen discretization is: PARTR = 
140 m, SCALE = 2, and NPAN = 931. The difference-frequency solution uses a discretization 
of: PARTR = 50 m, SCALE = 2, and NPAN = 931. This is seen as a reasonable tradeoff between 
the computational effort and the accuracy of the results. 

To give an impression of how the results from the different convergence tests relate to each other 
and to the discretization chosen for further analysis, the results from all tests are plotted together 
in Figure 17. The results are presented for each sum-frequency and difference-frequency and 
each mode. The results also are meant to show the approximate magnitude of the forces and the 
uncertainty still inherent in the results. It can be seen that the sum-frequency component is most 
sensitive towards PARTR and that the difference-frequency is most dependent on the choice of 
the body discretization.  

The crosses show the results from each of the simulations, the squares are the results for the 
finest of the discretizations included in each test, and the red dot is the chosen discretization for 
further analyses. The upper part of the figure shows results for the sum-frequency components, 
with case 1 (ω1 + ω1 = 2 rad/s) and case 2 (ω2 + ω2 = 2.7 rad/s). The lower part of the figure 
shows results for the difference-frequency components with case 1 (ω1 – ω1 = 0 rad/s), case 2 
(ω2 – ω1 = 0.05 rad/s) and case 3 (ω3 – ω1 = 0.15 rad/s). 
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Figure 17. Convergence test results for surge (left), heave (middle), and pitch (right) 

 
5.1.2.6 Comparison of Forces with Existing Literature 
The first-order force coefficients (shown in Figure 18) were compared to two other sources, the 
specifications of the OC3-Hywind system [14] and a report on second-order hydrodynamics 
published under the UpWind project [26]. Some differences exist in the modeling of the system. 
The OC3 system used a body-fixed coordinate system with the origin at the free-surface, and the 
UpWind project used a body-fixed coordinate system with the origin at 89.995 m below the 
surface (which is the CoG for the platform without the turbine). All of the quantities are defined 
in the body-coordinate system, therefore the choice of the coordinate system naturally impacts 
the ease of comparing the results. This is especially true for the pitch component.  

Because this report is meant to be a prestudy for a possible implementation of second-order 
hydrodynamics into FAST, it is of interest that the work is as compatible with FAST as possible. 
For this reason, the analyses were performed with the body-coordinate system origin at the free-
surface and with the weight of the turbine taken into account. The first-order forces, however, 
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also were computed for a structure with the CoG at -89.995 m, and the results were compared to 
the UpWind results. 

5.1.2.7 Comparison with OC3-Hywind 
A comparison with the specifications of the OC3-Hywind revealed no significant differences in 
the results. The only recognizable difference was in the heave force coefficient. In both 
simulations, there is a jump of the phase at high frequency. In the OC3 specifications, this jump 
occurs at ω = 4.7 rad/s and changes the phase from 180° to -180°, whereas in the current 
simulation the phase jump is at ω = 4.3 and the jump is from about 100° to -75°. The heave force 
coefficient is zero at high frequencies, therefore this does not introduce any difference in 
computed results, and is likely to be due to some numerical issue. In [14], no second-order forces 
were computed. 

 

Figure 18. Exiting force coefficients of OC3-Hywind from convergence tests 

 
5.1.2.8 Comparison with UpWind 
The comparison with the UpWind results showed that there were no differences in the magnitude 
of either the forces coefficients or the added mass and damping. The forces, however, did show a 
180-degree phase difference for all components except sway and heave. No differences can be 
found in either the coordinate system used or the mass/inertia specifications, therefore the 
reasons for these differences are still unclear. Possible differences include the definition of the 
waves, and difference in the model, which are not described in the UpWind report. The second-
order forces were not computed for the same coordinate system used in the UpWind report, thus 
only the relative magnitudes could be compared here, and they were very similar. 

5.1.3 Validity of Potential Flow Assumption 
One of the assumptions inherent to the hydrodynamics method used in WAMIT is that the flow 
is potential. This assumption also is partly used in FAST, as it builds on WAMIT input to 
calculate hydrodynamic added-mass, damping, and forces. 

As mentioned in Section 2.5, the most important parameters for quantifying the flow regime 
around the body is the Keulegan-Carpenter number, the oscillatory Reynolds number, and the 
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diameter to wavelength ratio. These parameters were evaluated for the OC3-Hywind in different 
sea states in [14]. The analysis shows that flow separation occurs on the top of the spar in severe 
sea states (i.e., for wave heights on the order of 5.5 m), and that the potential flow assumption is 
valid throughout a wide range of conditions. The intention of this report, however, is not to 
specifically investigate extreme design sea states, but rather to assess the second-order effects as 
compared to the first-order effects and the influence of the wind, therefore the potential flow 
assumption is found to be viable. For an assessment of extreme loads, an analysis built on 
potential flow assumption would yield inaccurate results. 

5.2 Comparison of First-Order Time-Domain and 
Frequency-Domain Solution 

WAMIT provides frequency-dependent coefficients that describe the hydrodynamic behavior of 
a structure. There are two different possibilities for transforming the WAMIT results from the 
frequency domain into times series, as presented in Section 2.3.4. The coefficients for 
hydrodynamic excitation forces, added mass, damping, and hydrostatic restoring can be used to 
solve the equations of motion directly in time domain. Alternatively, the equations of motion can 
be solved in frequency domain within WAMIT and output in the form of response amplitude 
operators (RAOs), from which a time series can be derived through a summation. 

The two different methods are based on different assumptions and have different limitations. The 
direct solution by WAMIT in the frequency domain is not able to account for transients or for 
forces other than the pure hydrodynamic. Although it might be possible to take other forces into 
account in other programs, all loads would have to be linear. Essentially, this means that the 
solution is not suitable for direct application to wind turbines, because the non-hydrodynamic 
forces (which often are highly non-linear) and transient events are important to wind turbine 
design. The direct solution in WAMIT, however, can be a useful means to perform a first 
assessment of the second-order hydrodynamic effects on the wind turbine, as there currently are 
no coupled tools that can take these into account.  

Solving the time-domain equations of motion in FAST allows non-linear loading, transients, and 
the memory effect to be taken into account properly. The structural properties also are linearized 
before the equations of motion are solved in WAMIT, whereas more of the nonlinearities are 
directly accounted for in FAST. 

A comparison between WAMIT and FAST including only first-order hydrodynamic loading (no 
aerodynamics or control system) has two purposes. First, it serves as a rough check that purpose-
built MatLab code used to generate time series from wave spectrum input and RAOs functions 
correctly. The main purpose, however, is to gain a better overview of how the two solutions 
relate to each other. Specifically, it can help determine how well the frequency-domain and time-
domain solutions fit after transients have died out, such that it can be concluded whether the 
memory effects and structural properties are represented well enough by the frequency-domain 
solution.  

The OC3-Hywind was chosen for comparison. To make the two turbine models in FAST and 
WAMIT as similar as possible, all aerodynamics were turned off and only the platform DOFs 
were included in the calculation in FAST. Because WAMIT and FAST have very different ways 
of accounting for mooring system stiffness, the mooring system was completely removed, 
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leaving the turbine freely floating. In WAMIT, this change creates no problems, as the equations 
of motion are solved around a mean position. For FAST, however, omitting the mooring system 
created a system which is much more sensitive towards an initial in-equilibrium position. The 
model required two steps of tuning to avoid unnecessary transients. These tuning steps included 
the following: 

1. Perform Still-Water Simulations. This step involves simulating the turbine in still water 
to tune the system mass such that the initial position can be set as close as possible to the 
vertical equilibrium position. If the initial vertical position is not near equilibrium, it 
leads to large oscillations in heave. Heave is a mode with very little damping, therefore 
the initial oscillations persist for a significant period of time.  

2. Eliminate Oscillations In Pitch. The center of mass of the nacelle-rotor assembly is not 
at the center of the tower, which causes the center of mass of the entire system to be 
slightly offset from the centerline of the tower. This offset adds some coupling terms to 
the inertia matrix, such as coupling between roll and yaw, between sway and yaw, and 
between heave and pitch. Of these coupling terms, the coupling between heave and pitch 
is term with the greatest influence on the simulation. The heave oscillations that induced 
by the unbalanced initial condition—which appear to some extent even after the tuning in 
Step 1—lead to long-persisting transient motions in pitch as well. To eliminate these 
oscillations in pitch, the system is changed such that the turbine’s center of mass lies on 
the centerline of the tower. This change also was applied to the WAMIT model by 
linearizing the updated FAST model and running WAMIT with the new, uncoupled 
inertia matrix as input. Note that, even though the coupling terms mentioned above 
disappear, some coupling terms remain in the inertia matrix (such as the coupling 
between surge and pitch). What’s important is that are no modes are coupled with heave.  

To create time series from WAMIT RAOs, the frequency-domain coefficients must be 
transformed into a time series. This is performed using MATLAB. The phrase “WAMIT time 
series” hereinafter is used to identify “time series created by MATLAB using WAMIT input.” 
To make the WAMIT time series comparable to the FAST time series, the incident waves have 
to be the same. The two programs, however, use different representations for the wave elevation. 
A relation between the formulation used in FAST and the formulation that WAMIT is based on 
(which also commonly is used in ocean engineering) had to be derived to determine how the 
complex wave amplitudes in the two programs relate. The wave elevation in FAST is calculated 
by 

𝜁(𝑡𝑛) =  1
𝑁′
∑ 𝑍[𝑘]𝑒𝑗𝜔𝑘𝑡𝑛
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where ζ(tn) is the wave elevation at time step tn, N' is the number of wave frequencies used in 
FAST, and Z[k] is the complex wave amplitude in FAST. The theory used in WAMIT defines 
the wave elevation as 

𝜁(𝑡𝑛) =  𝑅𝑒 ��𝑎𝑘𝑒𝑗𝜔𝑘𝑡𝑛

𝑁
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where ζ(tn) is the wave elevation at time step tn, N' is the number of wave frequencies for which 
a solution is computed within WAMIT, and ak is the complex wave amplitude corresponding to 
wave frequency k. The two formulations must be physically the same, i.e., the wave elevation at 
a given time must be the same regardless of whether the WAMIT or the FAST formulation is 
used. The relation between the complex wave amplitudes in FAST Z[k] and WAMIT ak er given 
as 

𝜁(𝑡𝑛) =  
1
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Because Re{c} = c+c∗

2
 , the left-hand side of Equation 5-5 can be expressed as  
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Using ak = a|k|
∗ for k < 0 and ωk = ωk , and a0 = 0 results in Equation 5–7. 
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Comparing Equation 5-7 to Equation 5-5, we get the following relations for 𝑎𝑘, 𝑍[𝑘], 𝑁 and 𝑁𝑘: 

 𝑎𝑘
2
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𝑁′

   and  𝑎𝑘 = 2
𝑁′
𝑍[𝑘]   and 𝑁 = 𝑁′

2
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With these relations, both the number of wave components and the complex wave amplitudes 
that are to be used in MatLab to derive time series from the WAMIT output can be derived from 
the FAST amplitudes. To get the amplitudes output from FAST, however, the source code must 
be modified. The necessary changes were provided by Bonnie Jonkman. The amplitudes 
probably will become a standard output option in a subsequent version of FAST/HydroDyn.  

With the wave amplitudes input from FAST, a MatLab script was created to do the summation 
required to get time series from the RAOs, i.e, to solve Equation 2–57. In the first cases used for 
the comparison it was seen that due to the low damping in the system, the transients are 
dominant even after 10 000 s. The longest possible simulation time in FAST normally is 9 999 s, 
due to overflow in the output. To obtain comparable results, this had to be changed to 99 999 s. 
A simulation of 20 000 s was run and it is the results from the last 150 s of that simulation that 
are presented in Figure 19, Figure 20, and Figure 21. As can be seen from the surge and pitch 
time series in Figure 19 and Figure 20, there are no significant differences between the 
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frequency-domain and the time-domain solution. This is true for both regular and irregular 
waves.  

 

Figure 19. Surge displacement [m] 

 

Figure 20. Pitch displacement [deg] 
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Figure 21. Heave displacement [m] 

A comparison of the heave responses seen in Figure 21 shows clearly that there are significant 
differences between the solution in WAMIT and FAST. This is because of transient response 
that still is visible due to the low damping of heave. The vertical position in heave is slightly 
different than the proper equilibrium position, therefore the system experiences an impulse-like 
force at time zero. This causes the structure to oscillate at the eigenfrequency of the system. To 
confirm that the slow oscillations seen in Figure 21 coincide with the heave eigenfrequency, the 
spectral properties of the heave response from a simulation in regular waves were analyzed. The 
analysis revealed that there are two peaks in the response spectrum, one at the frequency of the 
incident wave and one at the eigenperiod of heave at about 30 s. This confirms the assumption 
that the slow oscillations are actually transient response. The frequency of the slow oscillation 
also easily can be approximated from Figure 21, which shows five peaks in 150 s. 

The spectral analysis also revealed a few lower peaks in the response in FAST, which are 
assumed to be related to non-linearity in the structural response that are accounted for by FAST 
but not by WAMIT. This response—although several orders of magnitude lower than the 
response at the wave frequency—is taken as a sign that the linearization of the structural 
properties in WAMIT is of little significance to the results. 

There also is very little difference seen between the WAMIT solution and the FAST solution in 
the surge and pitch modes, and it is concluded that the frequency-domain solution is a satisfying 
approximation for the motion response of the structure even in irregular waves. This gives 
confidence to the second-order motion response based on the frequency-domain solution only. 
The assumptions inherent in the frequency-domain solution from WAMIT make sense for the 
type of structure that is analyzed at first order.  

5.3  OC3-Hywind WAMIT Results 
5.3.1 First-Order Results 
This section presents the results from the first-order hydrodynamics computations in WAMIT. 
The frequency range considered is 0.005 rad/s to 5 rad/s, in addition to the infinite (plotted at 
6 rad/s) and zero frequency limits. The incident waves all are head-on waves with zero incident 
wave angle. 
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The added mass coefficients are presented in Figure 22 and the damping coefficients can be seen 
in Figure 23. Because the spar is axisymmetrical, the coefficients in surge and sway (A11/B11 and 
A22/B22) and roll and pitch (A44/B44 and A55/B55) are the same for both added mass and 
damping. As was shown by the convergence tests, the added mass and damping coefficients for 
heave is much smaller than for surge and sway. The same is true for yaw as compared to roll and 
pitch. Both added mass and damping in yaw are close to zero (in the order of 10-19). For added 
mass as well as damping, the only non-zero coupling terms are the couplings surge-pitch and 
sway-roll. 

 

Figure 22. Added mass coefficients for OC3 Hywind 

Figure 24 shows plots for the force coefficients of the OC3-Hywind with both magnitude and 
phase. The force modes surge, sway, and heave are plotted in the upper half, and below are the 
results for the moment modes roll, pitch, and yaw. The plots are force RAOs, which means that 
the magnitude seen on the left side is the force (or moment) per incident wave amplitude. 

As would be expected for an axisymmetrical structure, the forces and moment for sway, roll, and 
yaw are zero. For these modes the forces on one half of the structure are cancelled out by the 
forces on the other half of the structure. The surge force reaches a maximum of 1,200 kN/m just 
above 0.5 rad/s. The pitch moment has a narrower peak, and reaches a maximum of 49,000 kN/m 
just below 0.4 rad/s. For heave, the force changes sign at 0.24 rad/s, where the phase jumps from 
0° to -180°. The maximum absolute force occurs at a very low frequency, but because the 
amplitude of an ocean wave with this frequency can be assumed to be negligible, this maximum 
is of little practical importance. The maximum just above 0.5 rad/s with magnitude of 270 kN/m 
is much more important, as most sea states have wave amplitudes that are non-zero at this 
frequency and this maximum will therefore be excited more often.  
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Figure 23. Radiation damping for OC3 Hywind 

 

Figure 24. First-order wave excitation forces for OC3 Hywind 

In Figure 25, Figure 26, and Figure 27, the motion RAOs for the moored structure are plotted. 
The overall picture of the translational and rotational motion RAOs is shown with magnitude in 
the upper part and phase in the lower part. The magnitudes are normalized by the amplitude of 
the incident wave, that is, the magnitude is response per incident wave amplitude. It is evident 
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that the several DOFs experience phase jumps at both high and low frequencies. At high 
frequencies, the phase jumps are of no practical importance, as the corresponding motion 
magnitudes are equal to zero. At low frequencies, the phase jumps either are related zero 
magnitudes as for higher frequencies or to the peaks of response seen on the eigenfrequencies in 
surge, heave, and pitch. 

Both surge and pitch show very high response at their respective eigenfrequencies, 0.05 rad/s and 
0.215 rad/s. There also is a peak in the surge response at the pitch eigenfrequency due to the 
coupling between the two DOFs. In pitch, the spar is rotating around a point close to the CoG, 
which is approximately 80 m draft. Therefore there is significant pitch-induced surge motion at 
the mean sea level. The presence of the peaks makes it hard to see the rest of the motion RAOs 
which are of much lesser magnitude; thus Figure 26 provides a zoomed-in picture of the 
magnitudes in the range from 0 rad/s to 1.5 rad/s. 

A typical response for a compliant structure is that seen for heave. For long waves (low 
frequencies) the motion response is in phase with the incident wave and the structure follows the 
wave elevation with a magnitude equal to 1. For short waves, the motion response is zero. In 
between is a point at which the motion RAO is influenced by the geometry and the 
eigenfrequencies of the structure, with a significant peak at 0.205 rad/s.  

The resonant peaks in surge, pitch, and heave do not cause problems, because there usually is 
little or no energy in the ocean waves at these frequencies. The wave amplitudes (and therefore 
the motion response) usually are zero or close to zero at frequencies below 0.25 rad/s, which is 
why the structures are designed to have such low eigenfrequencies. 

 
Figure 25. Translational RAOs for the OC3 Hywind 

 



55 

Figure 26. Detail of RAO magnitudes 

 

Figure 27 Rotational RAOs for OC3 Hywind 

 
5.3.2  Second-Order Results 
The second-order calculations were performed with a mesh of 21 x 21 frequencies, ranging from 
0.26 rad/s to 1.5 rad/s. This covers the range of frequencies where ocean waves contain the most 
energy. The frequency range that results from these calculations is 0 rad/s to 1.2 rad/s (5 s 
through infinite periods) for the difference frequencies and 0.5 rad/s to 3 rad/s (12 s to 2 s) for 
the sum frequencies. Only results for surge, heave, and pitch are presented below, because these 
are the only DOFs for which the output is not zero. 
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The second-order equivalent to the first-order RAOs is the QTFs. The QTFs give information 
about the wave excitation the structure is subjected to (force QTFs) and the motion response that 
follows (motion QTFs) at the sum- and difference frequencies. They are normally plotted as 
contour plots, with the solution given as a complex coefficient for each pair of incident wave 
frequencies. They are normalized with the incident wave amplitudes, such that 𝐹𝑖𝑗 𝐴𝑖𝐴𝑗⁄ . 

5.3.2.1 Difference-Frequency Results 
5.3.2.1.1 Difference-Frequency Forces 
In the upper part of Figure 28, the magnitude of difference-frequency force QTFs are plotted as a 
contour plot. The two axes are the two incident wave frequencies ω1 and ω2. As shown, the 
solution fulfills the symmetry relation for difference frequencies, Fij

– = (Fji
–)*, which means that 

the magnitude of Fij
–is the same as for Fj i

–. The black diagonal lines across the picture are the 
constant difference-frequency lines. Along these lines, the frequency at which the excitation 
takes place is constant, and the frequency of each line is given at the right edge of the plot (only 
half of the constant difference-frequency lines are labeled, but the frequencies of the other half 
are the same, just mirrored along the zero-frequency line). To further enhance the picture of how 
the excitation depends on difference-frequency, the force QTFs are plotted as 2D plots in the 
lower part of Figure 28. The plots show the magnitude of excitation versus difference-frequency, 
ω1 – ω2, and each line is for one sum-frequency, ω1 + ω2 = constant. 

Figure 28. Difference-frequency force QTFs; upper part shows force QTFs vs. ω1 and ω2, lower 
part shows force QTF vs. difference-frequency (ω1 – ω2), for (from left) surge, heave, and pitch 
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The peak of the excitation in surge is found at high incident-wave frequencies in the middle of 
the difference-frequency range. The greatest value is approximately 27 kN/m2. The difference-
frequency at which the peak excitation occurs for heave is about 0.4 rad/s, with a value of 
7 kN/m2. The pitch force QTF show much of the same behavior as the heave QTF, with a 
consistent peak at about 0.45 rad/s, and a peak value of 42 kNm/m2.  

The force results only are provided for a restrained configuration, namely that including a 
mooring system. Because the second-order solution depends on the first-order motions, the 
second-order forces with and without mooring system differ slightly. In the case of the spar, 
however, the difference is so minimal that it is not considered necessary to show the results from 
both configurations. 

The second-order motion QTF clearly is of smaller magnitude than the first-order RAOs. Keep 
in mind, however, that QTFs are normalized with the incident wave amplitude squared. This 
increases the difference between the first- and second-order RAOs if the waves are small, but 
increases the relative importance of the second-order parts if the waves are high. Also, the total 
response at one difference-frequency is the sum of contributions from several pairs of incident 
waves. For this sum is to be correct, however, all of the (complex) coefficients in the QTF first 
must be multiplied by the complex amplitudes of the incident waves. The incident wave 
amplitudes only are available after a certain sea state with certain random phases is selected. 
Section 5.4, provides an example and compares the second-order forces and motions to first-
order forces and motions in specific sea states. 

5.3.2.1.2 Difference-Frequency Motions—With and Without Mooring Systems 
The motion RAOs are shown for both a freely floating platform (not including mooring system 
stiffness) in Figure 29, and for a moored platform (including mooring system stiffness from 
FAST linearization) in Figure 30.  
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Figure 29. Motion RAOs for a freely floating structure; upper part: 3D motion QTFs, lower part: 
motion QTFs vs. difference-frequency motion QTFs for (from left to right) surge, heave, and pitch 

 
The stripes along constant difference-frequencies are close to zero, showing that the second-
order motion response is restricted to certain frequencies,  i.e., to frequencies close to the 
eigenfrequencies of the system. The motion response is limited to a much narrower frequency 
band, but have a more significant value the second-order forces. 

Comparing the QTFs of a freely floating structure with the those of a moored structure makes 
clear that the mooring system influences both the frequencies at which the response peak occurs 
and the magnitude of the response. For surge, the addition of a mooring system introduces a new 
eigenfrequency at 0.05 rad/s, which is seen as a peak in the 2-D surge plot. The response at this 
eigenfrequency is two times greater than the peak response for structures without a mooring 
system. The heave and pitch response remain at the same frequencies for structures both with 
and without mooring systems. For heave, the motion response peak for a moored structure is 
reduced by 25%, and the pitch motion is decreased by 40%. 
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Figure 30. Motion RAOs for a moored structure; the upper part shows three-dimensional 
motion QTFs; lower part shows motion QTFs vs. difference-frequency motion QTFs.  

From left to right: surge, heave, and pitch 

 
5.3.2.1.3 Approximation By Taking Only Quadratic First-Order Terms into Account 
As explained in Section 2.4, second-order forces consist of one part due to first-order quadratic 
interactions and one part due to the second-order potential itself. In an attempt to reduce 
computational effort, the possibility of using the quadratic interaction portion as an 
approximation of the total second-order forces has been investigated. It has been demonstrated—
e.g. in [21] and [39]—that this generally does not provide a good or conservative approximation. 

In WAMIT, the second-order quadratic forces can be output separately. The comparison can aid 
in determining whether the quadratic forces can be used as a valid second-order approximation. 
The quadratic force QTFs are plotted in Figure 31. The red lines at the outer left and bottom part 
of the plots show that quadratic interactions seem to be greatest where at least one of the incident 
waves is very long and the other is very short. This is true for all modes.  

In both surge and heave results, the magnitude of the quadratic QTF for some frequency pairs is 
greater than the magnitude of the total QTF (Figure 28). This is a sign that the two components 
of the second-order force are at least somewhat out of phase, and each partly cancels the other. 
The peaks observed in the quadratic force QTF especially are partly cancelled out by the force 
contribution of the second-order potential. Conversely, the quadratic QTF clearly is 
underestimating the total second-order force in the upper-right part of the plots, where both 
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waves are short. This underestimation is approximately 20% for surge and 50% for heave close 
to the eigenfrequencies of the respective modes. 

In the pitch data, the force contribution from the second-order potential generally seems to be 
dominant, except at very long waves. The second-order quadratic forces show peaks and dips at 
about the same frequencies as for the total QTF, but the total QTF is approximately one order of 
magnitude greater than the contribution from the quadratic interactions alone. 

The conclusion that can be drawn from this comparison is that is not advisable to use the 
quadratic QTFs as an approximation for the difference-frequency loads on the OC3-Hywind. 
Doing so leads to an underestimation of the loads close to the system eigenfrequencies and an 
inaccurate interpretation of the distribution of forces between frequencies. 

 

Figure 31. QTFs for the difference-frequency quadratic force for 
(from left to right) surge, heave, and pitch 

 
5.3.2.2 Sum-Frequency Results 
5.3.2.2.1 Sum-Frequency Forces 
The magnitude of the sum-frequency force QTF is plotted in the upper part of Figure 32 The 
axes the lower edge are the incident wave frequencies, ω1, which could be mirrored to the left 
edge to give ω2. The symmetry relation for sum-frequency quantities is fulfilled (i.e., Fij

+ = Fji
+). 

The black diagonal lines across are the constant sum-frequency lines. The black lines in the right 
upper part of the plot are labeled using the numbers on the right edge of the plot. At these 
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frequencies, excitation above the range of incident wave frequencies takes place. Therefore the 
forces at these frequencies possibly can excite the eigenfrequencies of the system that are 
designed to be above the incident wave frequencies. To clarify how the excitation depends on 
sum-frequency, the force QTFs are plotted as 2D plots in the lower part of Figure 32. The plots 
show the magnitude of excitation versus sum-frequency, ω1 + ω2, and each line is for one 
difference-frequency, ω1 - ω2 = constant. 

 

Figure 32. Sum-frequency force QTFs; the upper part shows the contour plots of the 
three-dimensional QTFs; the lower part shows the QTF plotted against sum-frequency. From left 

to right: Surge, heave, and pitch 

 
The force QTF for surge, heave, and pitch have their maximum at high frequencies, where both 
the incident waves are short. The difference between the three modes mainly is the magnitude of 
the peak and its width. In addition to the main peak, all sum-frequency QTFs show lower peaks 
close to the left and upper edges, where a low frequency interacts with a longer one. The surge 
peak has a magnitude of 83 kN/m2, the heave peak is 19.5 kN/m2, and the pitch peak is nearly 
2,000 kNm/m2. 
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Figure 33. Sum-frequency motion QTFs for a freely floating system; the upper part shows 
QTF magnitude vs. ω1 and ω2, the lower part shows QTF vs. sum-frequency. From left to right: 

Surge, heave, and pitch 

 
5.3.2.2.2 Sum-Frequency Motions, With and Without Mooring 
The results presented here are the sum-frequency motion QTFs for a freely floating configuration 
(Figure 33) and for the configuration with a mooring system (Figure 34). None of the platform 
eigenfrequencies are above the incident wave frequencies, therefore introducing a mooring 
system does not change the distribution of sum-frequency response. The magnitudes of the 
results also are more similar than those for the difference frequencies. An increase of about 20% 
is observed for the peak response in surge and pitch, and the heave response remains at the same 
level. The response at the high sum-frequencies outside the first-order frequency range also 
remains exactly the same. 

No comparison with the first-order results for the difference-frequencies is provided in this 
report. The magnitudes of the sum-frequency QTFs are orders of magnitude smaller than for the 
first-order RAOs. They cannot be directly compared, however, because they are normalized by 
incident wave amplitude squared, and the total contribution at one frequency depends on the 
chosen sea state. 
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Figure 34. Sum-frequency motion QTFs with mooring system; the upper part shows 
QTF magnitude vs. ω1 and ω2, the lower part shows QTF vs. sum-frequency. 

From left to right: Surge, heave, and pitch 

 

  

 

 
Figure 35. Sum-frequency force QTF including only the contribution from first-order quadratic 

interactions. From left: Surge, heave, and pitch 
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5.3.2.2.3 Approximation by First-Order Interactions 
The sum-frequency quadratic force QTF is shown in Figure 35. This is the component of the 
sum-frequency force that is due to quadratic interactions of first-order terms, and does not 
include the contribution from the second-order potential.  

A comparison of the quadratic QTF to the total QTF in Figure 32 reveals significant differences. 
For surge, the quadratic QTF is almost constant for a given sum-frequency, although the total 
QTF shows a peak where both incident waves have equal frequency. The peak also is under-
estimated by about 50%. For heave, the quadratic QTF seems to be a decent approximation for 
low sum-frequencies (in the lower right part of the plot), and the peak of the total force QTF at 
high sum-frequencies is underestimated by an order of magnitude. The quadratic force QTF for 
pitch seems to underestimate the peak of the total force QTF by almost two orders of magnitude, 
and the lower sum-frequencies are better represented by the quadratic force QTF. This is 
consistent with what was found by the investigation of the second-order loads on a slender 
cylinder in [39]. The study states that “at low frequencies (long waves), the QTF is well 
represented by the quadratic part, while at higher frequencies the contribution from the second-
order potential is dominating.”  

We conclude that the quadratic QTF is not a good approximation for the total sum-frequency 
forces for the OC3-Hywind.  

5.4  Comparison of First-Order Response and 
Second-Order Response in Different Sea States 

The first-order force and motion RAOs and the second-order force and motion QTFs are 
normalized results that provide the complex force and motion amplitudes in regular waves of 
unit amplitude. To obtain the force or motion experienced by the platform in the ocean, where 
the waves no longer are of unit amplitude, the coefficients must be multiplied by the complex 
amplitude of the incident waves. Examples are provided by Equation 2–57 for first-order 
quantities and by Equation 2–74 for second-order quantities. 

The first-order quantities depend on only a single incident wave, whereas the second-order 
quantities depend on pairs of incident waves. This means that the first-order quantities are 
normalized by one wave amplitude and the second-order quantities by two wave amplitudes. 
Consequently, direct comparison of first- and second-order quantities only is possible after a sea 
state is chosen and the forces and motions can be computed for the given wave amplitudes. 

The complex wave amplitude A = aeiφ is given by an amplitude 𝑎 and a random phase φ. For the 
waves used here, the amplitudes at frequency ω are determined directly and uniquely from the 
wave spectrum S(ω), without any randomness included (as normally is included in FAST). The 
wave spectrum is a Pierson-Moscowitz spectrum. 

The comparison between first-order and second-order results is composed of two different parts. 
In the first part, the first-order RAOs and the second-order QTFs simply are multiplied by the 
wave spectrum of a given sea state to get the force and motion response induced by each 
individual wave and by each wave pair. In the second part, all wave pairs that lead to the same 
sum-frequency or difference-frequency are summed to assess the overall sum-frequency and 
difference-frequency contributions to the force and motion response. 



65 

First, the contribution of each of the first-order RAOs is multiplied by the corresponding wave 
amplitude to get the motion response due to this wave, as shown in Equation 5-9. The second 
order QTFs are multiplied by the wave amplitudes of the wave pair to get the sum-frequency and 
difference-frequency contribution to the motions response, as shown in Equation 5-10.  

          �𝐹𝑘 � = �𝑓𝑘𝐴𝑘𝑒𝑖𝜔𝑘𝑡� = |𝑓𝑘||𝐴𝑘| for the first-order points (5-9) 

          �𝐹𝑖𝑗±�𝜔𝑖 ± 𝜔𝑗�� = �𝑓𝑖𝑗
±𝐴𝑖𝐴𝑗� = �𝑓𝑖𝑗

±�|𝐴𝑖|�𝐴𝑗�       for the second-order points (5-10) 

 
Only the magnitude of the product between the coefficients and the wave amplitudes is of 
interest, therefore the result is independent of the random phase of the wave amplitudes. The 
result for a sea state with for Hs = 1.4 m and Tp = 6.5 s is shown in Figure 36. The first-order 
force and motion response coefficients (after multiplication by the wave amplitudes) are given as 
a solid line plotted against wave frequency, as there is only one coefficient at each frequency. 
The second-order force and motion response coefficients for each wave pair (after multiplication 
with the respective wave amplitudes) are plotted as points at the corresponding sum-frequency or 
difference-frequency. Because there are many wave-pair combinations that give the same sum-
frequency or difference-frequency, there are many contributions to the force and response at each 
sum-frequency or difference-frequency, ωk± = (ωi ± ωj). This results in several second-order 
points being plotted at a given frequency in the final plot. Note that all second-order forces 
(upper part of the plot) are too small to be seen in Figure 36. The difference-frequency motion 
response (lower part of the plot) can be seen, particularly for heave. The spreading of the 
response over many wave pairs is visible as multiple points at a given frequency.  

 

Figure 36. First-order and second-order force coefficients (top) and motion coefficients (bottom), 
dimensionalized by the sea state Hs = 1.4 m and Tp = 6.5 s;  

black line: first-order, red crosses: difference-frequency, blue crosses: sum-frequency 
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In the second step, the overall influence of the sum-frequency and difference-frequency forces is 
assessed. Because there are many wave pairs that contribute to the overall force (and motion) at a 
certain sum- or difference-frequency, the main quantity of interest here is the total force or 
motion that arises from the sum of all contributions at a given frequency. In the attempt to create 
this sum, both of the phases of the force or motion coefficient and the phase of the incident 
waves must be taken into account. Simply summing the magnitudes assumes that all force 
contributions are in phase and leads to overestimation of the results. The proper summation to 
get the total force amplitude at a given sum-frequency or difference-frequency is shown in 
Equation 5–11. 

�𝐹𝑡𝑜𝑡𝑎𝑙±(𝜔𝑘
±)� = � � 𝑓𝑖𝑗

±𝐴𝑖𝐴𝑗
𝜔𝑖±𝜔𝑗=𝜔𝑘±

� = � � �𝑓𝑖𝑗
±�𝑎𝑖𝑎𝑗𝑒𝑖(𝜑𝑖𝑗

±+𝜑𝑖+𝜑𝑗)

𝜔𝑖±𝜔𝑗=𝜔𝑘±

� 

 

(5-11) 

Where fij
± = | fij

± | 𝑒𝑖𝜑𝑖𝑗±
 is the complex second-order force coefficient. The incident wave phases 

φi and φj are random and depend on the chosen wave speed, therefore the total force contribution 
differs between realizations. To get an impression of the possible range and variation of the total 
magnitudes, the summation is performed with 15 different wave seeds. This was done for all the 
sea states given in Table 1, but the results are shown only for sea state number 4, 7, and 11. 
These three conditions were chosen because they were found to be representative for different 
groups of environmental conditions, listed below: 

• Sea state 4 (Hs = 1.4 m, Tp = 6.5 s): Low sea states with operating turbine 

• Sea state 7 (Hs = 3.66 m, Tp = 9.7 s): Moderate sea states with operating turbine 

• Sea state 11 (Hs = 9.14 m, Tp = 13.6 s): Severe sea state with idling turbine 
The results from each of the sea state realizations are plotted alongside the first-order response in 

Figure 37 through Figure 39 below. Each figure describe results for one sea state; the excitation 
forces are plotted in the upper part, and the response is given in the lower part. Each of the 
second-order points (green for difference-frequency results and cyan for sum-frequency results) 
now is representative of the total force/motion response due to all difference- or sum-frequency 
contributions at the respective frequency. There still are several points at every frequency, but 
these points now represent different realizations of the sea state and not contributions from 
different wave pairs, as is the case in Figure 36. In addition to the results from each realization, 
the mean between each of the realizations is plotted as a red line for the difference-frequency 
results and a blue line for the sum-frequency results. This figure makes it easier to assess the 
overall second-order contribution, as it gives both an impression of the range of the results and 
their relative importance as compared to the first-order force.  

The enhanced understanding that comes with the summation is seen clearly when comparing the 
results for the sea state Hs = 1.4 m and Tp = 6.5 (Figure 36) to the results for the same sea state 
after the summation (Figure 37). The frequencies at which the second-order force contributions 
potentially can be large are easily recognized in Figure 37. The amplitude of the motion response 
induced by the incident waves for a given sum- or difference-frequency also can be compared to 
the first-order response amplitude more easily. For example, it is clear that the difference-
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frequency amplitudes in heave are of the same order of magnitude as the first-order amplitudes 
(although the amplitude still is very small). Note that the left-hand axis varies from sea state to 
sea state. Generally, both first-order and second-order forces and motions increase with the 
severity of the sea state. The relative importance of the surge and pitch difference-frequency 
effects are most pronounced in lower sea states, where the amplitudes are up to 0.5 of the first-
order amplitude peak. Increasing the severity of the sea states causes the ratio of the difference-
frequency motion amplitudes to the first-order amplitudes to decrease to a maximum of about 
0.15 (Hs = 15.24 m and Tp  = 17 s).  

The ratio of difference-frequency force peak to first-order force peak in heave increases with 
increasing sea states, whereas the ratio of the motion amplitude decreases. In the lower sea states, 
the difference-frequency amplitudes are clearly larger than the first-order amplitudes. In higher 
sea states there are examples of difference-frequency motion amplitudes that are above the first-
order peak. Not every realization of sea states has such large amplitudes, however, and it is 
difficult to assess the motions from just the plot. The difference-frequency forces in surge and 
pitch are lower than the sum-frequency forces for all sea states, but the motion responses they 
cause are much higher—which is just as expected. The second-order forces only are important 
when they excite system eigenfrequencies. Because there are no eigenfrequencies in the 
frequency range excited by sum-frequency forces, the sum-frequency motion response is 
insignificant for surge, heave, and pitch in all sea states. 

 

Figure 37. First-order and second-order force coefficients (top) and motion coefficients (bottom) 
for the sea state Hs = 1.4 m and Tp = 6.5 s; second-order contributions at a given frequency are 

summed and shown for 15 realizations of the sea state (black line: first-order, green crosses/red 
line: difference-frequency single/mean, cyan crosses/blue line: sum-frequency single/mean) 
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Figure 38. First-order and second-order force coefficients (top) and motion coefficients (bottom) 
for the sea state Hs = 3.66 m and Tp = 9.7 s 

 

Figure 39. First-order and second-order force coefficients (top) and motion coefficients (bottom)  
for the sea state Hs = 9.14 m and Tp = 13.6 s 
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5.4.1  Mean-Drift Force 
The mean-drift force is a special case of the difference-frequency force where the incident waves 
are of the same frequency. Because ω1 – ω1 = 0, the oscillation period is infinite and the result is 
a constant force. This force leads to a mean offset around which the oscillation motions of the 
structure occur. The mooring system stiffness is non-linear, therefore a mean offset can lead to 
changes in the eigenfrequencies of the moored system. 

The mean-drift force is a product of first-order quadratic interaction alone [8], and it is not 
influenced by the second-order potential. It therefore can be calculated as part of the first-order 
solution without any substantial increase in computational time. This section analyzes the mean-
drift force on the spar, and the parameters that influence it.  

For the OC3-Hywind, the mean-drift force in surge is the only non-zero component for head-on 
waves. This component is plotted against the incident wave frequency in Figure 40. An import-
ant characteristic of the mean-drift force is that it increases with increasing wave frequency and 
decreasing wave length. This is because the structure reflects a substantial proportion of the short 
waves, but it is more likely to follow the oscillating wave motion in longer waves. A peak in the 
mean-drift force at the pitch natural frequency (0.215 rad/s) also is shown.  

 

Figure 40. Mean-drift force coefficients for the OC3 Hywind 

The mean-drift force in an irregular sea state is the sum of the contributions from all the incident 
waves. Different from the general difference-frequency quantities, this sum can be found without 
taking the random phases into account. The two incident waves are of the same frequency and 
have the same random phase, therefore they cancel each other out. This results in no random 
phases that could vary between realizations. The mean-drift force also has a frequency of zero 
and therefore has zero phase. 

𝐹𝑚𝑒𝑎𝑛 = �𝐴𝑖𝐴𝑖∗𝑓𝑖,𝑚𝑒𝑎𝑛𝑒𝑖(𝜔𝑖−𝜔𝑖) =
𝑖

�𝑎𝑖𝑎𝑖𝑒𝑖(𝜑𝑖−𝜑𝑖)𝑓𝑖,𝑚𝑒𝑎𝑛 = �𝑎𝑖2𝑓𝑖,𝑚𝑒𝑎𝑛
𝑖𝑖

 (5-12) 

Because short, high waves are assumed to give the highest mean-drift forces, it makes sense to 
plot the mean-drift force against wave steepness, the measure of wave height to wave length. In 
[4], the average wave steepness of a short-term irregular sea state is defined in terms of Tp and 
Hs as given by 
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𝑆𝑃 =
2𝜋
𝑔

𝐻𝑠
𝑇𝑃2

 , 
(5–13) 

with SP = 1 ⁄ 15 for TP = 8 s, SP = 1 ⁄ 25 for TP = 15 s and linear interpolation between thos 
values for 8 < TP <15 . To illustrate the dependency on wave steepness, the scatter diagrams in 
Figure 12 and Figure 13 show the mean-drift force as calculated for a set of sea states chosen to 
represent the broad range of possible Tp for given Hs. These sea states are given in Table 5. 

Table 5. Sea States for which the mean-drift force is computed 

Significant Wave Height [m] Peak-Spectral Periods [s] 
1 4, 6, 8, 10 
2 5, 7, 9, 15 
3 6, 8, 11 
4 8, 13 
5 9, 12 
6 10 
7 12 

8.5 12.5 
 
The mean-drift force is plotted three different ways for each of the sea states provided in Figure 
41. The figure shows (from left to right) the mean-drift force plotted against significant wave 
height Hs, against peak-spectral frequency ωp, and against average wave steepness Sp. The green 
and blue points indicate results that are computed with the Pierson-Moscowitz and JONSWAP 
spectra, respectively. 

The differences between the plots show that the wave steepness is the main parameter for 
determining the mean-drift force. A very clear trend can be seen for the waves with a steepness 
of up to 1/25. Above this line are the sea states Hs  = 1 and Tp  = 4, Hs  = 2 and Tp  = 5, Hs  = 3 and 
Tp  = 6, and Hs  = 4 and Tp = 8. These sea states actually are so steep that the steepness criteria of 
Equation 5–13 define them as unphysical. The reason such sea states are recorded along the U.S. 
North-Atlantic coast could be that there is a significant proportion of swell waves, leading to a 
two-peak wave spectrum. In such situations, the Pierson Moscowitz and JONSWAP spectra are 
not good representations to use due to their steepness criteria. 

   
Figure 41. Mean-drift force for the sea states in listed in Table 5.  

From left to right: Mean-drift force vs significant wave height, mean-drift force vs peak-spectral 
period, mean-drift force vs. wave steepness 
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Another interesting property which can be observed in Figure 41 is the influence of the 
peakedness of the spectrum. The JONSWAP spectrum, with a higher, narrower peak than the 
PM spectrum, produces lower mean-drift forces. This is the case for all sea states, but the relative 
difference varies depending on frequency. At frequencies below 0.8 rad/s, the difference is about 
33%. In the frequency range from 0.8 to 1.5 rad/s, the difference drops to less than 15% at 1.25 
rad/s. At frequencies above 1.5 rad/s, the difference is negligible.  

This behavior can be explained by the mean-drift force coefficients and their frequency 
dependence, as shown in Figure 40. Below 0.8 rad/s, the mean-drift force coefficient is more or 
less 0. It increases to 20 kN at 1.5 rad/s, and remains more or less constant above this frequency. 
When the peak-spectral frequency of the sea state is less than 0.8 rad/s, the JONSWAP spectrum 
produces small mean-drift forces because the peak is so narrow. The Pierson-Moscowitz 
spectrum contains a broader range of frequencies and, in this case, most importantly, it has a 
longer tail to higher frequencies. Because of this, the mean-drift force is greater for this 
spectrum. In sea states with higher peak-spectral frequency, the peak of the JONSWAP spectrum 
moves into the region where the mean-drift forces coefficient is no longer zero, and at 
frequencies above 1.5 rad/s, the entire peak is inside the frequency region with the highest force 
coefficients. At this point, there is no longer any difference between forces predicted by the 
Pierson-Moscowitz spectrum or JONSWAP spectrum, as both spectra contains the same amount 
of energy. 

5.5 Comparison of Second-Order Effects to Aerodynamic Forces and 
Response 

The analysis presented above suggests that the sum-frequency forces are of little importance to 
the spar (at least, as long as couplings with tower eigenfrequencies cannot be modeled). The 
difference frequencies are the dominant second-order effect, with small forces that excite large 
motions due to their frequency content. 

Floating turbines experience forces from aerodynamics, therefore it is important to also compare 
the second-order forces to the aerodynamic forces. Aerodynamic loading on the rotor is known 
to produce slowly varying excitation in a frequency range similar to that of the difference-
frequency forces, but with a magnitude that possibly is substantially greater.  

To create a case for comparison, time series from both FAST simulations and WAMIT RAOs are 
needed. The twelve environmental conditions listed in Table 1 were simulated with a turbine 
running in FAST. The turbulent wind input data was generated by TurbSim using the Normal 
Turbulence Model from the IEC 61400-3 standard [11] and a time step of 0.05 s. The grid size 
was 161 x 161 m, with 35 x 35 points. The turbine was modeled in FAST with the tower and 
blade DOFs turned off. For each of the simulated environmental conditions, ten different 
simulations with different random wind and wave seeds were run. The wave spectrum used was 
a Pierson-Moskowitz spectrum generated by FAST. Because FAST automatically cuts off the 
spectrum at 3 ωp, there are a different number of frequency components involved depending on 
the value of Tp. The number of wave components varies from more than 3,000 with Tp = 2 s, to 
363 with Tp = 17 s. The wave amplitudes from FAST were output and used as wave input for the 
WAMIT simulations after the conversion described in Section 5.2 was performed. 
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The OC3-Hywind turbine was simulated using the normal FAST executable instead of the 
special OC3-Hywind executable that incorporates additional damping and stiffness in yaw. This 
led to instabilities in the system, causing 3 of 10 simulations for sea state 3 to fail, and 9 of 10 
simulations of sea state 12 to fail. For these sea states, the results shown are based on the 
simulations that were successful.  

5.5.1 Mean-Drift Force Versus Wind Turbine Thrust 
First, the mean-drift force and the mean turbine thrust were compared. The mean-drift forces 
were calculated directly from WAMIT force coefficients for each of the given sea states, and the 
mean wind turbine thrust was calculated from the FAST time series. The rotor thrust output from 
FAST, however, is not the aerodynamic thrust on the rotor, but the total force along the turbine 
shaft. Because the shaft is not horizontal, the thrust force contains a gravity contribution from the 
rotor weight. The angle between the shaft position and a horizontal line is equal to shaft tilt plus 
pitch angle, and the gravity contribution can be subtracted from the rotor thrust. 

𝐹𝑎𝑒𝑟𝑜𝑑𝑦𝑛 = (𝐹𝑡ℎ𝑟𝑢𝑠𝑡 − 𝑚𝑔 𝑠𝑖𝑛(𝛼𝑝 + 𝛼𝑡)) ∙ 𝑐𝑜𝑠 (𝛼𝑝 + 𝛼𝑡) (5–13) 

Here, Fthrust is the rotor thrust output from FAST at each time step; Faerodyn is the resulting 
horizontal force in after the gravity contribution has been subtracted; m is the mass of the hub 
and blades, a total of 110,000 kg; g is the gravitational constant; αp is the pitch angle (taken at 
each time step from the FAST output); and αt is the shaft tilt (5°). Because the thrust force still is 
in the direction of the shaft after the subtraction of the gravity force, the cosine is taken to align 
the force with the horizontal. Note that the force still is not purely aerodynamic, as the inertia of 
the rotor motion also plays a part. These terms are hard to eliminate, but are assumed to be more 
or less cancelled out when only the rotor thrust average is considered. The aerodynamic thrust at 
the tower (tower-drag) also is not included in the calculations. 

The results are shown in Figure 42 and Figure 43, where the red crosses represent the mean-drift 
force from WAMIT (note that the environmental conditions used for these results are not the 
same as those in Figure 41). The blue crosses denote the average of each of the single FAST 
simulation (with different random seeds), and the black crosses show the mean rotor thrust over 
all simulations at one wind speed. 

In Figure 42, the mean-drift force and mean aerodynamic thrust are plotted for the conditions in 
which the turbine is operating. In these cases, the rotor thrust is more than two orders of 
magnitude greater than the mean-drift forces. The mean-drift force is less than 1% of the rotor 
thrust for all these cases. The four cases with wind-speeds greater than the cut-out speed of 
25 m/s are shown in Figure 43. These simulations are run with the blades pitched to 90° and with 
no control, simulating an idling turbine in a storm. Compared to the operating cases, the rotor 
thrust is significantly lower (the difference however would have been lesser if the tower-drag had 
been included). Conversely, the mean-drift force has increased. Therefore, the mean-drift force 
now is equal to about 10% to 15% of the rotor thrust. The conclusion is that the mean-drift force 
is negligible as long as the turbine is operating. In high sea states when the turbine is not 
operating, such as above cut-off speed or in a fault case, the significance increases although the 
force still is small as compared to the aerodynamics.  
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5.5.2  Rotor Thrust: Excitation Frequencies 
To check the frequency content of the rotor thrust excitation, the time series from FAST were 
plotted as power spectral densities (PSDs) in Figure 44, Figure 45, and Figure 46. The forces 
were computed for all twelve environmental conditions in Table 1, but the results are shown only 
for sea states 4, 7, and 11. These results were found to be representative for different groups of 
environmental conditions: 

• Sea state 4 (Hs = 1.44 m, Tp = 6.5 s): Low sea states with operating turbine 

• Sea state 7 (Hs = 3.66 m, Tp = 9.7 s): Moderate sea states with operating turbine 

• Sea state 11 (Hs = 9.14 m, Tp = 13.6 s): Severe sea state with idling turbine 
For the lower sea states, the excitation from rotor thrust at frequencies below the typical incident 
wave frequency range (0.25 – 1.5 rad/s) dominates. The high-frequency peaks are the harmonics 
of the rotor frequencies. The excitation also has a peak at about 0.21 rad/s, which is the pitch 
eigenfrequency. This pitch-frequency peak become more visible as the severity of the 
environmental condition grows. For the moderate sea state, a clear trend towards more excitation 
at the wave frequency is shown. The thrust excitation also increased, but no longer is as 
dominant as previously. In the highest sea states where the turbine no longer is operating, the 
low-frequency excitation drops by two orders of magnitude. The main rotor-thrust response is 
now in the wave-frequency domain, and at the pitch frequency.  

The excitation both in the wave-frequency range and at the pitch frequency is due to turbine 
motions. When the turbine moves forward against the wind and then backward again because of 
the waves, the incident wind speed and hence the rotor thrust increases and decreases with the 

Figure 42. Mean-drift force and mean wind 
turbine thrust in cases with operating turbine 

Figure 43. Mean-drift force and mean 
turbine thrust in cases with idling turbine 
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motion of the platform. If this is due to pitch motion, then the frequency is equal to the pitching 
frequency; if it is due to first-order wave response, then the rotor thrust varies with the first-order 
wave frequency. Because of this, there also is significant excitation around the surge 
eigenfrequency at 0.051 rad/s, especially in lower sea states. The low-frequency excitation, 
however, is not due only to turbine motions, but also is due to the frequency content of the wind 
loading. This explains why the low-frequency response drops so significantly when the turbine 
no longer is operating. 

Based upon the analysis of the mean-drift force given above, researchers concluded that the 
mean-drift forces are insignificant as compared to rotor thrust. This gives reason to expect that 
the difference-frequency forces generally will not have a dominant effect on the low-frequency 
response. If the aerodynamics produces low-frequency excitation, then these forces probably will 
be orders of magnitude greater than the difference-frequency force, just as in the mean-drift case.  

 

Figure 44. Power spectral density of turbine thrust for a low sea state 
(Hs = 1.4 m, Tp = 6.5 s, wind speed = 10.5 m/s) 
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Figure 45. Power spectral density of turbine thrust for a moderate sea state 
(Hs = 3.66 m, Tp = 9.7 s, wind speed = 17.6 m/s) 

 

Figure 46. Power spectral density of turbine thrust for a high sea state 
(Hs = 9.14 m, Tp = 13.6 s, wind speed = 35.1 m/s) 

5.5.3  Motion Response: Wind-Induced Compared to Second-Order 
Based upon the present analysis of the mean-drift force, it was concluded that the mean-drift 
forces are insignificant compared to rotor thrust. This gives reason to expect that the difference-
frequency forces generally will not have a dominant effect on the low-frequency response. If the 
aerodynamics produces low-frequency excitation, then these forces probably will be orders of 
magnitude greater than the difference-frequency force, just as in the mean-drift case. 

To get an impression of the importance of the difference-frequency forces to the motion 
response, the power spectral densities of the motion response were computed for all sea states in 
surge, heave, and pitch. The mean offset in surge also was considered to determine the influence 
of the mean-drift force analyzed above. 
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5.5.3.1  Surge Mean Offset 
The surge mean offset is seen in Figure 47. The values from FAST are mean values from the 
same time series used to find the mean thrust results in Figure 42 and Figure 43. The values 
labeled WAMIT are mean offsets from time series that have been constructed from WAMIT 
coefficients, based on the same simulation length and the same wave spectrum as the FAST 
simulations.  

For cases 2 through 8, in which the wind turbine is running, the offset due to the aerodynamics is 
much greater than the offset due to the difference-frequency forces, on the order of 0.1%. This is 
as expected from the comparison of the mean-drift force discussed above. For the cases in which 
the turbine is idling, i.e., case 9 through case 12, the surge mean offset in the FAST cases is 
substantially decreased and the wave height increases, meaning that the mean offset due to the 
waves increases to about 5% of the mean offset induced by the aerodynamics.  

The mean surge offsets from the FAST simulations are mainly due to aerodynamics, but pitch 
also contributes significantly. Assuming that the structure is pitching about its center of gravity 
78 m below the surface, a mean pitch angle induces a mean surge. The mean surge induced by 
the mean pitch angle (shown in Figure 47) is plotted as green points to give an impression of the 
significant contribution from the pitching motion. The mean offsets in heave and pitch due to 
wave forces are negligible, as there is no mean-drift force for these modes. They are not 
discussed further in this report. 

 

Figure 47. Surge mean offset 
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Figure 48. Pitch mean offset 

5.5.3.2  Surge, Heave, and Pitch Response Spectra 
In Figure 49, Figure 50, and Figure 51, the response spectra for three different sea states are 
presented based on the response time series from FAST (left side of figures) and WAMIT (right 
side of figures). Figure 49 shows the surge response, Figure 50 the heave response, and Figure 
51 the pitch response. The three time series are the same that are used for the analysis of the 
thrust force, chosen for their ability to represent different groups of environmental conditions. 

The results from WAMIT and FAST exhibit the same response from incident waves in the 
incident wave frequency band (0.25 rad/s – 1.5 rad/s) in all modes of motion, underlining the fact 
that the wave excitation has been the same for both systems. The relative importance of the wave 
excitation, however, is different: Whereas wave excitation is the only source of response for the 
WAMIT case, this response is not as important in the FAST case. Especially for the lower sea 
states, the wind excitation is clearly dominant. The first-order incident wave response becomes 
more important compared to the wind response as the severity of the sea state increases.  

The characteristics that are of main interest here, however, are not the first-order wave responses, 
but the low-frequency responses. Specifically, the difference-frequency response in the WAMIT 
time series and how this excitation compares to the low-frequency, wind-generated response in 
FAST. The assessment of this response is presented in Figure 49, with each mode of motion 
(surge, heave, and pitch) given separately. 
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Figure 49. Surge response in different environmental conditions; 
the left side shows FAST results, the right side shows WAMIT results 

The surge response is presented in Figure 49 for the three different environmental conditions. All 
cases exhibit low-frequency response with peaks at the surge and pitch natural frequencies 
(0.051 rad/s and 0.215 rad/s, respectively). The peaks are more pronounced in the FAST case, 
however, where they dominate the overall response. The response peaks in WAMIT are several 
orders of magnitude smaller than the FAST response peaks. The low-frequency response from 
WAMIT also is at least an order of magnitude smaller than the response at incident wave 
frequencies. Broadening the perspective to include all responses below 0.25 rad/s, it is clear that 
the aerodynamic excitation in FAST induces much more motion over the entire frequency range 
than does the WAMIT difference-frequency excitation. This leads to the conclusion that the 
second-order effects are of little importance to the surge motions as compared to the 
aerodynamics. 
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Figure 50. Heave response in different environmental conditions;  
left side: FAST results, right side: WAMIT results 

 
As shown by the WAMIT results in Figure 50, the low-frequency response peak for the heave 
response is higher than the incident wave peak in low sea states, and of the same height in more 
severe sea states. The peak is centered at the heave natural frequency of 0.204 rad/s. In the FAST 
results, the same peak is found easily, because it is several orders of magnitude higher and 
narrower. This frequency is excited by the wind due to the coupling between pitch and heave 
(discussed in Section 5.2). For the cases in which the turbine is running, two other low-frequency 
peaks also appear in the FAST response. Although the heave difference-frequency response is 
relatively important when compared only to first-order wave excitation, it is insignificant 
compared to the response induced by aerodynamics. 
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Figure 51. Pitch response in different environmental conditions;  
left side: FAST results, right side: WAMIT results 

For the pitch response given in Figure 51, the situation is very much the same as for surge. The 
difference-frequency response is increasing with increasing sea states, but the relative 
importance compared to the first-order wave response is decreasing. For all cases, the pitch 
response peak is at the pitch natural frequency of 0.215 rad/s, but this peak is orders of 
magnitude higher in the case where it is excited by aerodynamics as compared to the case where 
it is excited by difference-frequency forces. The general low-frequency response also is much 
higher for the FAST cases than for the WAMIT case, leading to the conclusion that the 
difference-frequency effects are insignificant as compared to the effect of the aerodynamics. 
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6 Tension Leg Platform Analysis 
6.1 Tension Leg Platform Modeling 
The tension leg platform examined here was developed by the University of Maine (UMaine) for 
use in the DeepCwind project. At the time this work was conducted, a scaled version of this 
turbine was planned to be installed off the coast of Maine. The UMaine TLP is one of several 
TLP platforms that have been developed. The TLP platform is popular because it is very stiff in 
heave, roll, and pitch, reducing velocities and accelerations in the nacelle as compared to other 
concepts. Other advantages include low weight and the small footprint of the TLP on the sea bed, 
even for significant water depths (a spar concept requires mooring lines with a spread of several 
hundred meters). 

The disadvantage of the TLP concept is its more complicated dynamics (due to second-order 
hydrodynamics) and expensive mooring system. Due to the stiff moorings, the eigenfrequencies 
in heave, pitch, and roll are above the frequencies of the incident waves. Sum-frequency effects 
therefore become more important, inducing higher loads and an increased number of load cycles 
on the tendons. High-frequency excitation also leads to vibrations and higher loads in the turbine, 
especially when the tower eigenfrequency is close to the pitch frequency. Another problem is 
redundancy of the mooring system. If the TLP loses one of its tendons it becomes unstable, 
because it relies on the mooring system to restore heave, pitch, and roll. A way of decreasing the 
probability of related problems is to anchor the TLP using two tendons for each leg, but this 
increases the cost.  

The main dimensions of the UMaine TLP configuration analyzed in WAMIT are listed in Table 
6. More information about the turbine can be found in [37], and the geometry of the substructure 
is also described in [5]. 

Table 6. Main Properties of the University of Maine Tension Leg Platform 

 
 
6.1.1 FAST Model 
The FAST model used to simulate the TLP is the model that was used to develop the scale-
model TLP wind turbine, and was provided by Andrew Goupee of University of Maine. This 
model most closely matched the model-scale tests at the time of this writing, although a FAST 
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model using model test data for calibration is being developed. The floating platform geometry is 
the same as for the model tests, meaning that the hydrodynamic loads are calculated in WAMIT 
based on the correct geometry. The turbine is the same NREL 5-MW reference turbine that was 
used for the OC3-Hywind, but with a slightly different tower. The controller and FAST 
executable used are the standard reference turbine controller and the normal executable. 

6.1.1.1 Derivation of System Matrices 
As for the spar, the mass matrix, the position of the CoG, and the external stiffness and damping 
matrices are needed as an input to WAMIT to solve the equations of motion. These matrices 
were derived through the FAST linearization process described in the Appendix. Using the same 
arguments as for the spar, it was decided to linearize the system without aerodynamics and with 
the rotor speed set to zero. The mass matrix used in the WAMIT analyses is given in Equation 6–
1. 

𝑀 =

⎣
⎢
⎢
⎢
⎢
⎡
      1374000 0 0

      0    1374000 0
       0  0   1374000

  0     29040000       0
29040000             0      −144800

  0   144800        0
   0 29040000     0

29040000 0 144800
   0 −144800      0

 3859000000    0 16700000
0 3844000000 0

 11670000    0 85310000⎦
⎥
⎥
⎥
⎥
⎤

 (6–1) 

 
The CG position is (-0.10539, 0, 21.135) and is calculated according to [34], p. 149. Note that 
some of the coupling terms in the mass matrix (e.g., (4,6), (3,5), (2,6)) are only due to the 
turbine, because they are the same for the TLP and the spar configuration. There is no damping 
in the system except for the hydrodynamic damping. The stiffness matrix induced by the 
mooring system is as shown in Equation 6–2. 

𝐾 =

⎣
⎢
⎢
⎢
⎢
⎡

 83420   0   0
0   83420   0
0    0 1.304𝑒8 

 0 −2.379𝑒6     0 
 2.379𝑒6  0    0

 0 0    0
0 2.378𝑒6      0      

−2.378𝑒6 0       0      
0 0       0      

          
5.4𝑒10 −3438 0
−5873   5.4𝑒10 0
−39430      0 1.734𝑒8  ⎦

⎥
⎥
⎥
⎥
⎤

 (6–2) 

 
Compared to the stiffness matrix for the spar, the diagonal coefficients for heave, pitch, and roll 
are several orders of magnitude higher, as can be expected because of the very stiff tendons. 

6.1.1.2  Derivation of System Eigenfrequencies 
The system eigenfrequencies are derived using the method outlined in [16]. Because WAMIT is 
not able to model the turbine, any coupling effect between the tower or blades and the platform 
eigenfrequencies is not taken into account. It therefore is important to know how the 
eigenfrequencies change depending on whether tower-bending and blade degrees of freedom are 
included. This particularly the case for the TLP, for which high eigenfrequency in pitch is 
influenced by the tower-bending frequency.  

Table 7 shows the eigenfrequencies for the case both without (left) and with (right) tower 
bending. Most of the eigenfrequencies remain the same, but the pitch and roll frequencies shift 
from 3.4 rad/s with a rigid tower to 2.0 rad/s with a flexible tower. A similar shift is described for 
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the NREL/MIT TLP in [27]. Within WAMIT, there is no possibility to model the flexibility of 
the tower—or at least no “easy fix” that could be achieved within the time frame of this project. 
Tuning the system matrices to achieve the desired natural frequencies within WAMIT is not a 
viable way of mimicking the influence of the tower, as this involves changing the mooring 
system stiffness to an extent where the overall system response no longer would be representa-
tive. The WAMIT analysis therefore must be run assuming a rigid tower. 

Table 7. Platform Eigenfrequencies of the TLP Configuration Without (Left) and 
With (Right) Tower DOFs Included In the FAST Model 

 
 
6.1.2 WAMIT Model 
Due to the more complicated shape of the TLP, the geometry had to be modeled using the CAD 
program MultiSurf. The original model was obtained from Andrew Goupee (University of 
Maine). Because the structure has one plane of symmetry only half of the geometry must be 
modeled. 

A link between MultiSurf and WAMIT enables WAMIT to make direct use of the MultiSurf 
geometry files to use the high-order solver. The name “high-order” must not be confused with 
“second-order.” The terms “high-order” and “low-order” in WAMIT refer to the numerical 
methods used to solve the problem. The terms “first-order” and “second-order” refer to the 
accuracy of the hydrodynamic problem. In the low-order method, the geometry is represented 
using flat quadrilateral panels, with solutions for the velocity potential being piecewise constant 
values on each panel. The higher-order method is fundamentally different. The geometry is 
represented in a more continuous way, using flat panels (for a structure that can be accurately 
represented by a few large flat panels, such as a square barge), B-spline approximations, explicit 
analytical formulae, or MultiSurf geometry models. These methods allow for a representation of 
the body with exact geometry, eliminating one of the main inaccuracies involved in the 
computation. The body surface is divided into patches, which are further divided into panels. The 
velocity potential on these patches is represented by B-splines in a continuous manner, a method 
that leads to more accurate computations with fewer unknowns. 

The high-order solution generally is more efficient than the lower-order method, yielding more 
accurate results in less computational time. After performing a quite extensive problem search 
involving support from both WAMIT and MultiSurf, we found that the DLLs that handle the link 
the two programs do not support second-order calculations (at least not at present). For the 
second-order calculations, low-order geometric data files (GDFs) were exported from MultiSurf. 
The calculations differ fundamentally between the low-order and the high-order methods, 
therefore the discretization in MultiSurf required redefinition. Most importantly, cosine spacing 
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was introduced in the model to increase the accuracy per number of panels. To keep the 
convergence test analysis comparable for first- and second-order effects, a convergence test 
using low-order discretization was performed for both problems. A high-order computation, 
however, was included in the first-order convergence test. The high-order solution performed 
better than did the low-order solution—with significantly less computational time—therefore the 
final first-order results were computed using the high-order formulation. 

6.1.3 Convergence Tests 
6.1.3.1 First-Order Convergence Tests 
The convergence test is performed using 100 frequencies in the range from 0.05 to 5 rad/s with 
Δω= 0.05 rad/s. The zero and infinite frequency limits of the added mass also are computed. The 
increased range of frequencies compared to the spar convergence test is chosen because 
experience with the TLP indicates that numerical problems can lead to spikes in the solution at 
high or low frequencies. Because these parts of the frequency spectrum are important for the fast 
Fourier transform (FFT) in FAST, it was agreed to check convergence for a broader frequency 
range. Using the same reasoning as for the spar, only the number of panels is changed between 
the different first-order convergence test runs and only head-on waves are considered. The 
quantities compared also are the same, namely the hydrodynamic added mass and damping 
coefficients as well as the excitation force coefficients. 

Three different discretizations were used for the convergence test, with 1,231, 4,922, and 11,071 
panels for half of the structure. The discretizations were obtained by creating a base dis-
cretization in MultiSurf and consistently increase the number of subdivisions, as proposed in [1]. 
Due to the number of frequencies included in the analysis, the computational time required for an 
even finer mesh was considered too significant. Instead, the low-order results on the 11,071-
panel mesh were compared to a high-order solution with small panel size (maximum panel size 
equal to 1.25). This comparison indicates that the low-order method converges very well for the 
force coefficients (same value for high- and low-order), and that the results are slightly more 
inaccurate for the added mass and damping (the low-order solution overestimates the peak values 
of the coefficients slightly). From these results, the estimated inaccuracy induced by not 
computing the solution for a fourth mesh is estimated to be insignificant for the force coefficients 
and less than 0.5% for the added mass and damping.  

The results are compared to each other in terms of the relative difference in percentage, using the 
solution at the finest grid with 11,071 panels as the benchmark. Many more frequencies were 
included in the comparison this time, therefore the damping coefficients and several of the force 
coefficients are zero or close to zero at high and low frequencies. This means that even a small 
difference in absolute values between different runs leads to a great difference in percentage. To 
derive a value for the relative difference that does not suffer from “division by almost zero” 
problems, both the absolute difference and the relative difference are taken into account. If the 
absolute difference between two runs at a certain frequency is less than 1/1,000 (or 1/500 for B11 
and B22) of the peak value, then the frequency is taken out of the comparison and the relative 
difference at this frequency is not considered. This yields more representative relative differ-
ences at frequencies that are closer to the peak and where the coefficient has a significant value.  

Compared to the benchmark case, the force coefficients for surge and pitch differ from the 
highest discretization with up to 0.5% and 5% for the solutions with 4,922 and 1,231 panels, 
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respectively. For heave the difference is greater—3.5% and 7.5%—but only as the coefficient 
drops towards zero at 0.3 rad/s (as shown in Figure 52). 

 

Figure 52. Heave exciting force coefficients for different discretizations 

 
All added mass coefficients converge to within 1.5% for the case with 4,922 panels and 3% for 
the case with 1,231 panels. The relative differences are about 1.5 times greater for yaw than for 
other modes, due to the fact that the cylindrical part of the body is represented by flat panels. The 
damping coefficients converge to within 1% for the case with 4,922 panels and 2% for the case 
with 1,231 panels. The exceptions are the damping in heave and yaw. The damping of these 
modes is much greater than for the spar, but still is one order of magnitude (heave) and two 
orders of magnitude (yaw) smaller than for the other modes. The relative difference for heave 
and yaw is in the order of 2% with 4,992 panels and 5% with 1,231 panels. Another important 
effect seen in the convergence tests is that the added mass and damping consistently is over-
estimated with a coarser discretization. This is a non-conservative effect that should not be 
neglected. 

6.1.3.2  Second-Order Convergence Tests 
As explained in Section 5.1, three main parameters influence the second-order solution when 
using the automatic free-surface mesh option. These parameters are the number of body panels 
(NPAN), partition radius (PARTR), and the size of the free surface panels (SCALE). The 
method and the frequencies used for the convergence tests are the same as for the OC3-Hywind. 

6.1.3.2.1 NPAN Convergence Tests 
How the number of body panels influences the second-order results was to be tested with 1,231, 
4,922, and 11,071 body panels, with a partition radius of 100 m and the scale parameter set to 2. 
The 11,071-panel simulation was cancelled due to lack of computer capacity, leaving the only 
comparison possible being that between 1,231 panels and 4,922 panels. Comparing the two 
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solutions shows significant discrepancies, with differences in the order of 100% for both sum-
frequency and difference-frequency components. The conclusion drawn is that the discretization 
with 1,231 panels is too coarse to provide any useful information about second-order quantities. 
This means that the accuracy of 4,922-panel simulation is the only valid choice of body discreti-
zation for further analysis. Unfortunately, the rate of convergence cannot be assessed through 
direct comparison with other simulations. The total number of body panels used is 9,844, how-
ever. This is more than double the number used for the spar analysis (3,724 panels in total), and 
is comparable to other discretization choices found in literature. This inspires confidence that the 
TLP solution with 4,922 panels gives reasonable results, although they still should be viewed 
with caution. 

6.1.3.2.2 PARTR Convergence Tests 
For this test, the number of body panels used was 4,922 and the scale parameter was 2. The test 
was performed for PARTR = 25 m, 50 m, 100 m, 120 m, 140 m, and 160 m. The test cases using 
the 200 m and 300 m partition radius could not be run due to computer-capacity limitations.  

• Sum-Frequency: The results for the TLP seem to be less sensitive toward the partition 
radius than the spar. The convergence test results imply that the results have converged to 
within 0.5% at the 120 m partition radius. The values of the coefficients change less than 
0.01. 

• Difference-Frequency: The results have converged to within 0.5% at a partition radius of 
50 m. A faster convergence of the difference-frequency components compared to the 
sum-frequency components is as expected [33]. 

6.1.3.2.3 SCALE Convergence Tests 
For this test, the PARTR was kept constant at 100 and the number of body panels used was 
4,922. The values of the SCALE parameter in the test were 2, 3, and 5. A smaller value of 
SCALE could not be included due to limitations on the computational power available. 

• Sum-Frequency: For the heave and pitch components the convergence is slightly 
oscillatory. The relative difference between the results, however, is less than 0.2%. 

• Difference-Frequency: The convergence is consistent. The relative change between the 
different solutions is very small, in the order of 1% to 3%. 

The conclusion derived from the convergence tests is to use a body discretization with 4,922 
panels. A free-surface discretization with PARTR = 120, SCALE = 3, and PARTR = 50, 
SCALE = 3 is chosen for the sum-frequency and difference-frequency, respectively. 
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Figure 53. Chosen TLP discretization with 4,922 panels 

 

Figure 54. Free-surface discretization with SCALE = 3 and PARTR = 100 
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6.1.4 Validity of Potential Flow Assumption 
One of the assumptions inherent to the hydrodynamics method used in WAMIT is that the flow 
is potential. This assumption also (partly) is used in FAST, as it builds on WAMIT input to 
calculate hydrodynamic added-mass, damping, and forces. As noted in Section 2, the most 
important parameters to quantify the flow regime around the body are the Keulegan-Carpenter 
number (KC), the oscillatory Reynolds number (Re), and the diameter-to-wavelength ratio. The 
KC number determines the validity of the potential flow assumption. It gives an indication of 
whether flow separation occurs and determines the importance of drag forces as compared to 
viscous forces. As a rule of thumb, flow separation occurs for KC greater than 2, and below this 
value potential flow theory applies. Figure 55—in which the KC is plotted for different regular 
waves—shows that potential flow theory is a good approximation in small waves, but that 
viscous effects are important in higher waves, especially those close to the waterline. 

 

Figure 55. Keulegan-Carpenter number for the UMaine TLP in different regular waves; the 
calculation assumes a constant diameter; at the bottom of the column, where the diameter is 

larger, the KC number in reality would be smaller 

6.2 WAMIT Results 
The results for the TLP are computed only for the restrained configuration, because the system is 
unstable without the mooring system. 

6.2.1 First-Order TLP Results 
This part present, the TLP results from the first-order hydrodynamics computations in WAMIT. 
The frequency range considered is 0.005 to  5 rad/s, in addition to the infinite (plotted at 6 rad/s) 
and zero-frequency limits. The waves are all head-on waves, having zero incident wave angles. 
The hydrodynamic added mass and damping coefficients are seen in Figure 56 and Figure 57. 
The sway and surge coefficients (𝐴11/𝐴22 and 𝐵11/𝐵22) and pitch and roll coefficients are the 
same (𝐴44/𝐴55 and 𝐵44/𝐵55), even though the TLP only has one plane of symmetry. The TLP 
legs seem to be too small and too far away from the surface to create any significant contribution 
to added mass and damping compared to the contribution by the main body of the structure, 
which is why the difference between the coefficients in surge/sway and pitch/roll is insignificant. 
The heave added-mass coefficients are of the same order of magnitude as the coefficients for 
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surge and sway, and the heave damping coefficient is much smaller than the other two. For yaw, 
the added-mass coefficient is about a third of the coefficients for roll and pitch, and the damping 
coefficient is about two orders of magnitude smaller. Although it is hard to see in Figure 57, the 
damping coefficient in yaw is not zero, it just is very small. Both the added-mass and damping 
matrices are symmetric with the only non-zero components being the coupling surge-pitch 
(A15/A51) and sway-roll (A24/A42). 

 
Figure 56. Added-mass coefficients for the UMaine TLP 
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Figure 57. Hydrodynamic damping coefficients for the UMaine TLP 

The force coefficients for the TLP are plotted in Figure 58, with the force modes in the upper 
part of the plot and the moment modes in the lower part. These coefficients are calculated with a 
wave heading of 0 degrees, therefore the TLP platform is symmetric with regard to the plane in 
which the waves are propagating. The only non-zero force coefficients therefore are the surge, 
heave, and pitch coefficients. The peak of the surge force coefficient is 890 kN/m at 0.72 rad/s, 
and the heave coefficient peaks with 400 kN/m at 0.62 rad/s. The heave coefficient changes sign 
at 0.285 rad/s, as the phase drops from 0 to -180 degrees. For the pitch coefficient, the peak is at 
0.655 rad/s with a magnitude of 17,850 kNm/m. 
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Figure 58. Exciting force coefficients for the UMaine TLP 

The motion response of the TLP is described by the motion RAOs plotted in Figure 59, Figure 
60, and Figure 61. The translational RAOs in Figure 59 show a very high peak of 46 m/m in the 
surge response at 0.15 rad/s, close to the surge natural frequency. Because the peak is the only 
visible response in the first plot, a detailed plot is provided in Figure 60. The heave response can 
be seen, although it is very modest with a peak of only 0.004 m/m at 0.63 rad/s. A small peak in 
the surge response also is recognized at the pitch natural frequency of 3.25 rad/s. 

All translational modes of motion experience phase jumps in the frequency range below 
0.4 rad/s. The surge changes sign at the natural frequency, whereas the heave changes sign at the 
same frequency as the heave force. All modes also have a phase peak at the pitch natural 
frequency of 3.25 rad/s. 

The rotational RAOs are plotted in Figure 61, in which both the pitch (3.25 rad/s) and surge 
(0.15 rad/s) natural frequencies are shown as peaks in the pitch response. Although the peaks are 
high compared to the rest of the response, the magnitudes are only 0.14 deg/m and 0.09 deg/m. 
That the system exhibits only very small motions both for pitch and heave is as expected for a 
TLP, and is a result of the very stiff mooring system. Moreover, the response peaks seen in these 
first-order RAOs are outside the frequency range excited by typical incident waves (which range 
from 0.25 rad/s to 1.5 rad/s). These response peaks therefore are unlikely to appear in the case of 
a real sea state. 
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Figure 59. Motion RAOs for translational modes of the UMaine TLP 

 

Figure 60. Detail of motion RAOs for translational modes of the UMaine TLP 
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Figure 61. Motion RAOs for the rotational modes of the UMaine TLP 

6.2.2 Second-Order Tension Leg Platform Results 
6.2.2.1  Difference-Frequency Results3 
6.2.2.1.1 Force Results 
Figure 62 is a plot of the difference-frequency force QTFs for the UMaine TLP. The upper part 
of the plot shows the QTFs as surfaces that depend on the frequencies of two incident waves, ω1 
and ω2. Along the black diagonal lines the difference-frequency is constant. The difference-
frequency for each of the waves is listed on the right-hand edge of the plot. Note that the 
difference-frequency increases with increasing distance from the diagonal, where it is 0. The 
QTFs obviously fulfill the symmetry relation given in Equation 2–59. The lower part of the 
figure shows the force QTF plotted against difference-frequency, to highlight the actual 
frequency content of the difference-frequency force. There are many wave combinations that can 
produce a specific difference-frequency, therefore many points are included at each frequency. 
The lines connect points that have the same sum-frequency. Due to the symmetry relations, only 
one half of the QTF is plotted in the lower part of the figure. 

                                                 
3 The difference-frequency QTFs presented here are not correct, supposedly due to problems with convergence in 
the difference-frequency calculation in WAMIT. This error can be seen by comparing the difference-frequency force 
QTFs in Figure 62 with the mean-drift force in Figure 71 (which is computed as part of the first-order calculation 
and thus is correct). The error is significant, meaning that all difference-frequency results for the UMaine TLP based 
on the difference-frequency QTFs from WAMIT cannot be trusted to be correct. 

More specifically, all results presented in Section 6.2.2.1 are wrong. The error in the difference-frequency QTFs also 
influences the difference-frequency results in Section 6.3 (where the dimensionalized forces and motion response 
are calculated for different sea states), as well as the difference-frequency results in Section 6.5 (which presents 
response from WAMIT time series). The mean-drift force results and the comparison to aerodynamics in Section 6.4 
are based on the first-order results and are not affected. Further, no evidence of errors in the computation of the sum-
frequency QTFs has been found. 
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For all modes, the difference-frequency force excitation is greatest when one of the waves is long 
(e.g., where the frequency is less than 0.4 rad/s) and the other wave is in the mid-frequency 
range. The heave force QTF has a deep “trough” along difference-frequency = 0, where the force 
is less than 10 kN/m2 independent of the incident wave frequencies. The surge and pitch modes 
have different behavior; except for the peaks along the edges noted above, the QTF magnitude is 
more or less constant along a “constant sum-frequency”–line. The magnitude is decreasing more 
or less monotonically as the frequency increases.  

 

Figure 62. Difference-frequency total force QTFs for UMaine TLP for (from left to right) 
surge, heave, and pitch; upper part shows force QTF plotted against incident wave frequencies; 
lower part shows force QTFs plotted for constant sum-frequency against difference-frequency 

of incident wave pairs 

The peak values of the difference-frequency QTF and the first-order RAOs are presented in 
Table 8. The force values are not directly comparable because the first-order RAO is normalized 
by wave amplitude and the difference-frequency QTF by wave amplitude squared. The compari-
son, however, does reveal that the difference-frequency magnitudes are greater than expected for 
typical offshore TLP platforms. For the spar, the peak difference-frequency forces were two to 
three orders of magnitude smaller than the first-order peak.  
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Table 8. Comparison of Difference-Frequency Peak Values to First-Order Peak Values 

Mode of Motion 
Difference-Frequency 
QTF Peak Magnitude 

First-Order RAO Peak 
Magnitude Ratio QTF/RAO 

Surge 280 kN/m2 890 kN/m 0.315 1/m 
Heave 205 kN/m2 400 kN/m 0.513 1/m 
Pitch 4,372 kNm/m2 17,850 kNm/m 0.245 1/m 

 
6.2.2.1.2 Quadratic Force Results 
The difference-frequency quadratic force QTFs show a similar behavior for all modes of motion, 
with a peak centered where both incident waves have an incident frequency close to 0.6 rad/s. 
This is very different from the total difference-frequency force QTF, which exhibit the lowest 
forces close to ω– = 0. 

 

Figure 63. Difference-frequency quadratic force QTFs for UMaine TLP for (from left to right) surge, 
heave, and pitch; the upper part shows force QTF plotted against incident wave frequencies;  
the lower part shows force QTFs plotted against difference-frequency of incident wave pairs 

It is known theoretically that the mean-drift force is entirely due to quadratic terms, it therefore is 
not surprising that the quadratic force dominates the excitation at small difference-frequencies. It 
does however severely underestimate the difference-frequency force at higher difference-
frequencies. This can be demonstrated by comparing the peak magnitudes of the quadratic and 
the total QTF, as shown in Table 9. Note that the peak in heave is less than 3% of the peak from 
the total difference-frequency force. 
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For a low to moderate sea state with a narrow band of excitation frequencies, the difference-
frequency quadratic force probably could provide a good estimation of the overall difference-
frequency force. In more severe sea states with longer waves or in sea states where a broader 
range of frequencies is present, the total second-order force must be calculated, including the 
contribution from the second-order potential. 

Table 9. Comparison of Peak Values of Difference-Frequency Quadratic QTF to 
Peak Values of the Total Difference-Frequency Force QTF 

Mode of Motion 
QTFquad (Quadratic QTF 

Peak Magnitude) 
QTFtot (Difference-Frequency 

QTF Peak Magnitude) Ratio QTFquad/QTFtot 
Surge 100 kN/m2 280 kN/m2 0.357 
Heave 5.5 kN/m2 205 kN/m2 0.027 
Pitch 2,577 kNm/m2 4,372 kNm/m2 0.589 

 
6.2.2.1.3 Motion Results for the Moored Tension Leg Platform 
The difference-frequency motion response for the TLP is of very small magnitude in heave and 
pitch, with peaks of 0.0015 m/m2 and 0.09 deg/m2. This is again because of the very stiff 
moorings. Because the system is so stiff the natural frequencies of heave and pitch are very high, 
and are not excited by the difference-frequency forces. The surge natural frequency at 0.15 rad/s 
is seen clearly as a stripe in the surge response. The coupling between surge and pitch also leads 
to increased pitch response at this frequency. 
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Figure 64. Difference-frequency motion QTFs for UMaine TLP for (from left to right) surge, 
heave, and pitch; the upper part shows motion QTF plotted against incident wave frequencies; 

the lower part shows motion QTFs plotted for constant sum-frequency against the  
difference-frequency of incident wave pairs 

 
6.2.2.2 Sum-Frequency Results 
6.2.2.2.1 Force Results 
The second-order forces are shown in Figure 65. Similar to the difference-frequency forces, the 
QTFs are plotted as surfaces against the incident wave frequencies (shown in the upper half of 
the plot). The black lines identify lines of constant sum-frequency and the numbers at the plot’s 
right edge indicate the sum-frequency related to each line. In the lower half, the QTFs are plotted 
against sum-frequency, with the lines connecting points that have a constant difference-
frequency. It is clear that the QTFs fulfill the symmetry relation in Equation 2–59, therefore only 
half of the QTF is plotted in the lower part of the figure. 
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Figure 65. Sum-frequency total force QTFs for UMaine TLP for(from left to right) surge, heave, and 
sway; the upper part shows force QTF plotted against incident wave frequencies; 
the lower part shows force QTFs plotted for constant sum-frequency against the  

difference-frequency of incident wave pairs 

The sum-frequency forces show a very similar behavior for all modes of motion. The peak 
magnitudes come from a low-frequency wave paired with a mid-frequency wave, and are seen as 
peaks close to the edges of the plot. Generally, waves with sum-frequencies of about 1 rad/s 
induce the greatest loads. The peak magnitudes of the sum-frequency force QTFs are compared 
with the peak magnitudes of the first-order force RAOs in Table 10. The loads are in the same 
order of magnitude as the first-order loads, yielding a peak for the heave load that is even higher 
than the first-order peak. The peak load for all the modes of motion arise from wave 
combinations that are not necessarily very common in the ocean. Even without considering the 
“edge-peaks,” the loads are high. The loads that arise from combinations of two waves with 
frequencies of approximately 0.6 rad/s still are about 20% to 80% of the first-order loads. 

Table 10. Comparison of Sum-Frequency Peak Values to First-Order Peak Values 

Mode of Motion 
Sum-Frequency QTF Peak 

Magnitude 
First-Order RAO Peak 

Magnitude Ratio QTF/RAO 
Surge 499 kN/m2 890 kN/m 0.561 1/m 

Heave 500 kN/m2 400 kN/m 1.25 1/m 

Pitch 5,450 kNm/m2 17,850 kNm/m 0.305 1/m 
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6.2.2.2.2 Quadratic Force Results 
The quadratic force QTFs are plotted in the same way as the total QTFs, and are shown in Figure 
66. The quadratic force QTFs for surge and pitch show a similar behavior which differs greatly 
from the total QTFs, having a peak at sum-frequencies close to 1.2 rad/s. The heave QTF has the 
same type of “edge-peaks” as the total sum-frequency force QTF, but with a much lower magni-
tude, as can be seen from the peak values listed in Table 11. Unlike the difference-frequency 
forces, the quadratic force QTF is less than 50% of the total force QTF even at its peak, and 
underestimates the total sum-frequency force even if assumptions such as narrow-banded 
excitation are imposed. Especially for heave, the second-order potential is of importance; the 
quadratic QTF magnitude is two orders of magnitude smaller than the total sum-frequency QTF. 

Table 11. Comparison of Sum-Frequency Quadratic Force QTFs to 
Total Sum-Frequency Force QTFs 

Mode of Motion 
QTFquad (Quadratic 

QTF Peak Magnitude 
QTFtot (Sum-Frequency QTF 

Peak Magnitude) 
Ratio 

QTFquad/ QTFtot [-] 
Surge 110 kN/m2 499 kN/m2 0.220 

Heave 5.5 kN/m2 500 kN/m2 0.011 

Pitch 2,626 kNm/m2 5,450 kNm/m2 0.482 
 

Figure 66. Sum-frequency quadratic force QTFs for UMaine TLP for (from left to right) surge, 
heave, and pitch; the upper part shows the force QTF plotted against incident wave frequencies; 

the lower part shows force QTFs plotted against sum-frequency of incident wave pairs 
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6.2.2.2.3 Motion Results 
The motion results are plotted in Figure 67, and are again heavily influenced by the eigen-
frequencies of the system. Surge experiences most response at low frequencies, a behavior that is 
seen in the first-order RAOs as well. Because the excitation is far from the eigenfrequency, 
however, the surge response is very modest—less than 0.5 m/m2 at the peak. The heave 
eigenfrequency is at 6.04 rad/s, above the range excited by the sum-frequencies. The heave 
response therefore is more or less linearly dependent on the force excitation, with the greatest 
QTF magnitudes induced by wave pairs with sum-frequencies of 1 rad/s. Only the pitch motion 
shows signs of eigenfrequency excitation. Although the eigenfrequency at 3.25 rad/s is outside 
the excitation range of the sum-frequency forces calculated here, the response increases rapidly 
at the highest sum-frequencies. 

 

 
Figure 67. Sum-frequency motion QTFs of the UMaine TLP for (from left to right) surge, heave, and 

sway; the upper part shows motion QTF plotted against incident wave frequencies;  
the lower part shows motion QTFs plotted against sum-frequency of incident wave pairs 
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6.3 Comparison of First-Order and Second-Order Forces and 
Motions in Different Environments4 

The first-order RAOs and second-order QTFs cannot be compared to each other directly, because 
the first-order quantities are normalized with the incident wave amplitude and the second-order 
quantities are normalized by incident wave amplitude squared. To enable comparison, the forces 
and motions first must be dimensionalized by the wave amplitudes of a given sea state. The 
choice of an incident wave spectrum and random phases influences the result, and the 
comparison therefore should be repeated for a range of different environmental conditions. The 
goal of the comparison is to assess the total excitation and response at a given frequency, but 
there are many different incident wave pairs that contribute to the same sum- or difference-
frequency. Therefore, all second-order contributions at a certain sum-frequency or difference-
frequency are summed together to get the total response at this frequency (described in Section 
5.4). The second-order contributions are computed for fifteen different realizations of the sea 
state to give an impression of the magnitude range of the total response (which differs between 
realizations because it depends on the random phases of the incident waves).  

In the plots shown below, the first-order RAO is rendered as a black line. The magnitude of the 
first-order quantities is the same in all realizations of the sea state because the wave amplitudes 
are determined directly from the spectrum, without any randomness included. The magnitude 
does change between sea states, however, because the wave amplitude for a given frequency is 
changing. In the figures, the difference-frequency contribution from each realization is plotted as 
green crosses for every frequency, with the mean computed from the fifteen realizations shown 
as a red line. The sum-frequency contribution is shown in a similar way, with light blue dots 
denoting the contribution from one realization and a dark blue line showing the mean among the 
realizations.  

The comparison was made for all twelve environmental conditions in Table 1, but the results are 
shown only for sea states 4, 7, and 11. These results were found to be representative for different 
groups of environmental conditions. 

• Sea state 4 (Hs = 1.44 m, Tp = 6.5 s): Low sea states with operating turbine 

• Sea state 7 (Hs = 3.66 m, Tp = 9.7 s): Moderate sea states with operating turbine 

• Sea state 11 (Hs = 9.14 m, Tp = 13.6 s): Severe sea state with idling turbine 

In the lower sea states (Figure 68), the second-order forces are modest, with the sum-frequency 
force in heave being the highest. The surge response is dominated by the difference-frequency 
response, and a coupling to this difference-frequency response also appears in pitch. The second-
order forces were calculated only for the frequency range between 0.25 and 1.5 rad/s, which 
means that the highest sum-frequency excitation is at 3 rad/s. This is below both the pitch 
(3.25 rad/s) and heave (6 rad/s) natural frequency, therefore no sum-frequency response occurs at 
this frequency. The Pierson-Moscowitz spectrum has a long tail to high frequencies, however, 
therefore the pitch natural frequency actually is excited by the first-order waves in the sea states 

                                                 
4 The difference-frequency results presented in this section are affected by the error in the QTF calculation as 
described in Section 6.2.2.1. 
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with a low Tp (and high ωp). The heave sum-frequency response is far below the heave 
eigenfrequency, and is due solely to the relatively high sum-frequency forces. The importance of 
this response increases as the waves grow bigger, because the sum-frequency terms increase by 
wave amplitude squared.  

In the moderate sea states (Figure 69), all second-order forces are even more important as 
compared to the first-order forces. The heave sum-frequency force now is of equal magnitude as 
the first-order force. The response shows a similar behavior, with the difference-frequency 
effects even more dominant in the response in surge and pitch. In pitch, the incident waves have 
too low of frequencies to actually excite the pitch eigenfrequency, so there is little response. The 
sum-frequency excitation has increased, however, so there is more sum-frequency response at 
intermediate-high frequencies, namely below 3 rad/s. In heave, the sum-frequency response is 
dominant, even though there is no resonance in the excited frequency range. 

In the highest sea states, both the excitation and the response are dominated by second-order 
effects. Sum-frequency excitation forces are dominant for surge, heave, and pitch, although the 
difference-frequency forces generate more response for surge and pitch. The heave response is 
dominated by sum-frequency. Generally, the motion amplitudes are very small in heave, along 
the order of 0.02 m. The forces, however, can be important for fatigue in the tendons, 
considering the magnitude and the high frequency (translating into a high number of cycles). The 
same is true for the pitch motion, which also has low magnitude response because of the stiff 
mooring system but nevertheless exhibits high moments at high frequencies. 

 

Figure 68. First-order and second-order force (upper half) and motion (lower half) coefficients 
for the sea state Hs = 1.4 m and Tp = 6.5 s. Black line: First-order forces/motions, Blue crosses: 

Sum-frequency forces/motions for 15 realizations, with blue line showing the mean. Green 
crosses: Difference-frequency forces/motions for 15 realizations, with red line showing the mean. 
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Figure 69. First-order and second-order force (upper part) and motion (lower part) coefficients for 
the sea state Hs = 3.66 m and Tp = 9.7 s 

 

Figure 70. First-order and second-order force (upper part) and motion (lower part) coefficients for 
the sea state Hs=9.14 m and Tp = 13.6 s 
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6.3.1  Mean-drift force 
The mean-drift force is a special case of the difference-frequency force in which the incident 
waves are of the same frequency, such that ω1 – ω1 = 0. It is a second-order effect but only 
depends on first-order quadratic interactions and therefore does not require that the second-order 
potential to be solved (see Section 5.4.1).  

 

Figure 71. Mean-drift force coefficients in surge for the UMaine TLP 

The only non-zero mean-drift force component in head-on waves is the surge force (Figure 71). 
The mean-drift force is low at low frequencies, and increases in the range from 1 rad/s to 
1.75 rad/s and stabilizes after that. For the spar, this is due to the wave-reflecting properties of 
the cylinder. In long waves, the structure more or less follows the wave motion. As the wave 
length decreases (and the wave frequency increases), the incident waves increasingly are 
reflected by the structure, inducing a higher mean-drift force. The total mean-drift force in a sea 
state can be computed from the sum over all contributions from all incident wave frequencies 
(Equation 5–12). In this way, the mean-drift force in surge can be computed for different 
environmental conditions to assess which sea states create the highest mean-drift forces. In this 
analysis, the mean-drift force is computed for sea states listed in Table 3 using both a Pierson-
Moscowitz spectrum and a JONSWAP spectrum. The results are plotted against different 
parameters in Figure 72, Figure 73, and Figure 74. The mean-drift force versus significant wave 
height Hs, spectral peak frequency ωp, and average steepness Sp (defined by Equation 5–13) are 
shown (from left to right). 

The mean-drift force magnitude can be expected to be greatest for relatively high, short waves, 
but it is not surprising that the wave steepness is the most important parameter when determining 
the mean-drift force for a given sea state. Whereas no particularly clear trend can be seen for 
either Hs or Wp, the mean-drift force increases linearly with the steepness until Sp > 0.04. The 
sea states with Sp > 0.04 actually are so steep that [4] defines them as unphysical (see Section 
5.4.1). The difference between the mean-drift force in a sea state defined by a Pierson-
Moscowitz and a JONSWAP spectrum also is thoroughly analyzed in Section 5.4.1. 
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Figure 72. Mean-drift force 

against significant wave height 

 
Figure 73. Mean-drift force 

against peak-spectral 
frequency 

 
Figure 74. Mean-drift force 
against average steepness 

 
6.4  Comparison to Aerodynamic Forces 
The mean-drift force and the system motions due to second-order effects can be compared to 
results from a FAST simulation of the turbine in the same environmental condition to assess the 
relative importance. The TLP simulations in FAST, however, failed in about half of the cases. 
The instabilities are assumed to be mainly due to underestimation of the surge and yaw damping 
in FAST, because viscous effects are not included (and viscous effects are important because of 
the small diameter of the TLP legs), possibly combined with use of an unsuitable controller. 
Even the simulations that did not fail show clear signs of nearly becoming instable. It therefore 
was concluded that the FAST model is not representative for analysis of the system motions.  

The thrust force on the rotor cannot be computed for this system, therefore the rotor thrust results 
from the OC3-Hywind are used for comparison. Although the system motion response varies 
between the spar and the TLP, the thrust force can be assumed to have similar mean values and 
similar frequency content because the turbine rotor is the same. The mean thrust from the spar 
simulations (the same as found in Figure 42 and Figure 43) is plotted together with the mean-
drift force for the TLP in Figure 75 and Figure 76. Figure 75 shows the results for the cases in 
which the turbine is operating and Figure 76 shows the results for the cases in which the turbine 
is idling. When the turbine is operating, the mean thrust is much greater than the mean-drift 
force. For all of these cases, the mean-drift force is less than 1% of the mean thrust. As soon as 
the wind speed reaches the cut-out speed and the turbine begins idling, the rotor thrust drops 
significantly. For these cases, the mean-drift force is approximately 10% of the mean thrust 
force. It is most significant just after cut-out speed, but as the severity of the condition increases 
it does not increase as rapidly as does the drag force on the blades.  
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Figure 75. Mean-drift force and mean wind turbine thrust for the cases with an operating turbine 

 

Figure 76. Mean-drift force and mean wind turbine thrust for the cases with an idling turbine 
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6.5  Response from WAMIT Time Series5 
Tension leg platform motion response time series were constructed from WAMIT RAOs, 
although they could not be compared to FAST simulations. The PSD of the time series are 
presented in Figure 77 for the low, intermediate, and high sea states. For surge, a very high peak 
(due to difference-frequency effects) is found at the eigenfrequency of 0.16 rad/s in both low and 
high sea states. The middle peak (which only is slightly visible in the highest sea state) is due to 
first-order wave excitation. The third peak at high frequencies, which is most prominent for the 
highest sea state, is the sum-frequency response. The difference-frequency peak is definitely the 
most dominant, and is about four orders of magnitude greater than the other peaks.  

There is not as much difference-frequency response for heave. The prominent peaks are at the 
wave peak frequency and double the wave peak, and are due to first-order and sum-frequency 
effects, respectively. The sum-frequency excitation is not exciting any eigenfrequency, which is 
why the peak of the sum-frequency response moves depending on the sea state. The sum-
frequency response is an order of magnitude lower than the first-order response in the low sea 
state, but dominates in the higher sea state. For pitch, the difference-frequency contribution is the 
most important, at least for the high sea states. For the high sea states, however, the sum-
frequency response also is important. 

 

  
 

                                                 
5 The difference-frequency results presented in this section are affected by the error in the QTF calculation, as 
described in Section 6.2.2.1. 
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Figure 77. Motion response from WAMIT time series in different sea states; left: low sea state 
(Hs = 1.4 m, Tp = 6.5 s); middle: moderate sea state (Hs = 3.66 m, Tp = 9.7 s); right: high sea state 

(Hs = 9.14 m, Tp = 13.6 s); upper: surge, middle: heave, bottom: pitch 

 
7 DeepCwind Wave Tank Test Results and Analysis 
This section presents the results from the DeepCWind wave tank tests, and analyzes the results to 
identify possible second-order effects. It also provides a qualitative comparison to the WAMIT 
simulation results. The wind turbine model used in the simulations is not the exact model used in 
the tests, as no such calibrated FAST models existed at the time of this work. The results and the 
comparison for the OC3-Hywind are presented in Section 7.1, and in Section 7.2 for the UMaine 
TLP. Section 7.3 discusses the differences between the simulation results and the wave tank 
tests, and lists possible reasons for discrepancies. 

7.1  Analysis of DeepCwind Model Test Results for the 
OC3-Hywind 

In the model tank tests for the DeepCwind project, described in [5], a modified configuration of 
the OC3-Hywind was tested. Main modifications include a 16.6% increase in the topside mass 
(wind turbine rotor, tower, instrumentation) as compared to standard specifications, and changes 
in the mooring system due to a decrease in water depth from the standard 320 m depth to the 200 
m depth specified for the model-scale test. Moreover, the tower of the test turbine was very 
flexible and induced changes that cannot be modeled in WAMIT. These changes cause the 
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system natural frequencies to change. The natural frequencies of the scaled OC3-Hywind from 
the wave tank test and the OC3-Hywind model used for simulations in WAMIT are both listed in 
Table 12. Note that surge and sway are the eigenfrequencies that change the most between the 
WAMIT simulations and the wave tank tests, as they are sensitive to changes in mooring-system 
configuration. There was no calibrated FAST model available for the model test Hywind at the 
time of this study, so only WAMIT results for the standard OC3-Hywind could be used for 
comparison. 

Table 12. Eigenfrequencies of Spar in the Wave Tank Tests and in WAMIT 

 
Wave Tank Test WAMIT 

[s] [rad/s] [s] [rad/s] 
Surge 43.0 0.146 123.2 0.051 
Sway 42.8 0.147 123.2 0.051 
Heave 28.1 0.224 30.8 0.204 
Roll 32.0 0.196 29.2 0.215 
Pitch 31.5 0.200 29.2 0.215 
Yaw 5.5 1.142 8.3 0.761 
1st Fore-Aft Tower-Bending Frequency 2.32 2.70 - - 
1st Side-Side Tower-Bending Frequency 2.27 2.76 - - 

 
Different types of tests were performed, many of which incorporated irregular waves and wind. 
The test matrix for the spar is shown in Table 13. An assessment of the spar response in irregular 
waves only is first presented and compared to the results from WAMIT. Further, the influence of 
wind on the second-order response is analyzed. An analysis of the second-order effect on system 
performance also was conducted to illustrate what types of second-order effects impact the 
turbine. 

Table 13. Test Matrix for the DeepCwind Wave Tank Tests [10]. 

 
 
7.1.1  Wave-Only Tests 
The wave-only tests were performed for three different sea states with Hs = 2 m, 7.1 m, and 
10.5 m and Tp = 7.5 s, 12.1 s, and 14.3 s, respectively. This corresponds to a normal operating 
condition, a one-year storm, and a 100-year storm, based on wave data from a buoy off the coast 
of Maine. The resulting wave spectrum, surge, and heave response at the waterline, and pitch 
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response are shown in Figure 78 through Figure 81 for all sea states. The surge and heave 
motions originally were measured at the CoG, but were transformed to the waterline using the 
pitch motion input for better comparison with WAMIT results.  

Heave, surge, and pitch all exhibit large peaks at low frequencies. These peaks coincide with the 
respective eigenfrequencies of each mode of motion (0.15 rad/s for surge, 0.224 rad/s for heave, 
and 0.2 rad/s for pitch). In surge, there is an additional peak at the pitch eigenfrequency because 
of the surge motion induced by pitch. All these low-frequency peaks lie below the excitation 
range of the incident waves, and because there is no other source of excitation in the system, they 
are likely to be due to difference-frequency effects. 

A comparison of the surge response found in the model tests with the response predicted by 
WAMIT cannot be expected to be good, because the eigenfrequencies are so different between 
the two cases. It nevertheless is worthwhile to examine the differences and similarities. In the 
WAMIT simulation results shown in Figure 49, the surge and pitch frequencies are visible as 
peaks in the response, but these peaks are predicted to be more than an order of magnitude 
smaller than the first-order effects. In the model test, the peak at the surge natural frequency of 
0.15 rad/s is higher than the peak in the wave frequency range (0.25 rad/s to1.5 rad/s) for all sea 
states. WAMIT thus seems to underpredict the second-order response in surge. There is little 
visible first-order response for the lowest sea state in the model tests; this seems to be mostly 
because the response “disappears” within measurement noise. 



111 

 
Figure 78. Power spectral density of wave 

elevation for wave-only cases 

 
Figure 79. Power spectral density of surge 

motion at the waterline for the wave-only cases 

 
Figure 80. Power spectral density of the heave 
motion at the waterline for the wave-only cases 

 
Figure 81. Power spectral density of the pitch 

motion for the wave-only cases 

 
The heave response from the model tests is shown in Figure 80. The peak at the heave natural 
frequency is higher than the first-order for all sea states, but is more dominant for lower Hs. In 
the WAMIT results in Figure 37 to Figure 39, heave was predicted to be the mode for which the 
second-order response is most visible. This also is seen in the PSD derived from the WAMIT 
time series in Figure 50. The second-order peak at the heave natural frequency is of equal or 
greater magnitude as compared to the peak in the wave-excitation range. WAMIT also predicts 
that the relative importance of the second-order response will be higher in lower sea states, 
which fits well with the model test results. The resonant heave peak in the model test, however, 
is significantly higher and narrower than the peak in WAMIT. 

The pitch response in Figure 81 also has two peaks, one in the wave excitation range and a 
narrower one at the pitch eigenfrequency. The peak at the pitch eigenfrequency has a magnitude 
equal to the first-order peak. In the WAMIT results shown in Figure 51, the difference-frequency 
peak is lower than the first-order peak in all sea states, and there is less first-order and second-
order response than in the model tests.  
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The general conclusion from the comparison presented above is that the difference-frequency 
effects on the spar either are underestimated by WAMIT or are overestimated by the model tests. 
Although it would be fair to say that second-order effects are unimportant to a spar configuration 
based on the WAMIT results, the model test results suggest that the difference-frequency effects 
should be considered. Several reasons could explain the differences noted. This discussion 
should be in examined conjunction with the TLP results, and therefore is presented in 
Section 7.3. 

7.1.2 Influence of Wind on Second-Order Effects 
An attempt to assess the relative importance of second-order effects to wind loading by 
comparing outputs from WAMIT and FAST is presented in Section 6.4. The problem with this 
comparison is that neither program is able to incorporate both wind and wave loading, such that 
the influence of the aerodynamics on the second-order motions cannot be evaluated and only a 
rough comparison of frequency content and magnitudes of forces can be performed. During the 
wave tank testing, the spar was tested in different wind-wave conditions, including irregular 
waves combined with both steady and dynamic wind. The results enable direct assessment of 
how the second-order response is influenced by the presence of both steady and dynamic wind. 

The wind conditions used in the tests are listed in Table 14. The turbine has no active pitch or 
torque control, meaning that the rotor speed and the pitch angle are fixed. They are set at the 
beginning of each measurement based on the mean velocity at hub height. Fixing rotor speed and 
pitch angle means that the thrust force increases with wind speed, and does not decrease for wind 
speeds that are above rated (as it would for a variable-speed machine with active pitch control). 
For the high-wind cases in which the turbine is parked, the rotor speed is set to 0 and the blades 
are feathered to create the smallest possible frontal area, and thus the least thrust possible.  

Table 14. Wind Conditions Used in the Wave Tank Tests 

Type of Wind 

Wind Speed at 
Hub Height (Full-
Scale Equivalent) 

Operational 
Condition 

Hs = 
2.0m 

Hs = 
7.1m 

Hs = 
10.5m 

Steady 1 7 m/s Operational X   
Steady 2 9 m/s Operational X   
Steady 3 11.4 m/s Operational X X  
Steady 4 16 m/s Operational  X  
Steady 5 21 m/s Operational  X X 
Steady 6 30.5 m Parked   X 
Dynamic 1 (NPD, U10 = 9.5 m/s) 10.3 m/s Operational  X  
Dynamic 2 (NPD, U10 = 17 m/s) 20.7 m/s Operational X  X 
Dynamic 3 (NPD, U10 = 24 m/s) 30.1 m/s Parked   X 
 
The motion response from the wave tank test is presented in Figure 82. The figure presents the 
results for the different sea states (from left to right: Hs = 2.0 m, Hs = 7.1 m, and Hs = 10.5 m) 
with different wind conditions. The surge response is provided at the top (X COG), the heave 
response is in the middle (Z COG), and the pitch response at the bottom. Note that the response 
has been transformed from the CoG, where it was originally measured, to the waterline.  
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The most important observations from the results are listed below. 

• The first-order response (which is seen as a peak in the frequency range from 0.25 rad/s 
to 1 rad/s) is not significantly influenced by either steady or dynamic wind. 

• Dynamic wind loading has the greatest influence on the low-frequency behavior and 
increases the response by several orders of magnitude, even for the 9 m/s case. 
Aerodynamics influences the low-frequency response more strongly when the turbine is 
operating than when it is not, as is shown by the two cases with the highest wind speeds.  

• The cases in which the turbine is operating in high wind (such as 20 m/s dynamic wind or 
21 m/s steady wind) influence the behavior at intermediate frequencies the most. The 
wind loading increases the response between the first-order and second-order peaks in 
surge and pitch. 

• In the dynamic wind case in the lowest sea state, response induced by aerodynamic 
loading dominates at frequencies of less than 0.5 rad/s. The resonant peaks are still  
visible at the same frequency, but the magnitude is more than ten times greater. It is 
likely that the wind dominates the response to this extent because the wind is high 
(20 m/s at hub height) and the sea state is rather low (Hs = 2.0m).  

• Subjecting the turbine to low to moderate steady winds does not significantly change the 
behavior, not even the mean offset. In pitch, the response peaks become a broader and a 
little lower with steady wind, and this also is seen in the pitch-induced surge response. 

• The heave degree of freedom largely is unaffected by the wind, except for the dynamic-
wind case in low sea. 

The conclusions drawn from this analysis are that only dynamic wind provides any information 
about how the system reacts to aerodynamic loading, and not even the mean offset can be 
estimated based on steady wind. For heave, aerodynamics does not influence the response except 
if the wind speed is very great as compared to the wave height. In normal sea states, the wind 
potentially can be orders of magnitude more important than the wave loading, but as the severity 
of the sea state increases the influence of the wave loading also increases. 
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Figure 82. Response (at waterline) of the spar configuration in three different sea states with 
different wind conditions; left: normal operating sea state (Hs = 2 m, Tp = 7.5 s), middle: 1-year 
storm (Hs = 7.1 m, Tp = 12.1s ), right: 100-year storm (Hs = 10.5 m, Tp = 14.3 s); top to bottom: 

surge, heave, and pitch response (at waterline) 
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7.1.3 The Influence of Second-Order Effects on Turbine Loads and Accelerations 
This report has noted that second-order effects can be important to the design of the system 
because they contribute to the loads that the system must withstand. Two parameters that are 
important to the turbine performance are nacelle acceleration, which determines loads on the 
shaft and on the gearbox, and tower bending, which is a dimensioning factor in the design of the 
tower. The results for these two parameters in different sea states are presented below.  

Figure 83 shows the tower-bending moment along the pitch axis for the three different sea states 
with different wind conditions. The first-order wave excitation is by far the most important 
source of excitation. The only exception is the dynamic wind case for the low sea state, in which 
the waves are small and the wind speed is high. In this case, the bending moment is determined 
by the low-frequency wind excitation. The difference-frequency response, which is shown as a 
peak at the pitch eigenfrequency, is clearly visible but is lower and much narrower than that of 
the first-order excitation. 

In the high-frequency range, there is a peak at 2.7 rad/s which corresponds to the first tower fore-
aft bending frequency. It is clear that this must be an eigenfrequency of the system because it 
remains at the same frequency regardless of the sea state and wind conditions. This peak is 
interesting because it shows that the sum-frequency loads actually are transferred through the 
platform to the tower. Even though the platform does not exhibit any sum-frequency motion, the 
loads have an impact on the tower-bending moment. There are two clear signs that this response 
actually is due to sum-frequency excitation: First, the bending moment peak cannot be due to 
wind excitation only because it also is visible for the wave-only case. Second, the relative height 
of the peak compared to the first-order peak is higher in the lower sea state, where the tower-
bending frequency more closely matches the peak of the wave spectrum than for the higher sea 
states. It also is higher in the lower sea state despite the fact that the first-order excitation at the 
tower-bending frequency for the lower sea state is less than for the other two sea states. 

Introducing wind loading into the system has far less influence on the high-frequency response at 
the tower-bending frequency than it has on the low-frequency response (e.g., the response at the 
pitch eigenfrequency). This is not unexpected, as the aerodynamic loading is known to be mainly 
low-frequency. The sharp peaks seen at high frequencies for the cases with wind loading are the 
rotor frequencies 3 p and 6 p, and are unrelated to hydrodynamic loading. 

Figure 84 shows the nacelle accelerations for the same three sea states under the same wind 
conditions. For the tower bending, the main peak primarily is due to first-order wave excitation. 
Again, the exception is the low sea state case with strong, dynamic wind. In that case, the wind 
loading completely dominates the response. The response in the two higher sea states shows that 
strong winds generally have a significant influence on the response at frequencies both below 
and above the peak of the incident wave excitation. This is true, however, only for the cases in 
which the turbine is operating. If the turbine is parked, or if lesser wind strengths are applied, the 
system shows a behavior similar to the wave-only case, with visible peaks at the pitch and tower 
eigenfrequencies. 
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Figure 84. Nacelle acceleration of the spar in three 
different sea states with different wind conditions, 

measured in the DeepCWind wave tank tests 

Figure 83. Tower-bending moment for the spar in 
three different sea states with different wind 

conditions, measured in the DeepCWind wave 
tank tests 
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Two main conclusions can be drawn from the two examples provided above. Generally, the first-
order response or the wind loading is of most importance to the system performance, as the 
second-order response peaks generally are an order of magnitude less than the first-order peak. 
The most important second-order effects are the resonant pitch response (which determines both 
tower-bending and nacelle accelerations at low frequencies), the sum-frequency loads (which 
induce a high-frequency tower-bending moment at the tower eigenfrequency), and high-
frequency tower motions which lead to acceleration in the nacelle. It is important to remember, 
however, that part of the response might be due to excitation by first-order waves of high 
frequency. It would be interesting to perform an investigation to clarify how much of this 
response actually is sum-frequency response. This investigation cannot be performed using the 
current version of FAST because it cuts off the wave spectrum at 3 ωp and thus removes all 
energy data from the spectrum at the desired frequency.  

The general conclusion is that, although the sum-frequency loads do not create any motion 
response for the spar configuration, they still potentially are important for the tower loads and 
nacelle accelerations. Conversely, the difference-frequency loads seem to be less important for 
examining the accelerations and tower-bending loads than for evaluating the motion response. 

7.2 Analysis of Tension Leg Platform Results from 
DeepCwind Wave Tank Tests 

The model test discussed in this section is the same modified version of the NREL 5-MW 
reference turbine described in Section 7.1. This means that the topside mass was increased as 
compared to the model in FAST/WAMIT. The water depth and the mooring system largely are 
the same. The only change made to the platform was the installation of steel wires to prevent the 
TLP legs from bending, such that it more exactly resembles the platform as it is modeled in 
FAST (in which it is modeled as a rigid body). More information about the TLP model can be 
found in [5].  

The most important difference between the two models is that WAMIT is not able to model the 
influence of a flexible tower. For the TLP, including tower-bending induces a shift of the 
platform’s pitch eigenfrequency to a lower frequency, with a lock-in of the two frequencies. The 
natural frequencies of the system as it is modeled for the test and in WAMIT are shown in Table 
15, and the influence of the tower-bending frequency is apparent. Due to the significant 
differences, a good comparison between the test results and the simulations in roll and pitch 
cannot be expected. 

Table 15. Eigenfrequencies of the TLP in the Wave Tank Test and in WAMIT 

 Wave Tank Test WAMIT 
[s] [rad/s] [s] [rad/s] 

Surge 39.3 0.159 40.28 0.156 
Sway 39.3 0.159 40.27 0.156 
Heave 1.25 5.03 1.05 5.975 
Roll 3.7 1.698 1.85 3.388 
Pitch 3.7 1.698 1.85 3.392 
Yaw 18.2 0.345 16.82 0.374 
1st Fore-Aft Tower-Bending Frequency 3.57 1.76 — — 
1st Side-Side Tower-Bending Frequency 3.45 1.82 — — 
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The test matrix for the TLP was the same as for the spar, as shown in Table 13. It includes tests 
with wind, waves, and combinations of both. In this report, the motion response of the system 
with wave loading only is analyzed first, and is compared to the WAMIT motion response found 
in Figure 77. Next is an analysis of how second-order response is affected by the wind loads, 
followed by an analysis of the second-order influences of system performance and loads. 

7.2.1 Wave Loading Only 
The wave-only tests are performed for three different sea states with Hs = 2 m, 7.1 m, and 
10.5 m, and Tp = 7.5 s, 12.1 s, and 14.3 s. This corresponds to a normal operating condition, a 
one-year storm, and a 100-year storm, based on wave data from a buoy located off the coast of 
Maine. The resulting wave spectrum, surge and heave response at the waterline, and pitch 
response are shown in Figure 85 through Figure 88 for all the tested sea states. The surge and 
heave motions originally were measured at the CoG, but were transformed to the waterline using 
the pitch motion input for better comparison with WAMIT results. Directly comparing the results 
here to the WAMIT results is unnecessary, because the systems are different and the sea states 
analyzed are not the same. The main goal is to better understand whether the trends in the results 
match, such as relative magnitudes of first-order and second-order responses in lower and higher 
sea states. 

For surge, the model tests predict mostly first-order response for the two highest sea states. The 
low-frequency response is relatively high too, and basically is constant at frequencies below 
0.1 rad/s. No distinct peak is seen at the surge eigenfrequency. The low sea state shows a 
completely different behavior, with a response peak at the surge natural frequency that is higher 
than the first-order peak. The smaller, narrower peak at 1.7 rad/s is at the pitch eigenfrequency, 
and is induced by the coupling between the two modes of motion.  

For heave there is significant difference between the response in the lowest sea state and in the 
two higher sea states. For the lowest sea state the first-order response is nearly invisible. This 
certainly is because the waves are small, and the system does not move much. It probably is 
linked to the level of noise in the measurement, however, which makes it difficult to correctly 
measure small motions. The peak at low frequencies is linked to the peak seen in the surge 
response, because any surge motion is linked to a certain downward motion in heave due to the 
stiff mooring system. For the higher sea states, the first-order motion dominates the response, 
and peaks at the wave peak frequency ωp. At 2 ωp, a second peak due to sum-frequency 
excitation appears. This sum-frequency peak is an order of magnitude lower than the first-order 
peak, but does not excite any eigenfrequency. At the very high eigenfrequencies where there is 
almost no excitation, a small peak is found at 5.5 rad/s.  

Also for pitch, the response in the lowest sea state differs significantly from the two higher sea 
states. The noise level seems to be much greater, such that the first-order response is nearly 
invisible. The coupling to surge also is much stronger in the low sea state; this is the highest 
peak. For the two higher sea states, the noise level is less and the most significant peak is found 
at the first-order wave frequencies. For all three sea states, there is a clearly visible but narrow 
peak at the pitch eigenfrequency. It is difficult to determine whether this peak is due to first-
order excitation or sum-frequency effects, but it probably is a combination of both. There must 
be a significant sum-frequency contribution in the lowest sea state, however, because the pitch 
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response peak is higher even though the first-order excitation is lower. It is not surprising that the 
sum-frequency effect is strongest for this sea state, as the double peak wave frequency is similar 
to the pitch eigenfrequency. 

 
Figure 85. Power spectral density of the wave 
elevation in the wave-only DeepCwind tests 

 
Figure 86. Power spectral density of the surge 
motion at waterline for the wave-only cases in 

the DeepCwind model tests. 

 

 
Figure 87. Power spectral density of the heave 
motion at waterline for the wave-only cases in 

the DeepCwind model tests 

 
Figure 88. Power spectral density of the pitch 

response for the wave-only cases in the 
DeepCwind model tests 

 
Comparing the results provided in Figure 86-88 to the WAMIT results shown in Figure 77 
highlights some significant differences.6 WAMIT predicts that the difference-frequency effects 
will dominate surge and that this domination will increase with the severity of the sea state. This 
is an effect which is not seen in the model tests, although there is significant low-frequency 
response. For heave, the wave tank test results seem to fit the WAMIT results a little better. The 
sum-frequency peak is seen in both WAMIT and the model tests, and the relative importance 
                                                 
6 The difference-frequency results from WAMIT are wrong due to an error in the difference-frequency QTFs. This 
is explained in more detail in Section 6.2.2.1. 
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increases with severity of the waves in both cases. WAMIT, however, estimates the sum-
frequency peak to be higher than the first-order peak, whereas the opposite is the case in the tank 
test results. For pitch, the results are not easy to compare, as the pitch eigenfrequency is so 
different in the wave tank test and in the WAMIT simulations. The difference-frequency effect 
seen in the WAMIT results is due to the coupling with surge. Because there is little difference-
frequency response in surge in the model test, there also is little coupling in pitch. 

The general conclusion based on a comparison of the wave-only results to the WAMIT results is 
that that either WAMIT overestimates the second-order response, or the model tests underesti-
mate it. Differences are expected because of the differences between the systems, such as inclu-
sion of tower flexibility and viscous effects in the model tests. As noted for the spar, it seems 
important to discuss the possible reasons for the disparities seen between the results in WAMIT 
and the model test. Section 7.3 discusses the differences for both the spar and the TLP system. 

7.2.2  Influence of Wind on Second-Order Effects 
Each of the sea states described above is tested with a range of different wind conditions. Not all 
wind conditions are applied to each of the sea states, but the combinations are the same for the 
TLP as for the spar, and are described in Table 14. The turbine configurations also are the same 
as for the spar. 

The motion response from the wave tank test is presented in Figure 89, and it shows the results 
for the different sea states (Hs = 2.0 m, Hs = 7.1 m, Hs = 10.5 m) with different wind conditions. 
The surge response is shown at the top (X COG), the heave response is shown in the middle 
(Z COG), and the pitch response is shown at the bottom. Note that the response was transformed 
from the CoG, where it was originally measured, to the waterline. 

For the case with strong wind and a low sea state, the wind completely dominates the low-
frequency surge response (similar to the behavior seen for the spar). The introduction of wind 
loads does not seem to otherwise significantly influence the surge response. The mean offset 
increases for the cases with dynamic wind or strong steady wind, but the other changes are due to 
changes in the pitch response. 

The heave response of the TLP is influenced more by the wind loads than was the response of 
the spar. The wind seems to magnify the existing response, with the strongest winds introducing 
the greatest increases. For the low-sea state, the strong dynamic wind case again completely 
dominates the low-frequency response. For the two higher sea states, strong winds increase the 
magnitude of the first-order peak to the extent that the sum-frequency peak no longer is visible. 
The cases with an idling turbine also induce increased response at very high frequencies. On the 
low-frequency side, the magnitude of the low-frequency response and the mean heave offset also 
increased. Also, dynamic wind has a greater influence than steady wind.  

The pitch response in the two lowest sea states shows that the introduction of wind dampens the 
motions both at the pitch and the surge eigenfrequency. For the highest sea state, the response 
remains very much the same for the idling condition with steady wind and the operating 
condition with dynamic wind. For the two remaining cases, in which the turbine is operating in 
steady wind and idling in dynamic wind, the wind loads increase the response in the entire 
frequency range. 
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Figure 89. Response of the TLP configuration in three different sea states with different wind 
conditions for (from left to right) normal operating sea state (Hs = 2 m, Tp = 7.5 s), 1-year storm 

(Hs = 7.1 m, Tp = 12.1 s), and 100-year storm (Hs = 10.5 m, Tp = 14.3 s); and showing 
(from top to bottom) surge, heave, and pitch response (at waterline) 
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7.2.3  Influence of Second-Order Effects on System Loads and Performance 
This section analyzes the nacelle acceleration, the tower-bending moment, and the tension in one 
of the TLP tendons to assess the influence of second-order effects. In Figure 90, the nacelle 
acceleration is shown for the three sea states both with and without wind. For the wave-only 
conditions, the first-order excitation dominates the response, but there also is a peak at the 
combined pitch and tower-bending frequency. Compared to the spar case, this peak is more 
important because it is at a higher frequency and combines both pitch and tower-bending 
contributions. There is also is a peak at 3.5 rad/s and at the heave eigenfrequency at 5.03 rad/s, 
but these peaks are two orders of magnitude lower than the other two described above.  

For the spar, introducing wind loads increases the acceleration over the entire range of 
frequencies. This means that the high-frequency peaks no longer are of interest, even in 
relatively low wind. The resonant response at the pitch/tower eigenfrequency also is damped by 
the wind and is not even visible in the strong wind/low wave case (Hs = 2 m, wind speed = 
17 m/s). 

The tower-bending moment, shown in Figure 91, displays a pattern similar to the nacelle 
acceleration and can be recognized from the wave-only cases. There is a broad peak in the wave 
frequency range, and a high, narrow peak at the pitch/tower eigenfrequency. The influence on 
the wind loading is not as great as it is for the nacelle acceleration, but the resonant pitch/tower 
motion decreases. The response in the low-frequency and high-frequency range also increase, 
and the 3 p and 6 p frequencies of the turbine appear as spikes in the high-frequency range. The 
mean bending moment also is increased significantly by the introduction of the wind, which is 
not surprising considering the high mean trust that the turbine must withstand. 
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Figure 90. Nacelle accelerations measured for 

the TLP configuration in the DeepCwind 
model-scale tests 

Figure 91. Tower-bending moment 
measured for the TLP configuration in the 

DeepCwind model-scale tests 
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Another important load for the TLP is the load on the tendons. The three tendons of the TLP are 
arranged such that there is 120° between them. One points in the direction of the waves, and the 
other two are symmetrical on both sides, as shown in Figure 92. The tensions for the different 
tendons show a similar distribution across frequencies, although the tension in tendon 1 generally 
is of greater magnitude. 

 

Figure 92. Arrangement of tendons for the TLP 

 
In the plots provided in Figure 93, the tension in tendon 2 is shown for all three different sea 
states, both with and without wind. Across all cases, important tendon loads are introduced by 
the waves in the wave-frequency range. For the cases with strong dynamic wind, especially in 
the low sea state, the wind loading is dominant in the low-frequency range and there are no 
significant difference-frequency effects. On the high-frequency side, there are significant loads at 
the combined tower/pitch eigenfrequency, induced by the pitch motion (see Figure 89). In the 
two lower sea states, the loads at this frequency are slightly reduced by the introduction of wind, 
and the combination of strong winds and high waves in the 100-year storm condition leads to 
greater loads across a wide range of frequencies. The influence of the sum-frequency loading on 
tendon fatigue life is likely important, especially because it is relatively important in the low, 
frequently occurring sea states. This means that the TLP will experience a significant number of 
sum-frequency load cycles, because of both the high frequency and the great number of sea 
states that induce it. To assess how much is due to second-order effects and how much is due to 
high-frequency incident waves, more work is required to distinguish the different components. 
As noted for the pitch motion, however, it is likely that there is an important sum-frequency 
contribution.  
In the lower sea states, the influence of the spinning rotor also can be seen as spikes in the loads, 
especially the 1 p frequency of the cases with wind speed of approximately 21 m/s at hub height. 
That the rotor frequencies appear in the tendon loads likely is a result of the vertically stiff, 
lightweight, and low-damped nature of the system, as stated in [10]. 
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Figure 93. Power spectral density of measured tension in 
tendon 2 for the DeepCWind model tests 

 
7.3 Differences Between Model Tests and WAMIT Results 
As is shown in Section 7.1 and Section 7.2, the WAMIT results are quite different from the 
model-scale results. The general conclusion for the spar is that the difference-frequency effects 
were insignificant as simulated in WAMIT, but lead to much higher response peaks in the model 
tests. For the TLP, the conclusion is completely different. In that case, the WAMIT results give 
much greater difference-frequency responses in surge and in the sum-frequency response in 
heave than found in the results measured for the wave tank tests. Several possible reasons for 
these discrepancies have been identified and are discussed in this section. 
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7.3.1 Differences in the System Dynamics 
The systems tested in the wave tank are different from the systems analyzed in WAMIT, as is 
noted in Section 7.1 and Section 7.2 for the spar and TLP, respectively. The mass of the turbine 
and rotor is increased by about 16% in the wave tank tests as compared to the reference turbine. 
The turbine tower is modeled including bending DOFs in the tank test, and the bending motion is 
very visible. For the spar, the water depth also is changed—from 320 in the WAMIT analysis to 
200 m in the wave tank tests. Because of these changes the system dynamics change, with the 
shift of the eigenfrequencies being the most recognizable result.  

For the spar, the surge eigenfrequency is changed from 0.05 rad/s in WAMIT to 0.15 rad/s in the 
tank test, mainly due to the change in the mooring system. The increased surge response in the 
tank test could be because the surge eigenfrequency is closer to the wave frequency range, such 
that there is possibly more or stronger excitation at 0.15 rad/s than 0.05 rad/s. This would fit well 
with the results observed for the difference-frequency force QTF provided in Figure 28, but does 
not explain the differences found for heave and pitch. The pitch motion of the system, however, 
is greatly influenced by the mass distribution—especially the mass high in the tower—so the 
increase in topside mass could have influenced the pitch results along with the introduction of a 
flexible tower. The heave is the result that seems to be most consistent across the tank test and 
the WAMIT analysis. This is reasonable in this context because heave is relatively independent 
of the mooring system, mass distribution, and tower flexibility.  

For the TLP, the pitch eigenfrequency is shifted from 3.25 rad/s in WAMIT to 1.67 rad/s in the 
tank test. This means that the sum-frequency results for pitch are not at all comparable because 
the excitation of these two frequencies is so different. 

7.3.2 Inaccuracies in the Model Test 
The system tested in the wave tank included some effects that are not representative of a full-
scale system, and are even less representative for a system as it is modeled in WAMIT. The 
measurement cables used to record wind turbine data were rather heavy as compared to the 
system itself, as shown in Figure 94. The cables had a significant influence on the system 
motions and dynamics, as they started swinging when the turbine moved. This is the case for 
both the TLP and the spar. At this point, it is difficult to assess the significance of these cables. 
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Figure 94. Photo of the TLP during the wave tank tests 

Another source of inaccuracies in the model tests is the accuracy of the sensors used, and 
possible errors in the signal. The measurement data is quite new and still is being analyzed, 
therefore it is not easy to produce a comprehensive overview of the status of all the sensors in all 
of the tests. 

The TLP used in the wave tank tests also experienced tendon snapping in severe sea states. 
Tendon snapping occurs when the TLP platform is undersized, meaning it was able to move 
enough to make the tendons go slack. A properly designed TLP system should not exhibit this 
type of behavior, as it induces very high extreme loads in the system and leads to violent pitch 
motions. This cannot be accounted for In WAMIT, because the mooring system only is modeled 
using a linear approximation for the stiffness. 

When assessing results from the wave tank tests that include wind loading, note that the 
aerodynamics of the model-scale turbine are quite different from the simulated full-scale case. 
The Reynolds number in model-scale is very different from full-scale, and the model scale 
turbine is run with a fixed pitch angle and constant rotor speed. The poor aerodynamic 
performance of the model-scale turbine is not truly representative of a full-scale turbine. 

7.3.3 Viscous Effects 
Viscous drag probably is the most important physical effect (in the below-water portion of the 
system) that cannot be modeled with WAMIT. As stated in Section 2.5, viscous drag is known to 
be important for structures with small diameter as compared to the wave height, and is important 
to the main body of the spar and the TLP in high sea states, and to the spar mooring lines and 
TLP legs and tendons in all sea states. The absence of viscous damping might be the reason for 
several of the differences, e.g., for the overestimation of the heave sum-frequency response in 
WAMIT as compared to the model tests. It is also tempting to attribute the overestimation in 
WAMIT of the TLP difference-frequency surge response to a lack of viscous drag, but this is 
partly contradicted by the fact that spar difference-frequency response actually is underestimated 
by WAMIT. The TLP is likely to have more viscous drag than the spar, however, so viscous drag 
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might at least be part of the explanation for the very high surge difference-frequency response 
produced by WAMIT. 

It is possible to introduce an external damping matrix in WAMIT, which can be used to model 
the effective linear damping to capture the energy dissipation caused by viscous drag. Even if a 
linear approximation of the full scale drag had been added, however, the difference between the 
viscous forces in the numerical model and in the wave tank still would have been large. This is 
due to scaling issues related to the viscous effects—which are not particularly easy to resolve. 
Froude scaling is used for the waves, therefore the Reynolds number is not scaled correctly and 
the relative importance of viscous effects to inertia loads is distorted. As stated in [36], this is not 
so important when inertia-dominated structures are tested, but often creates difficulties for 
scaling the loads from model-scale to full-scale for drag-dominated structures. Compared to most 
oil platforms, the wind turbine structures have a small diameter. Therefore is rather questionable 
to assume that the forces are dominated by inertia forces, especially in the higher sea states. To 
mitigate the scaling error of the drag forces, models used for wave tank testing of slender 
structures typically are much greater than for structures that are dominated by inertia forces (e.g., 
scaling ratios of 1:20 instead of 1:50). 

7.3.4 Inaccuracies in WAMIT 
Although there are many sources that make the model test results less reliable, the WAMIT 
results also contain inaccuracies. These include inaccuracies due to body discretization, the 
numerical representation of the hydrodynamic quantities, and inaccurate approximation of the 
instantaneous platform position during the calculation of second-order forces.  

The second-order results consist of several contributions at one difference-frequency or sum-
frequency. This raises the concern that inaccuracies are added together, such that tolerable 
inaccuracy levels become significant. If the spar QTFs are consistently underestimated (e.g., 
95% of total), and the TLP QTFs are consistently overestimated (e.g., 105% of total), this could 
account for the “too low” spar results and the “too high” TLP results.  

The most important parameter impacting the accuracy of the WAMIT results—the number of 
body panels—could not be properly tested for the TLP in the second-order convergence tests due 
to lack of computational power. The discretization used is similar to the typical discretizations 
found in literature and more refined than that used for the spar, but it is very difficult to assess 
the level of inaccuracy. The fact that second-order forces typically are assumed to be an order of 
magnitude less than the first-order forces provides reason to doubt the accuracy of the TLP QTFs 
computed by WAMIT. The TLP analyzed here, however, is orders of magnitude smaller than a 
TLP designed for use by the oil and gas industry. This raises the question whether “typical 
assumptions” apply at all. 

7.3.5 Wave Representation 
One important possible source of differences between the simulation and the wave tank test 
results is the wave representation, as different wave spectra were used for the simulations and the 
wave tank tests. The wave spectrum used to derive the WAMIT time series was imported from 
FAST, to allow for a comparison of WAMIT time series to time series from FAST. The wave 
elevation from a WAMIT time series is shown in Figure 95, and the power spectral density of the 
wave elevation in the wave tank test is shown in Figure 96.  
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Comparing Figure 95 to Figure 96 shows that the wave spectra in the wave tank tests have a 
more pronounced peak than the wave spectrum used in the simulations. The wave spectrum used 
for the creation of the WAMIT time series is a Pierson-Moscowitz spectrum. The spectrum used 
in the wave tank test is a JONSWAP spectrum with peak factor γ = 2 for the lowest sea state, γ = 
2.2 for the 1-year storm, and γ = 3 for the 100-year storm. In the JONSWAP spectrum, more of 
the wave energy is located closer to ωp in the model tests, i.e., there are higher amplitudes and 
more energy close to the peak and lower amplitudes and less energy at other frequencies (see 
also Figure 7). This again can influence how narrow the response peaks are, and might be partly 
the reason that the difference-frequency peaks seen in the wave tank tests are so much higher and 
narrower than in the WAMIT results. 

 

Figure 95. Power spectral density (PSD) of wave elevation for the WAMIT time series  
(Hs = 3.66 m, Tp = 9.7 s) 

 

Figure 96. Power spectral density of wave elevation from the wave tank (wave-only tests) 

The wave spectra in the wave-tank tests also contain more measurement noise. This is especially 
clear in the low sea state. Moreover, the wave spectra shown here describe the wave energy 
throughout the entire measurement. For the correct testing of second-order waves, it not only is 
important to have a correct overall representation of the wave spectrum, it also is important for 
the pairs of waves leading to second-order response to occur at the same point in time. This 
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means that the wave spectrum must be correct not only across the whole measurement, but also 
for shorter periods within the measurement. If this requirement is not fulfilled, then the result 
could be an unrealistic (i.e., too high or too low) second-order response. The variation of the 
wave spectra and motion response spectra from the wave-tank tests with respect to time might 
lead to better understanding of whether this influenced the measurement results. 

Another difference between the two wave representations is found at high wave frequencies. The 
wave spectrum as it is modeled in FAST is cut off at 3 ωp and thus eliminates potentially 
important first-order excitation at high frequencies. This cut-off frequency is shown in as a drop 
in the wave elevation PSD in Figure 95 and Figure 96. The cutoff is not as important for the spar, 
which exhibits very little response at high frequencies. For the TLP, which has significant low-
frequency response, however, it can pose a problem. It does not heavily influence the simulation 
results from WAMIT seen in this report, because the eigenfrequencies of the system are far 
above the incident-wave frequency range in the WAMIT simulations. If the turbine is modeled 
with a flexible tower, however, then even a very small first-order wave at 2 rad/s can induce a 
significant motion response. An analysis of the first-order resonant response at high frequencies 
in FAST would be helpful for assessing how much of the high-frequency response is from first-
order and second-order effects. Such an analysis only is possible if the wave spectrum is not cut 
off at too low a frequency. 

7.3.6 Computation of Second-Order Results in WAMIT 
Another important issue requiring further investigation is the influence of the first-order RAOs 
on the second-order results. Both the second-order force contributions Fp and Fq depend on the 
first-order motions. The second-order potential force Fp also depends on the second-order 
scattering potential. The boundary-value problem for the scattering potential provided in 
Equation 2–61 through Equation 2–64 shows that the scattering potential depends on the forcing 
function B at the body boundary, which is given by Equation 2–64, and that B depends on the 
first-order motions. The dependence of the quadratic force Fq on the body motions easily is seen 
in Equation 2–71. 

If WAMIT computes correct first-order RAOs, then there is no problem related to these 
formulations. This is normally the case if the structure above the water can be treated as a rigid 
body. If the body above the water is not rigid, however, then coupling effects can be important 
for the response. For the TLP—which has a high pitch frequency—it was noted that the tower-
bending frequency and the pitch eigenfrequency mutually influence each other. In [27], the first-
order RAOs were computed for a similar TLP system in WAMIT and in FAST with both a rigid 
and a flexible turbine. The results are shown for roll in Figure 97 (the results for other DOFs are 
similar). For the case with a rigid turbine, the results from WAMIT (red line) and FAST (blue 
line) are very similar, and especially the peaks are well aligned. If the turbine tower DOFs are 
included in the calculation in FAST, however, then the RAO changes significantly (black line). 
The peak is shifted to lower frequencies. The flexible tower cannot be modeled in WAMIT, 
therefore the second-order forces are calculated based on the wrong first-order motions.  

The next step is to determine how important the inaccuracies of the first-order RAOs are to the 
second-order results. Of particular interest are the second-order forces, which are the input 
required for wind turbine simulations. For a system such as the TLP, which is very stiff in roll 
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and pitch and therefore has very small motion response, the influence might not be very 
significant.  

 

Figure 97. Roll RAO for a TLP configuration calculated with a flexible turbine (“FAST”) and with a 
rigid turbine (“WAMIT” and “FAST Rigid Turbine”) [27]. 

7.3.7 General Issues 
Note that it generally is a complicated task to match wave tank tests with simulations, especially 
when considering second-order forces. In addition to the complications discussed above, there 
are other, less-understood reasons. For example, the instantaneous position and motion of the 
turbine can be supposed to have a much greater effect for second-order forces (and motions) than 
for first-order forces. The main reason is that the motion amplitudes of the platform no longer are 
generally small as compared to the wavelength when \considering second-order waves. The 
instantaneous position therefore is more important for the second-order forces. Also, physical 
effects such as the Doppler effect induced by the platform motions are of increased importance. 
The Doppler effect is especially important because the structures can have a very narrow 
frequency band when leading to resonance. When the structure is moving toward or away from 
the direction of the incoming waves, the Doppler effect can change the frequency at which the 
structure experiences the wave forces, and in this way determines whether the structure 
experiences resonance. 

8 Summary and Conclusions 
In this study, second-order hydrodynamic analysis as it is used in the offshore industry has been 
applied to two different floating wind turbine concepts, the OC3-Hywind spar and the UMaine 
TLP. First, a convergence test of the WAMIT results to gain confidence in the results was 
performed. Then concepts were analyzed using WAMIT with system matrices derived from a 
FAST linearization. An important limitation to the WAMIT model was recognized: WAMIT 
cannot model the flexibility of the turbine tower (and, of course, viscous effects are neglected). 

The pitch DOFs of the TLP are strongly influenced by tower bending, therefore including tower 
bending leads to a shift in the pitch frequency from 3.25 rad/s (rigid turbine) to 2 rad/s (flexible 
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turbine). This problem, however, could not be solved within the time frame of this project, and 
the turbine only could be modeled as a rigid structure. 

The frequency-domain results for the first-order and second-order hydrodynamic quantities such 
as added mass and damping coefficients, first-order force and motion RAOs, and second-order 
force and motion QTFs are presented and analyzed. Further, the frequency-domain results were 
used to generate time series that are compared with simulations that includes aerodynamic loads 
but no second-order excitation. 

The test results from the DeepCwind model tests performed in a wave tank in Wageningen, 
Netherlands, next were analyzed to find second-order effects. The results first were compared 
with WAMIT results. The comparison showed that WAMIT underpredicts the second-order 
response of the spar, but overpredicts the second-order response of the TLP as compared to the 
model tests. Possible reasons for these differences are listed in Section 7, with the most 
important being the following. 

• Differences in the systems, such as a rigid or flexible turbine, increased topside mass in 
the tank tests. Changes in the mooring system led to shifts in the surge eigenfrequency 
(for the spar) and in the pitch eigenfrequency (for the TLP). Additionally, the heavy 
measurement cables used in the wave tank test likely have an important effect on the 
system dynamics. 

• Viscous effects that are present in the wave tank are not present in the WAMIT analysis. 
The viscous effects observed in the wave tank are not representative of a full-scale 
system because of scaling issues. 

• Second-order results are based on inaccurate first-order motion RAOs in WAMIT. 

• The wave representation differs between the simulations and the tests, with regard both to 
the chosen spectrum and the cut-off frequency. 

Next, the model test results for the cases with combined wind and wave loading were analyzed to 
determine how the introduction of wind influences the second-order effects. The influence of 
second-order effects on tower-bending moment and nacelle accelerations also is analyzed. These 
all are parameters that cannot be analyzed with WAMIT, because WAMIT does not include 
aerodynamic loading and does not model the structure above the waterline.  

Despite differences to WAMIT results and the uncertainties regarding error sources and scaling 
of viscous forces, some general conclusions can be drawn. 

• For the OC3-Hywind spar, the peak values of the second-order QTFs from WAMIT are 
at least an order of magnitude smaller than the peak values for first-order QTFs.  

• The difference-frequency response at the eigenfrequencies is the most important second-
order effect for the spar, and is the most significant relative to the first-order response for 
heave. This is a result that is obtained both from the model tests and from WAMIT. The 
difference-frequency response is more significant in the model tests, however, than in 
WAMIT for all degrees of freedom. 
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• For the UMaine TLP, the second-order force QTFs from WAMIT peak at about 50% of 
the first-order peak, which means that they are much more significant than for the spar.7 
This also influences the response calculated by WAMIT, which show high difference-
frequency response in surge with a coupling to pitch and significant non-resonant sum-
frequency response in heave. 

• In the TLP model tests, there is no significant peak in the surge response at the surge 
eigenfrequency although the low-frequency response is quite high. In heave, non-
resonant response from sum-frequency forces is seen, but it is much less than found in 
WAMIT, probably due to viscous damping. The pitch response cannot be compared 
between WAMIT and the model test because the eigenfrequencies of the two systems are 
so different. There is, however, sum-frequency response at the pitch eigenfrequency in 
the model tests, although it is not very significant. 

• Mean-drift forces computed in WAMIT are very small as compared to aerodynamic 
thrust from FAST, and therefore can be viewed as insignificant (less than 1% of the mean 
thrust) as long as the turbine is operating. If the turbine is idling, then the relative 
significance of the mean-drift forces increases, but they never comprise more than about 
15% of the mean thrust force (even without including aerodynamic forces due to tower 
drag). This behavior is confirmed by the wave tank tests, in which dynamic wind 
increases the mean offset of the turbine by several orders of magnitude. 

• The PSD of rotor thrust time series and surge response time series from FAST show that 
aerodynamics induces significant low-frequency loads and responses. This means that the 
difference-frequency effects are likely to be unimportant in comparison. The wave tank 
test confirmed this. In a low sea state with high wind (e.g., Hs = 2 m, wind speed at hub 
height = 21 m/s), the low-frequency response below 0.5 rad/s is completely dominated by 
aerodynamics. High aerodynamic loading also increases the motion response at high 
frequencies, and tends to decrease the importance of sum-frequency peaks. 

• For the TLP, the sum-frequency response in pitch is considered the most important 
second-order effect because of the coupling between the pitch and tower eigenfrequency. 
This also is important because sum-frequency pitch motions translate into nacelle 
accelerations and tower-bending moments, and also have a significant effect on the 
tendon loads. This means that care is required for choosing the pitch eigenfrequency, and 
ideally it should be designed to be at a higher frequency than in the model tests, further 
away from the wave-frequency range. 

• For the spar, the sum-frequency loads were found to be translated to the tower even 
though they do not induce any pitch motion. The sum-frequency loads excite the tower-
bending frequency and, as such, induce a tower-bending moment and nacelle 
accelerations. 

No clear conclusion about whether second-order effects are important to the design of a turbine 
can be determined from the analysis presented. Difference-frequency effects seem to induce 

                                                 
7 The difference-frequency results calculated based on WAMIT output are affected by the error in the QTF 
calculation, as described in Section 6.2.2.1. This error is significant enough that the difference-frequency results for 
the TLP cannot be trusted. 
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possibly large response, but most often probably will be dominated by aerodynamics. Sum-
frequency excitation is important to platform motions when the eigenfrequency is just above the 
incident wave range, but also can excite tower bending in other systems. The main outcome of 
this work is presenting a method for analyzing the second-order effects of a wind turbine, and 
simultaneously examining limitations to this method. The most important conclusion probably is 
that the type of analysis used for large offshore oil platforms is not necessarily directly 
applicable to the typically much smaller wind turbine structures. Further, a great number of 
results have been presented. Although the results are not easy to interpret, it is hoped that they 
can form a basis for future work. 

9 Recommendations for Future Work 
If second-order hydrodynamics were implemented in FAST, it then would be a valuable tool for 
further analysis of the second-order effects. It would allow for modeling of the turbine as a 
flexible body, and the influence of second-order effects on the overall turbine loads would be 
easier to analyze as they could be calculated both alone and in combination with first-order 
loads. These results then could be compared to simulations that include only first-order loads. 
Further, FAST could be used to assess the effect of second-order hydrodynamics for a much 
wider range of different environmental conditions than is possible in model tests. 

Before this can be done, however, some problems must be resolved. Most importantly, the 
accuracy of the method used to calculate second-order results in WAMIT must be assessed. A 
possible way to determine the influence of the first-order RAO on the second-order forces might 
be to create two systems with the same geometry, but with different mass and external 
damping/stiffness matrices. These two systems would experience the same first-order loads, but 
would have different first-order RAOs. This would lead to differences in the second-order loads 
that only are due to the differences in the first-order motions. If the differences are significant, 
then the next question would whether there is a way to include tower bending in WAMIT, or a 
way to import correct first-order motion response to WAMIT. 

There also are many steps that can be taken to better understand the differences between the 
model tests and WAMIT. One possibility would be to rerun the WAMIT cases with additional 
damping that is adjusted to the damping in the wave tank test, as presented in Goupee et al. 
(2012b). If WAMIT is rerun, then the FAST models that are under development as part of the 
DeepCwind project could be used to get the linearized system matrices. These FAST models are 
meant to match the turbine models tested in the tank best as is possible, but were not available at 
the time of this work. Throughout the process of matching the FAST model to the model-test 
results, the understanding of the model test will also be increased and perhaps lead to new insight 
about why test results differ so widely between WAMIT and the wave tank. Moreover, full-scale 
floating-turbine data from the pilot projects would be very valuable for increasing the 
understanding of the influence of second-order effects. 

This work only is the beginning of a complete assessment of second-order effects. Many 
parameters influence the second-order effects, such as water depth, short- or long-crestedness of 
the sea state, and the size (i.e., diameter) of the structure. It is important that future work assess 
the influence of these parameters, for example if the turbine was scaled from 5 MW to 10 MW. 
A structure with several columns, such as the semi-submersible tested in the DeepCwind tests, 
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also can experience interaction effects that increase the effect of the second-order loads. The 
impact of second-order effects on extreme loads and fatigue for a wide range of turbine 
configurations must be understood before a conclusion can be drawn about whether these effects 
are important. 
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Appendix: FAST Linearization Process 
To solve the equations of motion, WAMIT requires information about inertia, damping, and 
stiffness. If the body is floating freely, then the only necessary input are the radii of gyration and 
the vertical position of the center of gravity (CoG). In this case, it is assumed that the CoG lies 
along the line where X = Y =0. If a wind turbine is mounted atop the platform, then the CoG 
generally is not at X= Y = 0, due to the rotor and nacelle overhang. If the CoG offset is to be 
taken into account, then a different input format must be used. In this format, the full (X, Y, Z) 
position of the CoG must be specified, and the full 6 x 6 mass matrix be defined. It also is 
possible to define 6 x 6 external stiffness and damping matrices to take into account damping and 
stiffness in the system that are not produced by solving the hydrodynamics/hydrostatics problem 
for the platform geometry in WAMIT. For a wind turbine, this includes contributions from 
aerodynamics, rotor gyroscopics, and the mooring system. 

To find the system matrices, a model of the wind turbine in FAST is linearized around an 
operating point, and the outputs are post-processed in MatLab. It is important to understand how 
FAST uses the hydrodynamic input from WAMIT in the linearization process, such that all 
effects are included but none are counted twice. The process involves several steps and 
exchanges of inputs between FAST and WAMIT. 

To run FAST for a floating platform, inputs from WAMIT are required to account for 
hydrodynamics. These inputs include hydrodynamic restoring (“.hst” file), added mass and 
damping (“.1” file), and wave excitation forces (“.3” file). FAST accounts for the gravity terms 
of the hydrodynamic restoring internally, therefore these terms must not be included in the “.hst” 
file. The simplest way to avoid this is by setting the vertical CoG position to zero in WAMIT. 
When doing this, it is important to remember that the RAOs computed by WAMIT will be 
incorrect (unless the CoG position actually is 0). The OC3-Hywind directory and other floating 
wind turbine directories that can be downloaded from the National Wind Technology Center 
(NWTC) homepage include the WAMIT output files derived in the described fashion, so it is not 
necessary to run WAMIT to be able to perform FAST analysis or linearization for these turbines.  

To obtain the mass, damping, and stiffness inputs required to run WAMIT, a second-order 
linearization of the model in FAST is run for the operating point of interest. The only DOFs 
included are the platform DOFs surge, sway, heave, roll, pitch, and yaw. As the aerodynamic 
inertia, damping, and stiffness change with changing wind conditions, it is important to choose 
the correct operating point. 

It is not possible to linearize FAST with wave radiation damping or time-varying wave 
excitation, therefore these effects must be turned off in the FAST linearization (RdtnTMax = 0.0 
to turn off wave radiation; WaveMod = 0 to turn off all wave excitation). To eliminate damping 
contributions from viscous drag, the viscous drag can be removed from the linearization by 
setting the drag coefficient PtfmCD to zero. Rotor gyroscopics can be turned off by setting the 
rotor speed to zero. It also is important to use the right FAST executable, which means not using 
the executable specifically designed for the OC3-Hywind (because this includes additional 
damping). After the linearization is run in FAST, the postprocessing MatLab file “GetMats.m” 
that is provided with MBC3 should be run, as described in [3]. 
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The output from the linearization is as follows: 

• the stiffness matrix, including hydrodynamic restoring (with gravity terms) 

• the damping matrix, without wave radiation damping 

• the mass matrix, including the infinite frequency added mass. 
From this output, the damping matrix can be used directly. The mass matrix must be 
postprocessed, that is, the added mass matrix at the infinite frequency limit A∞ must be 
subtracted from the mass matrix. The best way of doing this is by using the same A∞ that was 
sent to FAST from WAMIT. The stiffness matrix also must be postprocessed and—because this 
is a special case—is explained more thoroughly here. 

The stiffness matrix K has many different contributions as seen in Equation A–1. 

𝐾𝑡𝑜𝑡𝑎𝑙 = 𝐾𝑎𝑒𝑟𝑜 + 𝐾ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡 + 𝐾𝑔𝑟𝑎𝑣𝑅𝑒𝑠𝑡 + 𝐾𝑚𝑜𝑜𝑟𝑖𝑛𝑔 (A-1) 

Here Ktotal is the total stiffness of the system, Kaer o is the aerodynamic stiffness, Khydrostat is the 
stiffness from the hydrostatics, KgravRest provides the gravity-restoring terms, and Kmooring is the 
stiffness from the mooring system. When WAMIT is run with the CoG at the correct position, 
the output in the “.hst” file is as shown in Equation A–2. 

𝐾𝑊𝐴𝑀𝐼𝑇 = 𝐾ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡 + 𝐾𝑔𝑟𝑎𝑣𝑅𝑒𝑠𝑡 (A-2) 

This means that the external stiffness comes from the mooring system and the aerodynamics is 
determined by subtracting KWAMIT from Ktotal. The stiffness matrix K, however, is calculated 
during the linearization, as shown in Equation A–3. 

𝐾 = �
𝜕𝑀
𝜕𝑞⃗

𝑞̈⃗ +
𝜕𝐹
𝜕𝑞⃗
�
𝑜𝑝

 (A-3) 

Usually only the second term is of interest, but if the system is not in equilibrium at the operating 
point, then the accelerations 𝑞̈ value might be high, and the first term from inertia can be 
significant. 

To avoid the problems induced by the inertia term in Equation A–3, the force output from the 
linearization can be used to get the stiffness matrix. To do this, the FAST “.fst” input file must be 
changed to output platform forces and moments, such that PtfmFxi, PtfmFyi, PtfmFzi, PtfmMxi, 
PtfmMyi, and PtfmMzi are included in the output list. By running GetMats.m, the force-
displacement characteristics of the system are obtained in the form of the matrix DspCMat. 
Given that only the platform DOFs are included in the linearization, the rows corresponding to 
the six platform forces and moments form a 6 x 6 matrix. The desired stiffness matrix of the 
system, with appropriate sign and units, is given by 

𝐾 = −1000 ∙ 𝐷𝑠𝑝𝐶𝑀𝑎𝑡 
    = 𝐾ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡+𝐾𝑎𝑑𝑑𝑒𝑑𝑀𝑎𝑠𝑠+𝐾𝑚𝑜𝑜𝑟𝑖𝑛𝑔 . 

(A-4) 
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To exclude the contributions of the hydrostatics (Khydrostat) and added mass (KaddedMass) from the 
output in DspCMat, the linearization should be run with zero-valued WAMIT input (i.e., an 
“.hst”, a “.1”, and a “.3” file that have the same format as the normal input, but contain zero-
valued inputs). Using zero-value input also produces the desired mass and damping matrix (not 
found through DspCMat). 
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