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ABSTRACT 
This paper focuses on the analysis of a floating wind 

turbine under multidirectional wave loading. Special attention 
is given to the different methods used to synthesize the 
multidirectional sea state. This analysis includes the double-
sum and single-sum methods, as well as an equal-energy 
discretization of the directional spectrum. These three methods 
are compared in detail, including the ergodicity of the solution 
obtained. From the analysis, the equal-energy method proved to 
be the most computationally efficient while still retaining the 
ergodicity of the solution. This method was chosen to be 
implemented in the numerical code FAST. Preliminary results 
on the influence of these wave loads on a floating wind turbine 
showed significant additional roll and sway motion of the 
platform. 
Keywords: Multidirectional Waves, Floating Wind Turbine, 
Synthesis of Multidirectional Seas. 

NOMENCLATURE 
𝑆(𝜔) frequency spectrum 
𝐷(𝜃) directional spectrum 

N number of discrete frequencies 
Θ number of discrete directions 

ς(x, y, t) wave elevation at point (x, y) and time t 
X(ω,θ) first-order load response amplitude operator 

X+/− second-order load response amplitude operator  
(quadratic transfer function) 

1. INTRODUCTION 
Floating wind turbines are a promising technology to 

generate clean, renewable energy and are currently being 
studied with complex aero-hydro-servo-elastic modeling tools. 
Contributions from wave loads on the floating platform are 
most often modeled assuming unidirectional wave fields. 
However, the different wave components that comprise an 
irregular sea state come from different directions. Figure 1 
compares the wave elevation obtained in the unidirectional case 
with a case involving multidirectional waves. 

 
Figure 1.  Unidirect ional (top) versus mult idirect ional 
sea surface (bottom), under a JONSWAP spectrum, 
with Hs=6 m, Tp=10 s, gamma = 2.2,  and the 
spreading factor s=2.   
 
When modeling multidirectional sea states, the wave elevation 
is now a function not only of the wave frequency but also of the 
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incoming wave direction. In irregular waves, this is usually 
described with a directional spectrum or spreading function, 
similar to a frequency spectrum. It is assumed that the total 
spectrum can be defined as: 

𝑆(𝜔, 𝜃) = 𝑆(𝜔).𝐷(𝜃) (1) 
where 𝑆(𝜔) is the frequency spectrum, independent of the 
direction of the waves, and 𝐷(𝜃) is the directional spectrum. 
There are several ways to define the directional spectrum. The 
most commonly used is a cosine spreading function: 

𝐷(𝜃) = 𝐶 �cos �𝜋�𝜃−𝜃
��

2𝜃𝑚𝑎𝑥
��
2𝑠

 ,   𝜃̅ − 𝜃𝑚𝑚𝑚 < 𝜃 < 𝜃̅ + 𝜃𝑚𝑚𝑚 (2)  

where 𝜃 is the incoming wave direction, 𝜃̅ is the mean wave 
direction, 𝜃𝑚𝑚𝑚 is the maximum deviation from the mean wave 
direction, and 𝑠 is the wave spreading parameter. 𝐶 is a 
normalizing constant that is defined as [1]: 

𝐶 = √𝜋Γ(𝑠+1)
2𝜃𝑚𝑎𝑥Γ�𝑠+1 2� �

  (3)  

where Γ is the gamma function. This ensures that: 

� 𝐷(𝜃)
𝜃𝑚𝑎𝑥

−𝜃𝑚𝑎𝑥

𝑑𝑑 = 1 (4)  

This is a very important property that must be fulfilled by every 
method used to compute the discrete spectrum (see Section 
2.2). It guarantees that the total energy in each frequency band 
Δ𝜔 is kept faithful to the frequency spectrum 𝑆(𝜔).  

The direction spectrum can also be a function of frequency, 
if the spreading coefficient is set to be frequency dependent. 
Despite being the most common directional spectrum, other 
methods have been developed as an alternative to the cos2s 

spectrum. Reference [2] describes several of these methods, 
which are also included in the MatLab toolbox WAFO [3]. 

2. SYNTHESIS OF MULTIDIRECTIONAL SEAS 
The water surface elevation at a given point (𝑥, 𝑦) on the 

still water plane at a given instant 𝑡 as a result of a regular 
progressive wave can be described simply by:  

𝜍(𝑥, 𝑦, 𝑡) = 𝑅𝑅(𝐴𝑒𝑗�𝜔𝑡−𝐾(𝑚.cos(𝜃)+𝑦.sin(𝜃))�) (5) 

where A is the wave amplitude (including phase) in meters, ω is 
the wave frequency in radians per second, 𝐾 is the wave 
number in 1/m, and θ is the direction of the incoming wave. In 
an irregular sea state, the surface elevation can be described as 
the contribution from each individual wave: 

𝜍(𝑥, 𝑦, 𝑡) = 𝑅𝑅(��𝐴𝑘,𝑚𝑒𝑗�𝜔𝑘𝑡−𝐾𝑘(𝑚.cos(𝜃𝑚)+𝑦.sin(𝜃𝑚))�)
𝑁

𝑘=1

Θ

𝑚=1

 (6)  

The indices 𝑚 and 𝑘 represent the wave direction and 
frequency component, respectively. The method of determining 
the individual wave components from a given wave spectrum is 
discussed in the following sections. 

2.1. Frequency Spectrum Discretization 
Several publications discuss the different approaches to 

discretize a wave spectrum (e.g., [4,5]). Depending on the way 
the frequency domain is discretized, the methods can be 
divided into constant frequency or a nonconstant frequency 
step. When using a constant frequency step, to obtain a unique 

wave elevation time series the number of individual frequency 
components is obtained from the desired length of the wave 
time-series. This is obtained from the sampling theorem: 

𝑁 =
2𝜋
∆𝑡∆𝜔

=
𝑡𝑚𝑚𝑚
∆𝑡

=
2𝜔𝑚𝑚𝑚
∆𝜔

 (7)  

Despite the larger number of individual frequency components 
required, this approach allows the use of computationally 
efficient fast Fourier transform (FFT) routines. This approach is 
implemented in FAST for unidirectional seas and was selected 
for this paper.  

A nonconstant frequency step discretization allows the 
number of frequency components to be reduced while still 
achieving a unique time-series. The reduced number of 
frequency components allows the summations in Eq. (6) to be 
directly computed. This approach is employed by the numerical 
code OrcaFlex [6] in combination with an equal-energy 
discretization routine. 

2.2. Directional Spectrum Discretization 
Similar to the frequency spectrum, the directional spectrum 

can also be subdivided into constant or nonconstant directional 
steps. When using constant direction steps, two methods of 
computing the wave elevation in directional sea states are found 
in the literature: the double-sum and single-sum methods [7]. 
A third method involving an equal-energy discretization of 
the directional spectrum is also used in this paper [6]. These are 
described in the following sections. Here, the wave amplitude is 
assumed to be deterministic with a random phase; the equations 
can be extended so that the amplitudes are also randomly 
distributed (an option available in FAST). 

2.2.1. Double-Sum Method 
In the double-sum method, the wave spectrum is expressed 

as a two-dimensional matrix with size 𝑁 by Θ, where 𝑁 is the 
number of frequency components and Θ is the number of 
directions considered. Therefore, this discretization contains 
several wave components with the same frequency over 
different directions. The wave elevation in this case is 
expressed as in Eq. (6) with the complex wave amplitude given 
by: 

𝐴𝑘,𝑚 = �2𝑆(𝜔𝑘)Δ𝜔.�𝐷(𝜃𝑚)Δθ.𝑒𝑗2𝜋𝑈𝑘,𝑚 (8) 
where Uk,m represents a random number uniformly distributed 
between [0,1], obtained to give a random phase to each wave 
component with frequency ωk and direction θm. 

2.2.2. Single-Sum Method 
The single-sum method avoids having different wave 

components with the same frequency by subdividing each wave 
frequency band into subfrequencies ∆𝜔′ = ∆𝜔 Θ⁄ . Therefore, 
the wave spectrum is expressed as a single vector of 
dimensions 𝑁 × Θ, ensuring that the same wave frequency 
component does not repeat itself along the spectrum. 
References [8] and [1] suggest uniformly distributing the 
directions in ascending order across the subfrequencies. This 
should give the maximum frequency difference between waves 
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with the same direction. This method is presented in detail in 
[9]. The wave elevation is in this case expressed by: 

𝜍(𝑥, 𝑦, 𝑡) = 𝑅𝑅(�𝐴𝑘𝑒
𝑗�𝜔′

𝑘𝑡−𝐾𝑘(𝑚.cos(𝜃𝑘)+𝑦.sin(𝜃𝑘))�)
𝑁.Θ

𝑘=1

 (9) 

where 𝜔′
𝑘 is the subdivided frequency vector. The wave 

amplitude is obtained using: 
𝐴𝑘 = �2𝑆(𝜔𝑘)Δ𝜔′.�𝐷(𝜃𝑘)Δθ.𝑒𝑗2𝜋𝑈𝑘 (10) 

The distribution of wave directions θk is formally given by: 
𝜃𝑘 = 𝜃𝑚𝑖𝑛 + Δ𝜃𝜃′ with    𝑘′ = 𝑘𝑘𝑘𝑘(Θ) (11) 

where 𝑚𝑚𝑚(Θ) represents the arithmetic modulo Θ. This 
notation is often used in modular arithmetic function (or clock 
arithmetic) [10].  

The time series obtained with this method will have N × Θ 
points instead of just N points. However, only the first N points 
are used in the time-domain analysis (because 𝑡𝑚𝑚𝑚′ = 𝑡𝑚𝑚𝑚Θ). 

2.2.3.  Equal-Energy Method 
The last approach proposed in this paper is to discretize the 

directional spectrum using an equal-energy method. This is 
used in the commercial code OrcaFlex [6]. The idea behind this 
method is to use the same N points used in the unidirectional 
case. The equal-energy approach means that each direction 
component represents the same energy. The discrete amplitude 
𝐴𝑘 is kept constant; therefore, the spectrum shape is achieved 
by using a nonconstant ΔΘ. The equal-energy discretization 
guarantees that there will be more direction components close 
to the mean wave direction. 

The method to determine the distribution of the discrete 
direction values can be summarized as: 
1. Compute the spreading function 𝐷(𝜃) for a high number of 

equally spaced directions 𝜃 between −𝜃𝑚𝑚𝑚 < 𝜃 < 𝜃𝑚𝑚𝑚 
(blue line in Figure 2). 

2. Compute the cumulative energy distribution 𝑃(𝜃) =

∫ 𝐷(𝜃′)𝑑𝜃′𝜃
−𝜃𝑚𝑎𝑥

 (green line on Figure 2)[5]. 

3. Calculate the energy step vector, based on the user-defined 
number of directions Θ from 1 2Θ�  to 1 − 1

2Θ�  (the 

midpoints of each bin), with a step of  1 Θ�  (circles on 
Figure 2). 

4. Interpolate the vector 𝑃(𝜃) to get the desired energy steps 
and determine the discrete values of 𝜃′ (crosses on Figure 
2). 

This approach should guarantee that the energy content in the 
frequency spectrum, discretized by a constant frequency step, is 
kept constant (eq. (4)) when using multidirectional waves. The 
wave elevation is given by: 

𝜍(𝑥, 𝑦, 𝑡) = 𝑅𝑅(�𝐴𝑘𝑒𝑗�𝜔𝑘𝑡−𝐾𝑘(𝑚.cos(𝜃𝑘)+𝑦.sin(𝜃𝑘))�)
𝑁

𝑘=1

 (12) 

where the wave amplitude is simply given by: 
𝐴𝑘 = �2𝑆(𝜔𝑘)Δ𝜔.𝑒𝑗2𝜋𝑈𝑘 (13) 

For each frequency sample, one of the discrete directions 
obtained with the equal-energy approach should be randomly 
assigned. However, it should be ensured that each discrete 
direction should be used N/Θ times over the frequency 
spectrum. Therefore, it has to be ensured that N/Θ is an integer. 
 

 
Figure 2.  Spreading funct ion, cumulat ive energy 
funct ion, and discrete points (𝚯 = 𝟓). 

3. COMPARISON OF THE DIFFERENT 
DISCRETIZATION METHODS 
To compare the three methods, the wave elevation and 

first-order loads were computed for a JONSWAP spectrum with 
Hs = 6 m and Tp = 10 s and gamma = 2.2. The directional 
spectrum was obtained with Eq. (2), with a spreading 
coefficient of s = 1 and evaluated between -90 and 90 degrees. 
For the double- and single-sum methods, 40 discrete directions 
were selected to suitably cover the wave direction spectrum, as 
recommended in [7]. However, for the equal-energy method, 
only 10 directions were necessary. This is further discussed in 
Section 3.4. The wave amplitude was obtained using a 
deterministic amplitude with a random phase. The 
unidirectional case is included for comparison purposes.  

 
Figure 3.  Wave elevat ion using the different  methods. 

3.1.  Wave-Elevation Time Series 
The wave elevation at the origin was obtained with all 

three methods. Figure 3 presents the wave elevation time series 
at the origin (𝑥, 𝑦) =  (0,0). Because a random phase was used 
for each wave component, the time series do not exactly match 
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between any of the methods except for the equal-energy 
method. In this case, the time series exactly matches the 
unidirectional case, as the phase was kept the same and only the 
wave direction of each frequency component was changed.  

The wave spectra can be seen in Figure 4, obtained by 
performing an FFT routine on the wave-elevation time-series 
using N points. The unidirectional case and the equal-energy 
method provide a smooth line as a result of the constant 
amplitude, random-phase spectrum used. The double-sum 
method presents a random amplitude spectrum because of the 
interaction of the different wave components with the same 
frequency and different directions and random phases. The 
single-sum method, despite having just one direction per 
frequency component, also produces this random amplitude 
spectrum, as only the first N points are used from the N × Θ 
long time-series. The interaction between the different wave 
components is therefore artificially introduced. 

 
Figure 4.  Wave elevat ion spectra obtained with the 
different  methods. 

3.2. First-Order Loads 
The first-order wave-excitation loads were calculated using 

the three presented methods. Table 1 presents the equations 
used to compute the wave loads for the different methods 
previously described, assuming the reference point of the vessel 
has coordinates (𝑥,𝑦) = (0,0). The linear transfer function 
used is representative of the semisubmersible platform studied 
within the International Energy Agency (IEA) Wind Task 30 
Offshore Code Comparison Collaboration Continuation (OC4) 
project [11]. 
 

Table 1.  Computat ion of first -order loads. 
Method First-Order Loads 

Double-Sum 𝐹(1)(𝑡) = 𝑅𝑅(��𝐴𝑘,𝑚𝑋(𝜔𝑘 ,𝜃𝑚)𝑒𝑗(𝜔𝑘𝑡)
𝑁

𝑘=1

Θ

𝑚=1

) 

Single-Sum 𝐹(1)(𝑡) = 𝑅𝑅(�𝐴𝑘𝑋(𝜔′𝑘 ,𝜃𝑘)𝑒𝑗(𝜔′𝑘𝑡))
𝑁Θ

𝑘=1

 

Equal-Energy 𝐹(1)(𝑡) = 𝑅𝑅(�𝐴𝑘𝑋(𝜔𝑘 ,𝜃𝑘)𝑒𝑗(𝜔𝑘𝑡)
𝑁

𝑘=1

) 

Figure 5 presents the time series for the force calculation in 
surge and sway. As a result of the random phase discussed 
earlier, none of the time series exactly match. For the 
unidirectional case, the sway forces are zero as expected, as the 
mean wave direction was assumed to be zero degrees.  

 
Figure 5.  First-order excitat ion forces in surge (top) 
and sway (bottom) for the different  methods. 
 
Figure 6 presents the spectrum of the force time series. The 
single-sum and double-sum methods present a random 
amplitude spectrum because of the obtained random amplitude 
wave spectrum. The equal-energy method presents a much 
smoother spectrum. As it only considers a discrete number of 
directions, and most of them are close to the mean wave 
direction, all of the directional components have similar 
contributions to the force in the surge degree of freedom. The 
sway is smaller than the surge force as expected. The obtained 
spectrum for the equal-energy method now also presents 
random amplitude, according to the random direction assigned. 

 
Figure 6.  Spectra of the first -order excitat ion forces 
for surge (top) and sway (bottom). 
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Figure 7 presents the ratio of computational time for the 
different methods compared with the unidirectional case, for a 
3,600-s simulation. The equal-energy method used 10 discrete 
directions, whereas the other methods used 40. The single-sum 
method presents the highest total value (around 550 times 
higher than the unidirectional case), as a result of the 
interpolation of the frequency spectrum, which generates a 
vector with approximately 1.44 million entries. The equal-
energy method is faster than the double-sum method. This 
difference should be much larger in the computation of the 
second-order forces. 

 
Figure 7.  Computat ional t ime required for the 
different  methods. 

3.3. Second-Order Loads 
Second-order wave loads require the computation of 

quadratic transfer functions, both for the difference- and the 
sum-frequency problems (respectively represented by 𝑋− and 
𝑋+). For multidirectional sea states, these matrices are four-
dimensional, taking into account the second-order interactions 
between waves with different frequencies and directions.  
 

Table 2.  Computat ion of second-order loads. 
Method Second-Order Loads 

Double-Sum 

𝐹(2)(𝑡)

= 𝑅𝑅 �� � ���𝐴𝑘,𝑚𝐴𝑙,𝑛𝑋+(𝜔𝑘,𝜔𝑙 ,𝜃𝑚,𝜃𝑛)𝑒𝑗(𝜔𝑘+𝜔𝑙)𝑡
𝑁

𝑙=1

𝑁

𝑘=1

Θ

𝑚=1

Θ

𝑐=1

+ 𝐴𝑘 ,𝑚𝐴𝑙,𝑛∗𝑋−(𝜔𝑘,𝜔𝑙 ,𝜃𝑚,𝜃𝑛)𝑒𝑗(𝜔𝑘−𝜔𝑙)𝑡�� 

Single-Sum 

𝐹(2)(𝑡)

= 𝑅𝑅 ����𝐴𝑘𝐴𝑙𝑋+(𝜔′𝑘,𝜔′𝑙 ,𝜃𝑘,𝜃𝑙)𝑒𝑗(𝜔′𝑘+𝜔′𝑙)𝑡
𝑁Θ

𝑙=1

𝑁Θ

𝑘=1

+ 𝐴𝑘𝐴𝑙∗𝑋−(𝜔′𝑘 ,𝜔′𝑙 ,𝜃𝑘,𝜃𝑙)𝑒𝑗(𝜔′𝑘−𝜔′𝑙)𝑡�� 

Equal-Energy 

𝐹(2)(𝑡)

= 𝑅𝑅 ����𝐴𝑘𝐴𝑙𝑋+(𝜔𝑘,𝜔𝑙 ,𝜃𝑘,𝜃𝑙)𝑒𝑗(𝜔𝑘+𝜔𝑙)𝑡
𝑁

𝑙=1

𝑁

𝑘=1

+ 𝐴𝑘𝐴𝑙∗𝑋−(𝜔𝑘,𝜔𝑙 ,𝜃𝑘,𝜃𝑙)𝑒𝑗(𝜔𝑘−𝜔𝑙)𝑡�� 

 
These transfer functions can be obtained in the frequency 
domain with a second-order panel code, like WAMIT [12]. 
Table 2 presents the required equations to compute these loads. 
As can be seen, the double sum-method now requires a 

quadruple sum over two directions and two frequencies. The 
efficiency of the equal-energy approach is very valuable when 
studying these loads. For this paper, it was not possible to 
obtain the required transfer functions, and therefore the analysis 
of these loads will be included in further study. The importance 
of the second-order loads under multidirectional sea states has 
been highlighted in [13].  

3.4. Ergodicity 
Ocean waves are usually assumed to be a random ergodic 

process (stationary and homogenous). The spatial variability is 
the phenomenon most affected by the different methods used to 
synthesize multidirectional seas. It has been discussed in the 
literature how the double-sum method affects the mean wave 
energy across the domain because of the interaction of waves 
with the same frequency and different directions [14]. The other 
important quantity is the variability of the cross-spectrum 
between two points in space. This quantity is used to determine 
bidirectional spectra in measurements both in the tank and in 
the ocean.  

3.4.1. Mean Energy 
The ergodicity assumption requires that the mean energy 

across the sea surface is constant. In real sea conditions, this is 
only untrue in the presence of significant reflected waves, 
mainly close to shore. In a wave tank, significant reflection can 
occur depending on the tank configuration and the synthesized 
waves. However, the energy content should still be constant 
along the tank. The mean energy can obtained integrating the 
energy spectrum for each location [15]: 

𝐸� = 𝜌𝜌� � 𝑆(𝜔, 𝜃)𝑑𝑑𝑑𝑑
2𝜋

0

∞

0
 (14)  

Or in the discrete form: 
𝐸� =

1
2
𝜌𝜌|𝑍(𝜔𝑘)|2����������� (15)  

where 𝑍(𝜔𝑘) = 𝐴𝑘 𝑁 2� . To compare the discretization 
methods, the mean wave energy was computed for a square 
grid of 1 km by 1 km, in intervals of 10 m. The single-
summation and equal-energy methods provided constant energy 
content across the domain. However, for the double-summation 
method, we obtained the pattern seen in Figure 8. This result is 
consistent with the one found in [14].  

 
Figure 8.  Mean wave energy across the domain for 
the double-sum method. 
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As stated in [1], the only way to reduce this variability is to 
increase the length of the simulation or by averaging different 
realizations. Figure 9 presents the normalized wave energy for 
different simulation lengths. The energy content varies within a 
5% range for all the realizations, and it is only reduced to 1% 
for simulations with 9 hours. The variability is not that high 
because the mean energy is computed for the entire frequency 
range. Reference [1] presents results for a smaller frequency 
band, where a variability of up to 60% along the domain was 
encountered for the shorter simulations.  

 
Figure 9.  Normalized mean wave energy for the 
double-sum method and different lengths of the 
simulat ion. 
 

One parameter that needs to be taken into account for the 
single-summation method is the number of directions 
considered. This value needs to ensure a good discretization, 
especially close to the peak region of the directional spectrum 
(close to the mean wave direction). The directional step should 
be sufficiently small to guarantee that the energy content of the 
mean wave direction is captured, and this is especially critical 
for peaked spectrum (high values of the spreading coefficient). 
Figure 10 shows the mean wave energy for the single-sum 
method and the equal-energy method. The single-sum method 
seems to have converged for a number of directions higher than 
15. It should be noted that [1] and [14] suggest that a minimum 
number of 32 directions should be used to guarantee the 
accuracy of this method, based on the cross-spectrum analysis. 
The equal-energy discretization guarantees a constant mean 
wave energy along the domain even when using just two 
discrete directions. 

 
Figure 10. Mean wave energy for the single-sum and 
the equal-energy method. 

3.4.2. Cross-Spectrum 
The cross-spectrum between the wave elevations at 

different locations is used to measure wave directionality in 
wave basins. This section presents the variability of the cross-
spectrum between two points. The cross-spectrum between two 
points 𝑝 and 𝑞 is given by [4]: 

𝑆𝑝𝑞(𝜔) =
𝑍𝑝∗(𝜔)𝑍𝑞(𝜔)∆𝑡

𝜋𝜋
 (16)  

Across the domain, the ergodicity assumption requires that the 
variability is constant along the domain: 

𝑉𝑉𝑉�𝑆𝑝𝑞(𝜔)� = 𝑉𝑉𝑉 �
𝑍𝑝∗(𝜔)𝑍𝑞(𝜔)∆𝑡

𝜋𝜋
� = 𝑐𝑐𝑐𝑐𝑐. (17)  

Figure 11 presents the variance of the cross-spectrum relative to 
the origin of the referential for the double-sum method. As 
shown there is a significant variance along the domain, despite 
using a 3-hr simulation time.  

 
Figure 11. Variance of the cross-spectrum obtained 
with the double-sum method. 
 
Figure 12 shows the same result for the single-sum and equal-
energy method. Despite not being exactly constant across the 
domain because of numerical issues, the difference across the 
domain is smaller than 1%. 

 

 
(A) (B) 

Figure 12. Variance of the cross-spectrum obtained 
with the single-sum method (A) and equal-energy 
method (B). 
 
These results are compared along the line y = 0, in Figure 13, 
normalized by the mean value of the variance cross-spectrum. 
Once again it can be seen that the double-sum method does not 
provide a homogeneous and ergodic sea state. 
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Figure 13. Variance of the cross-spectrum along y = 0 
for the different  methods. 

4. PRELIMINARY ANALYSIS OF A FLOATING 
OFFSHORE WIND TURBINE UNDER 
MULTIDIRECTIONAL SEAS 
The OC4 semisubmersible platform with the National 

Renewable Energy Laboratory’s 5-MW reference offshore wind 
turbine was considered for this study [11]. The platform 
consists of three columns plus a central column where the 
tower is located, as seen in Figure 14. 

 
Figure 14. OC4 semisubmersible plat form. 
 
The equal-energy method was selected for this analysis. The 
first-order wave-excitation loads were calculated in MatLab 
and fed to FAST, which performed the time-marching 
simulation. The load case chosen corresponds to the JONSWAP 
spectrum previously mentioned. A spreading coefficient of one 
was selected for the multidirectional case. No wind loads were 
considered in this analysis. 

Figure 15 presents the platform motions for this case, with 
a unidirectional sea state and a multidirectional case. For both 
cases, the main wave direction is aligned with the x-axis of the 
platform, which represents the surge motion.  

As expected, the platform has basically no sway and roll 
motion in the unidirectional sea. However, for the 
multidirectional case, there is a significant additional motion of 
the platform in these degrees of freedom. The sway and roll 
motion found represents roughly 20% of the surge and pitch 
motion, respectively.  

 
Figure 15. Plat form motions under irregular sea state, 
with and without mult idirect ional loading. 

5. CONCLUSIONS 
In this paper we reviewed different methods to synthesize 

the wave elevation under multidirectional sea states. The 
double-sum method is the most commonly mentioned method 
in the literature, but does not provide an ergodic solution. The 
single-sum method fixed this problem, by shifting the different 
frequency components and avoiding the interaction between 
them. However, it still requires significant computational time, 
especially for long simulations. The equal-energy method 
described here combines a constant frequency-step 
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discretization with an equal-energy discretization of the 
directional spectrum. This allows using the same number of 
frequency components for both the unidirectional and 
multidirectional cases, thus saving significant computational 
effort. This method also proved to ensure the ergodicity 
proprieties of the wave spectrum. Based on these results, this 
method was selected to be implemented within FAST and 
should become available in a future release. 

In addition, a preliminary study was performed on the OC4 
semisubmersible platform. The comparison between the 
unidirectional and multidirectional sea state without wind loads 
showed a significant increase in the platform sway and roll 
motion. These findings should motivate further studies to 
carefully assess the impact of the multidirectional loads on the 
platform’s ultimate loads and fatigue life. 

6. ACKNOWLEDGMENTS  
This work was supported by the U.S. Department of 

Energy under Contract No. DE-AC36-08-GO28308 with the 
National Renewable Energy Laboratory. 

7. REFERENCES 
[1] Miles, M. D., and Funke, E. R., 1989, “A Comparison of 

Methods for Synthesis of Directional Seas,” JOMAE, 
111(1), pp. 43-48. 

[2] Alves, M., 2012, “Numerical Simulation of The Dynamics 
of Point Absorber Wave Energy Converters Using 
Frequency and Time Domain Approaches,” Ph.D. Thesis, 
Instituto Superior Tecnico. Lisboa, Technical University of 
Lisbon. 

[3] WAFO-group, 2000, “A MatLab Toolbox for Analysis of 
Random Waves and Loads - A Tutorial,” Lund, Sweden: 
Center for Math. Sci., Lund Univ. 

[4] Kim, C. H., 2008, “Nonlinear Waves and offshore 
Structures,” World Scientific Publishing Co. Pte. Ltd., 
Singapore. 

[5] Goda, Y., 2000, “Random Seas and Design of Maritime 
Structures,” World Scientific Publishing Co. Pte. Ltd., 
Singapore. 

[6] Orcina, 2012, “OrcaFlex Manual – Version 9.6.” 
[7] Miles, M. D., Benoit, M., Frigaard, P., Hawkes, P. J., 

Schäffer, H. A., and Stansberg, C. T., 1997, “A Comparison 
Study of Multidirectional Waves Generated in Laboratory 
Basins,” Proceedings of the 27th IAHR Congress, San 
Francisco. IAHR Seminar: Multidirectional Waves and 
Their Interaction with Structures. 

[8] Pascal, R., and Bryden, I., 2011, “Directional Spectrum 
Methods for Deterministic Waves,” Ocean Engineering. 
38(13), pp. 1382–1396. 

[9] Pascal, R., 2012, “Quantification of the Influence of 
Directional Sea State Parameters over the Performances of 
Wave Energy Converters,” The University of Edinburgh, 
Edinburgh. 

[10] Insall, M., and Weisstein, E. W., “Modular Arithmetic.” 
From MathWorld--A Wolfram Web Resource. [Online] 
2012. [Cited: 03 07, 2013.] 
http://mathworld.wolfram.com/ModularArithmetic.html. 

[11] Robertson, A., Jonkman, J., Masciola, M., Song, H., 
Goupee, A., Coulling, A., and Luan, C., “Definition of the 
Semisubmersible Floating System for Phase II of OC4,” to 
be published as NREL Technical Report, 2014. 

[12] WAMIT Inc. [Online] http://www.wamit.com/. 
[13] Waals, O. J., 2009, “The Effect of Wave Directionality on 

Low Frequency Motions and Mooring Forces,” Honolulu, 
Proceedings of the 28th International Conference on 
Ocean, Offshore and Arctic Engineering - OMAE2009.  

[14] Jefferys, E. R., 1987, “Directional Seas Should Be 
Ergodic,” Applied Ocean Research, 9(4), pp. 186-191. 

[15] Newman, J. N., 1977, Marine Hydrodynamics, MIT Press, 
Cambridge, chapter 6.

 

8

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

http://www.wamit.com/

	ABSTRACT
	NOMENCLATURE
	1. INTRODUCTION
	2. SYNTHESIS OF MULTIDIRECTIONAL SEAS
	2.1. Frequency Spectrum Discretization
	2.2. Directional Spectrum Discretization
	3. COMPARISON OF THE DIFFERENT DISCRETIZATION METHODS
	3.1. Wave-Elevation Time Series
	3.2. First-Order Loads
	3.3. Second-Order Loads
	3.4. Ergodicity
	4. PRELIMINARY ANALYSIS OF A FLOATING OFFSHORE WIND TURBINE UNDER MULTIDIRECTIONAL SEAS
	5. CONCLUSIONS
	6. ACKNOWLEDGMENTS
	7. REFERENCES



