

Hydrogen Pathways

Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios

T. Ramsden, M. Ruth, V. Diakov National Renewable Energy Laboratory

M. Laffen, T.A. Timbario Alliance Technical Services, Inc.

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Technical Report NREL/TP-6A10-60528 March 2013

Contract No. DE-AC36-08GO28308

Hydrogen Pathways

Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of 10 Hydrogen Production, Delivery, and Distribution Scenarios

T. Ramsden, M. Ruth, V. Diakov National Renewable Energy Laboratory

M. Laffen, T.A. Timbario Alliance Technical Services, Inc.

Prepared under Task No. HS07.1002

	NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC
	This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 • www.nrel.gov	Technical Report NREL/TP-6A10-60528 March 2013
	Contract No. DE-AC36-08GO28308

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from:

U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: <u>orders@ntis.fedworld.gov</u> online ordering: <u>http://www.ntis.gov/help/ordermethods.aspx</u>

Cover Photos: (left to right) photo by Pat Corkery, NREL 16416, photo from SunEdison, NREL 17423, photo by Pat Corkery, NREL 16560, photo by Dennis Schroeder, NREL 17613, photo by Dean Armstrong, NREL 17436, photo by Pat Corkery, NREL 17721.

Acknowledgements

The authors would like to acknowledge the following people for their assistance and support during this analysis.

The U.S. Driving Research and Innovation for Vehicle efficiency and Energy sustainability's (U.S. DRIVE's) Fuel Pathway Integration Technical Team identified the need to examine concurrently the cost and well-to-wheels energy use and emissions of various hydrogen production, delivery, and use pathways and to carefully document the key parameters of the analysis. They reviewed the results of the study both for content and for presentation and provided many helpful pointers. In addition, they participated in the gap analysis that identified issues reported in Section 9.0. Current and past members of the team include Matt Watkins and Eric Bunnelle (ExxonMobil Corporation); Laura Verduzco (Chevron Corporation); Garry Gunter (Phillips 66 Company); Herie Soto (Shell Oil Products US); Brian Bonner (Air Products and Chemicals, Inc.), and Fred Joseck (U.S. Department of Energy [DOE]).

Model developers assisted in the use of their models and understanding of underlying assumptions. Neil Popovich (National Renewable Energy Laboratory [NREL]) performed many delivery scenario simulations to identify and explain anomalies. Macro-System Model developers include Victor Diakov (NREL) and Tim Sa and Mike Goldsby (Sandia National Laboratories).

Funding for this analysis was provided through the Fuel Cell Technologies Office within the Department of Energy's Office of Energy Efficiency and Renewable Energy. Fred Joseck (DOE) provided leadership and guidance throughout this project, for which we are grateful, and this analysis would not have been possible without him.

List of Abbreviations and Acronyms

°C	degrees Celsius
°F	degrees Fahrenheit
atm	atmosphere
Btu	British thermal unit
CCS	carbon capture and sequestration
СО	carbon monoxide
CO_2	carbon dioxide
CO ₂ -eq.	carbon dioxide-equivalent
СРМ	cost-per-mile
CSD	compression, storage, and dispensing
DOE	U.S. Department of Energy
FCEV	fuel cell electric vehicle
FCTO	Fuel Cell Technologies Office
gge	gallon gasoline equivalent
GHG	greenhouse gas
GREET	Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation
H2, H ₂	diatomic hydrogen
H2A	Hydrogen Analysis
HDSAM	H2A Delivery Scenario Analysis Model
h	hour
ICE	internal combustion engine
kg	kilogram
kWh	kilowatt-hour
L	liter

lb	pound
LHV	lower heating value
mi	mile
mpgge	miles per gallon gasoline equivalent
MSM	Macro-System Model
MSRP	manufacturer's suggested retail price
NOx	oxides of nitrogen
NREL	National Renewable Energy Laboratory
O&M	operations and maintenance
PM	particulate matter
PSA	pressure swing adsorption
psi	pounds per square inch
psia	pounds per square inch absolute
psig	pounds per square inch gauge
RPE	retail price equivalent
SMR	steam methane reforming
TBW	tire and brake wear
U.S.	United States
VOC	volatile organic compound
WGS	water-gas shift
WTP	well-to-pump
WTW	well-to-wheels

Executive Summary

The United States (U.S.) Department of Energy's (DOE's) Hydrogen and Fuel Cells Program which is coordinated across the Department and includes activities in the Offices of Energy Efficiency and Renewable Energy (EERE), Science, Nuclear Energy, and Fossil Energy—has identified a need to understand the cost, energy use, and emissions tradeoffs of various hydrogen production, delivery, distribution and use options under consideration for fuel cell vehicles. The Fuel Cell Technologies Office (FCTO) within EERE has been researching and developing hydrogen and fuel cell technologies because they have the potential to reduce U.S. dependence on foreign crude oil, diversify energy sources, decrease greenhouse gas (GHG) emissions, and provide domestic economic growth.

This report describes a life-cycle assessment conducted by the National Renewable Energy Laboratory (NREL) of 10 hydrogen production, delivery, dispensing, and use pathways that were evaluated for cost, energy use, and GHG emissions (see Table ES.1). This evaluation updates and expands on a previous assessment of seven pathways conducted in 2009 (Ruth, Laffen and Timbario 2009). The evaluation takes a life-cycle approach, addressing both the "well-to-wheels" (WTW) transportation fuel cycle and also the portion of the vehicle cycle that considers the manufacturing of a fuel cell electric vehicle (FCEV) and the decommissioning and disposal/recycling of the FCEV. This study summarizes key results, parameters, and sensitivities to those parameters for the 10 hydrogen pathways, reporting on the levelized cost of hydrogen in 2007 U.S. dollars as well as life-cycle energy use and GHG emissions associated with the pathways.¹ The results from this assessment aid in understanding and evaluating technology needs and progress, potential environmental impacts, and the energy-related economic benefits of various hydrogen production, delivery, and dispensing options.

				-	-
	Feedstock	Central or Distributed Production	Carbon Capture and Sequestration	Delivery Method	Hydrogen Distribution
1	Natural Gas	Distributed	No	Not applicable	700 bar, gaseous
2 ^a	Ethanol	Distributed	No	Not applicable	700 bar, gaseous
3	Grid Electricity	Distributed	No	Not applicable	700 bar, gaseous
4	Biomass	Central	No	Gaseous H ₂ in pipelines	700 bar, gaseous
5 ^a	Biomass	Central	No	Gaseous H ₂ truck	700 bar, gaseous
6	Biomass	Central	No	Liquid H ₂ truck	700 bar, gaseous
7 ^a	Biomass	Central	No	Liquid H ₂ truck	Cryo-compressed
8	Natural Gas	Central	No	Gaseous H ₂ in pipelines	700 bar, gaseous
9	Wind Electricity	Central	No	Gaseous H ₂ in pipelines	700 bar, gaseous
10	Coal	Central	Yes	Gaseous H ₂ in pipelines	700 bar, gaseous

Table ES.1. Ten Hydrogen Productior	n, Delivery, and Distribution Pathways
-------------------------------------	--

^a Newly analyzed pathways

¹ This analysis does not attempt to evaluate the selling price of hydrogen, which will depend on market factors. Instead, results are discussed in terms of levelized cost, which is the resulting break-even cost of hydrogen calculated on a net present value basis to cover all capital, operating, and maintenance costs including a set internal rate of return on expenditures.

The pathways evaluated in this study represent currently available hydrogen production, delivery, and dispensing technologies, projected to a commercialized scale. Plausible production scenarios for mature hydrogen transportation-fuel markets combined with market penetration of hydrogen fuel cell vehicles were used in this analysis. This study does not evaluate transition scenarios where equipment may not be fully utilized. The assumptions used in the analysis reflect current technology: technology that has been developed to the bench scale (at a minimum) but has not necessarily been demonstrated at commercial scales. All the technology options have potential for research and development (R&D) improvements.

For the evaluation, FCEVs were assumed to have an on-road fuel economy of 48 miles per gallon gasoline equivalent (mpgge). The 48 mpgge assumption is consistent with NREL's analysis of on-road FCEV fuel economy data from the Hydrogen Fleet and Infrastructure Demonstration and Validation Project (Wipke et al. 2012) and also reflects modeling of FCEV fuel economy by Argonne using its Autonomie model, based on Argonne's modeling assumptions and information from original equipment manufacturers (Rousseau 2012). Because fuel economy is likely to improve with fuel cell research and development advances, a sensitivity analysis was also performed for an assumed fuel economy of 68 mpgge. This higher end fuel economy was chosen as it represents the average fuel economy of a Toyota fuel cell vehicle in on-road testing conducted in California in 2009 (Wipke, Anton and Sprik 2009).

The hydrogen Macro-System Model (MSM) was used to analyze the pathways by linking the H2A Production models, the Hydrogen Delivery Scenario Analysis Model (HDSAM), the Greenhouse Gas, Regulated Emission, and Energy for Transportation (GREET) Model, and the Cost-per-Mile (CPM) Tool.² The MSM links those models so they can be executed concurrently, utilizing the capabilities of each and ensuring consistency among them. Also, the MSM is available to the public and enables users to analyze pathways and complete sensitivity analyses that are not reported in this document. Consistent with the standard employed by the H2A Production model and HDSAM, costs are presented in 2007 U.S. dollars.

The analysis has been reviewed by the U.S. DRIVE Partnership's Fuel Pathway Integration Technical Team, which includes members from DOE, national laboratories, and energy companies (Phillips 66, Chevron Corporation, Shell, and ExxonMobil Corporation).

Figure ES.1 depicts the performance of the 10 hydrogen fuel pathways, comparing pathway hydrogen fuel cost on a \mbox{mile} basis to fuel-cycle WTW GHG emissions on a gram CO₂-equivalent per mile basis. As seen in the figure, the levelized cost of hydrogen on a per mile basis (assuming a 48 mpgge fuel economy) ranges from \$0.10/mile for the distributed natural gas production pathway to \$0.18/mile for the distributed ethanol-reforming pathway (compared to gasoline costs of about \$0.13/mile for a conventional gasoline vehicle). Figure ES.2 provides more detail on the WTW greenhouse gas emissions, showing total GHG emissions on a gram CO₂-equivalent per mile basis for the 48 to 68 mpgge fuel economy range. The figure illustrates that all of the pathways except for the distributed electrolysis pathway result in GHG emissions

² This analysis uses a version of the MSM that incorporates H2A Version 3 (2012), HDSAM Version 2.3 (2012), GREET 1 (2011, rev. 1) and GREET 2 (version 2.7). The versions of H2A, HDSAM, and GREET used were current at the time this life-cycle evaluation began. As of the publication of this report, H2A Version 3 and HDSAM Version 2.3 are still current, but more recent updates of the GREET 1 and GREET 2 models were made available in late 2012.

lower than 400 g/mile, based on a fuel economy of 48 mpgge. When a higher fuel economy of 68 mpgge is considered, all of the pathways except distributed electrolysis result in GHG emissions lower than 250 g/mile.

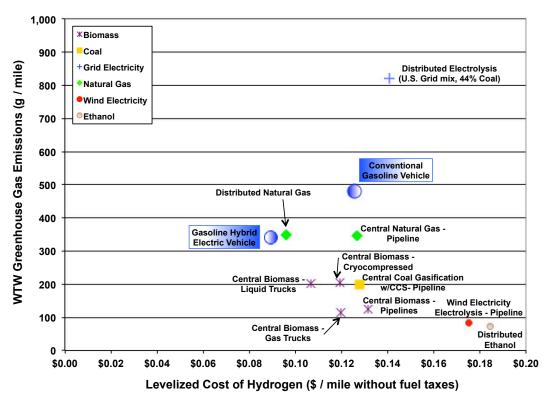


Figure ES.1. Comparison of pathways' levelized costs and GHG emissions

Distributed electrolysis has high GHG emissions when compared to the other hydrogen pathways because of the assumed electricity grid mix (the U.S. average grid mix is assumed, with coal production accounting for 44% of electricity generation). The pathways that use natural gas as a feedstock use little petroleum but have high GHG emissions compared to most of the other pathways due to the GHG emissions associated with producing hydrogen from natural gas. The coal pathway has slightly lower GHG emissions than the natural gas pathways do because of the efficient carbon-sequestration system that is assumed; no other pathways assume the use of a carbon sequestration system. The biomass and ethanol pathways have higher petroleum use than all but the distributed electrolysis pathway because the biomass and ethanol feedstocks are delivered using trucks.

Of the four options for delivering hydrogen from a centralized production plant, pipeline delivery has the lowest GHG emissions and lowest petroleum use. The two liquid truck delivery options have higher GHG emissions because of the high electricity consumption of the liquefaction process (the U.S. average grid mix is assumed). The GHG emissions for hydrogen dispensed as a cryo-compressed liquid are slightly lower than those for hydrogen dispensed as a gas because the liquid pump requires less electricity than the compressor necessary for delivering 700 bar gaseous hydrogen. Hydrogen delivered in a gas truck has low GHG emissions but a high petroleum use because each truckload only carries 520 kg of hydrogen.

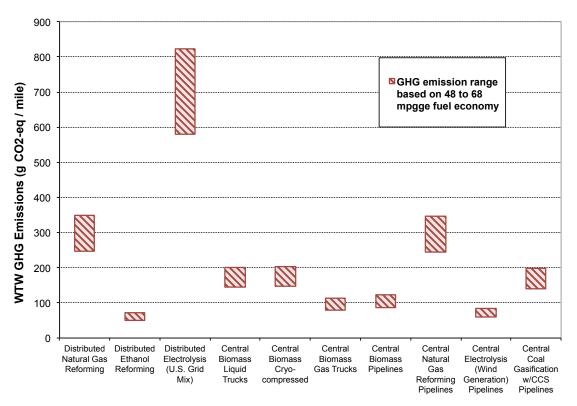


Figure ES.2. WTW GHG emissions for 10 hydrogen pathways

Figure ES.3 shows the levelized cost of hydrogen for the 10 pathways, breaking out hydrogen production costs, delivery costs, dispensing station costs (also known as CSD costs—station compression, storage, and dispensing costs), and the share of hydrogen levelized cost associated with pathway hydrogen losses. As seen in the figure, hydrogen production, delivery, and dispensing costs range from \$4.60/kg H₂ to almost \$9.00/kg H₂. Hydrogen production costs are at or near DOE's \$2.00/kg target for four of the production pathways (representing 7 of the total 10 overall pathways evaluated). Station CSD costs range from about \$1.00/kg to \$2.50/kg, showing the need for R&D advancements to lower the cost of dispensed hydrogen.

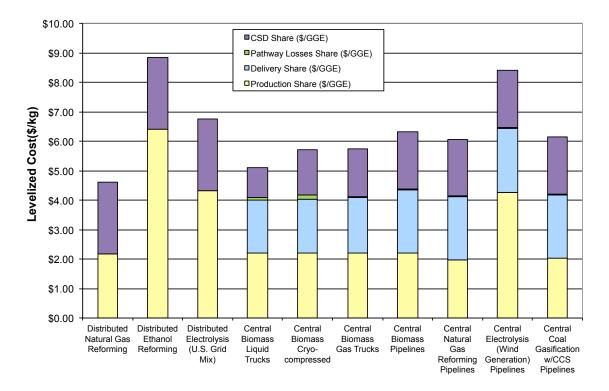


Figure ES.3. Hydrogen production levelized costs for 10 pathways

Table of Contents

	st of Figures	
Lis	st of Tables	
1	Introduction	
	1.1 Document's Intent	
	1.2 Hypothetical Market State and Technology Development Assumptions	
	1.3 Analysis Boundaries	
	1.4 Pathways	
	1.4.1 Pathway 1: Distributed Natural Gas	
	1.4.2 Pathway 2: Distributed Ethanol	
	1.4.3 Pathway 3: Distributed Electricity	
	1.4.4 Pathway 4: Central Biomass—Pipeline Delivery	
	1.4.5 Pathway 5: Central Biomass—Gaseous H ₂ Truck Delivery	
	1.4.6 Pathway 6: Central Biomass—Liquid Truck Delivery and Gaseous Dispensing	7
	1.4.7 Pathway 7: Central Biomass—Liquid Truck Delivery and Cryo-Compressed	0
	Dispensing	
	1.4.8 Pathway 8: Central Natural Gas—Pipeline Delivery	
	1.4.9 Pathway 9: Central Wind Electricity—Pipeline Delivery	
	1.4.10 Pathway 10: Central Coal with Carbon Capture and Sequestration—Pipeline Delive	
~	1.5 Models Used in the Pathway Analyses	
2	Production Technology Descriptions and Assumptions	
	2.1 Distributed Natural Gas Reforming	
	2.2 Distributed Ethanol Reforming	
	2.3 Distributed Electrolysis.	
	2.4 Central Biomass Gasification	
	2.5 Central Natural Gas Reforming	
	2.6 Central Electrolysis with Renewable Power	
2	2.7 Central Coal with Carbon Capture and Sequestration	15
3	Delivery and Dispensing Technology Descriptions and Assumptions	
	3.1 Gaseous Hydrogen via Pipeline3.1.1 Pipeline	
	3.1.2 Compressor	
	3.2 Gaseous Hydrogen via Trucks	
	3.2.1 Gaseous Hydrogen Truck	
	3.3 Compression, Storage, and Dispensing of Gaseous Hydrogen	
	3.4 Liquid Hydrogen via Trucks with Gaseous Hydrogen Dispensing	
	3.4.1 Liquid Hydrogen Truck	
	3.4.2 Liquefier	
	3.5 Liquid Hydrogen via Trucks with Dispensing of Cryo-Compressed Liquid Hydrogen	
4	Vehicle Assumptions	
-	4.1 Vehicle Fuel Economy	
	4.2 Vehicle Criteria Pollutant Emissions	
	4.3 Vehicle Cost	
	4.4 Vehicle-Cycle Energy Use and Emissions	
5	Financial Assumptions	
6	Pathway Results	
	6.1 Distributed Natural Gas	
	6.1.1 Cost Breakdown	
	6.1.2 Energy Use and Emissions Breakdown	
	6.1.3 Sensitivities	
	6.2 Distributed Ethanol	

	6.2.1	Cost Breakdown	
	6.2.2	Energy Use and Emissions Breakdown	
	6.2.3	Sensitivities	47
	6.3 Distribu	uted Electricity	49
	6.3.1	Cost Breakdown	49
	6.3.2	Energy Use and Emissions Breakdown	53
	6.3.3	Sensitivities	55
	6.4 Central	Biomass—Pipeline Delivery	57
	6.4.1	Cost Breakdown	
	6.4.2	Energy Use and Emissions Breakdown	61
	6.4.3	Sensitivities	63
	6.5 Central	Biomass—Gaseous H ₂ Truck Delivery	75
	6.5.1	Cost Breakdown	75
	6.5.2	Energy Use and Emissions Breakdown	79
	6.5.3	Sensitivities	82
	6.6 Central	Biomass-Liquid Truck Delivery and Gaseous Dispensing	93
	6.6.1	Cost Breakdown	93
	6.6.2	Energy Use and Emissions Breakdown	97
	6.6.3	Sensitivities	100
	6.7 Central	Biomass-Liquid Truck Delivery and Cryo-Compressed Dispensing	114
	6.7.1	Cost Breakdown	114
	6.7.2	Energy Use and Emissions Breakdown	118
	6.7.3	Sensitivities	121
	6.8 Central	Natural Gas—Pipeline Delivery	135
	6.8.1	Cost Breakdown	135
	6.8.2	Energy Use and Emissions Breakdown	139
	6.8.3	Sensitivities	142
	6.9 Central	Wind Electricity—Pipeline Delivery	143
	6.9.1	Cost Breakdown	
	6.9.2	Energy Use and Emissions Breakdown	148
	6.9.3	Sensitivities	
	6.10 Cer	ntral Coal with Carbon Capture and Storage—Pipeline Delivery	152
	6.10.1	Cost Breakdown	
	6.10.2	Energy Use and Emissions Breakdown	
	6.10.3	Sensitivities	
7	-	esults Comparison	
8		aps	
		tion	
		y and Dispensing	
		Costing	
•		y Analysis	
9 4 m		S	
		istributed Natural Gas Supporting Tables and Figures istributed Ethanol Supporting Tables and Figures	
		istributed Electricity Supporting Tables and Figures	
		entral Biomass—Pipeline Delivery Supporting Tables and Figures	
Ap	pendix E: C	entral Biomass—Gaseous H ₂ Truck Delivery Supporting Tables and Figures	207
Аp	pendix F: C	entral Biomass—Liquid Truck Delivery and Gaseous Dispensing Supporting Ta	ables
_	and Figure	S	
Ар	•	entral Biomass—Liquid Truck Delivery and Cryo-Compressed Dispensing	
A		J Tables and Figures	
Ар	pendix H: C	entral Natural Gas—Pipeline Delivery Supporting Tables and Figures	228

Appendix I: Central Wind Electricity—Pipeline Delivery Supporting Tables and Figures	234
Appendix J: Central Coal with Carbon Capture and Storage—Pipeline Delivery Supporting Ta	bles
and Figures	240

List of Figures

Figure ES.1. Comparison of pathways' levelized costs and GHG emissions	
Figure ES.2. WTW GHG emissions for 10 hydrogen pathways	
Figure ES.3. Hydrogen production levelized costs for 10 pathways	
Figure 1.4.1. Flow diagram and energy balance of distributed natural gas pathway	
Figure 1.4.2. Flow diagram and energy balance of distributed ethanol pathway	
Figure 1.4.3. Flow diagram and energy balance of distributed electricity pathway	
Figure 1.4.4. Flow diagram and energy balance of central biomass—pipeline delivery pathway	6
Figure 1.4.5. Flow diagram and energy balance of central biomass—gaseous truck delivery	
pathway	7
Figure 1.4.6. Flow diagram and energy balance of central biomass—liquid truck delivery pathwa	
Figure 1.4.7. Flow diagram and energy balance of central biomass—liquid truck delivery and cry	
compressed dispensing pathway	8
Figure 1.4.8. Flow diagram and energy balance of central natural gas—pipeline delivery pathway	y.9
Figure 1.4.9. Flow diagram and energy balance of central wind electricity—pipeline delivery	
pathway Figure 1.4.10. Flow diagram and energy balance of central coal with CCS—pipeline delivery	. 10
pathway	
Figure 3.1.1. Compressor cost as a function of motor rating	
Figure 3.2.1. Hydrogen daily average demand for a peak dispensing day	
Figure 3.4.1. Liquefier energy requirement versus hydrogen flow rate	
Figure 3.4.2. Liquefier cost versus design capacity	
Figure 3.4.3. Refueling station electrical cost versus rated motor power	. 21
Figure 4.1.1. NREL hydrogen fleet and infrastructure demonstration and validation project fuel	
economy	. 23
Figure 5.0.1. Post-tax and pre-tax IRRs that result in the same levelized cost for multiple	
combinations of equity and debt financing (central production of hydrogen from coal with	~~
CCS pathway)	. 28
Figure 6.1.1. Summary of major inputs, assumptions, and outputs by subsystem for the	-
distributed natural gas pathway	
Figure 6.1.2. Cost analysis inputs and high-level results for the distributed natural gas pathway.	. 32
Figure 6.1.3. Contribution of hydrogen production, CSD, and losses to the levelized cost of	22
hydrogen for the distributed natural gas pathway Figure 6.1.4. Breakdown of levelized costs for the distributed natural gas pathway	
Figure 6.1.6. WTW energy inputs to deliver 116,000 Btu hydrogen to a vehicle using the distributed	
natural gas pathway	
Figure 6.1.7. WTW petroleum, natural gas, and coal inputs to deliver 116,000 Btu hydrogen using	. 35
the distributed natural gas pathway	36 36
Figure 6.1.8. WTW emissions resulting from delivery of 116,000 Btu hydrogen using the	. 50
distributed natural gas pathway	36
Figure 6.1.9. WTW CO ₂ , CH ₄ , and N ₂ O emissions resulting from delivery of 116,000 Btu hydroger	
to a vehicle using the distributed natural gas pathway	
Figure 6.1.10. WTW petroleum, natural gas, and coal inputs for both the distributed natural gas	. 07
pathway and the vehicle cycle	37
Figure 6.1.11. WTW CO ₂ , CH ₄ , and N ₂ O emissions for both the distributed natural gas pathway a	
the vehicle cycle	
Figure 6.1.12. Production sensitivities for the distributed natural gas pathway	
Figure 6.2.1. Summary of major inputs, assumptions, and outputs by subsystem for the	
distributed ethanol pathway	. 41
Figure 6.2.2. Cost analysis inputs and high-level results for the distributed ethanol pathway	
Figure 6.2.3. Contribution of hydrogen production, CSD, and losses to the levelized cost of	
hydrogen for the distributed ethanol pathway	. 43
Figure 6.2.4. Breakdown of levelized costs for the distributed ethanol pathway	
Figure 6.2.5. WTW energy inputs to deliver 116,000 Btu hydrogen to a vehicle using the distribut	
ethanol pathway	

Figure 6.2.6. WTW petroleum, natural gas, and coal inputs to deliver 116,000 Btu hydrogen using the distributed ethanol pathway
Figure 6.2.7. WTW emissions resulting from delivery of 116,000 Btu hydrogen using the
distributed ethanol pathway
to a vehicle using the distributed ethanol pathway
Figure 6.2.9. Production sensitivities for the distributed ethanol pathway
Figure 6.3.1. Summary of major inputs, assumptions, and outputs by subsystem for the distributed grid electricity pathway
Figure 6.3.2. Cost analysis inputs and high-level results for the distributed grid electricity pathway51
Figure 6.3.3. Contribution of hydrogen production, CSD, and losses to the levelized cost of
hydrogen for the distributed grid electricity pathway
Figure 6.3.4. Breakdown of levelized costs for the distributed grid electricity pathway
Figure 6.3.5. WTW energy inputs to deliver 116,000 Btu hydrogen to a vehicle using the distributed
grid electricity pathway53
Figure 6.3.6. WTW petroleum, natural gas, and coal inputs to deliver 116,000 Btu hydrogen using the distributed grid electricity pathway
Figure 6.3.7. WTW emissions resulting from delivery of 116,000 Btu hydrogen using the
distributed grid electricity pathway54
Figure 6.3.8. WTW CO ₂ , CH ₄ , and N ₂ O emissions resulting from delivery of 116,000 Btu hydrogen to a vehicle using the distributed grid electricity pathway
Figure 6.3.9. Production sensitivities for the distributed grid electrolysis pathway
Figure 6.4.1. Summary of major inputs, assumptions, and outputs by subsystem for the central
biomass—pipeline delivery pathway
Figure 6.4.2. Cost analysis inputs and high-level results for the central biomass—pipeline delivery
pathway
Figure 6.4.3. Contribution of hydrogen production, delivery, and losses to the levelized cost of
hydrogen for the central biomass—pipeline delivery pathway
Figure 6.4.4. Breakdown of levelized costs for the central biomass—pipeline delivery pathway 60 Figure 6.4.5. WTW energy inputs to deliver 116,000 Btu hydrogen to a vehicle using the central biomass—pipeline delivery pathway
Figure 6.4.6. WTW petroleum, natural gas, and coal inputs to deliver 116,000 Btu hydrogen using
the central biomass—pipeline delivery pathway
Figure 6.4.7. WTW emissions resulting from delivery of 116,000 Btu hydrogen using the central biomass—pipeline delivery pathway
Figure 6.4.8. WTW CO ₂ , CH ₄ , and N ₂ O emissions resulting from delivery of 116,000 Btu hydrogen
to a vehicle using the central biomass—pipeline delivery pathway
Figure 6.4.9. Production sensitivities for the central biomass—pipeline delivery pathway
Figure 6.4.9. Production sensitivities for the central biomass—pipeline derivery pathway
biomass—pipeline delivery pathway65
Figure 6.4.11. Levelized cost versus hydrogen vehicle penetration and distance between
production facility and city gate for the central biomass—pipeline delivery pathway
Figure 6.4.12. Levelized cost versus hydrogen vehicle penetration and distance between
production facility and city gate for the central biomass—pipeline delivery pathway
pathway67 Figure 6.4.14. WTW petroleum use versus penetration for the central biomass—pipeline delivery
pathway
delivery pathway
Figure 6.4.16. Levelized cost versus city population for the central biomass—pipeline delivery
pathway70 Figure 6.4.17. GHG emissions versus city population for the central biomass—pipeline delivery
pathway
Figure 6.4.18. Petroleum energy use versus city population for the central biomass—pipeline
delivery pathway71

Figure 6.4.19. Levelized cost versus fuel economy for the central biomass—pipeline delivery pathway
Figure 6.4.20. City hydrogen use versus fuel economy for the central biomass—pipeline delivery pathway
Figure 6.4.21. GHG emissions versus fuel economy for the central biomass—pipeline delivery pathway
Figure 6.4.22. Petroleum use versus fuel economy for the central biomass—pipeline delivery pathway
Figure 6.4.23. Levelized cost versus forecourt size for the central biomass—pipeline delivery pathway
Figure 6.4.24. GHG emissions versus forecourt size for the central biomass—pipeline delivery pathway
Figure 6.4.25. Petroleum energy use versus forecourt size for the central biomass—pipeline delivery pathway
Figure 6.5.1. Summary of major inputs, assumptions, and outputs by subsystem for the central biomass—gaseous H ₂ truck delivery pathway
Figure 6.5.2. Cost analysis inputs and high-level results for the central biomass—gaseous H ₂ truck delivery pathway
Figure 6.5.3. Contribution of hydrogen production, delivery, and losses to the levelized cost of hydrogen for the central biomass—gaseous H ₂ truck delivery pathway
Figure 6.5.4. Breakdown of levelized costs for the central biomass—gaseous H ₂ truck delivery pathway
Figure 6.5.5. WTW energy inputs to deliver 116,000 Btu hydrogen to a vehicle using the central biomass—gaseous H ₂ truck delivery pathway
Figure 6.5.6. WTW petroleum, natural gas, and coal inputs to deliver 116,000 Btu hydrogen using the central biomass—gaseous H ₂ truck delivery pathway
Figure 6.5.7. WTW emissions resulting from delivery of 116,000 Btu hydrogen using the central biomass—gaseous H ₂ truck delivery pathway
Figure 6.5.8. WTW CO ₂ , CH ₄ , and N ₂ O emissions resulting from delivery of 116,000 Btu hydrogen to a vehicle using the central biomass—gaseous H ₂ truck delivery pathway
Figure 6.5.9. Production sensitivities for the central biomass—gaseous H ₂ truck delivery pathway82
Figure 6.5.10. Daily hydrogen consumption versus hydrogen vehicle penetration for the central biomass—gaseous H ₂ truck delivery pathway
Figure 6.5.11. Levelized cost versus hydrogen vehicle penetration and distance between production facility and city gate for the central biomass—gaseous H ₂ truck delivery pathway84
Figure 6.5.12. Levelized cost versus hydrogen vehicle penetration and distance between production facility and city gate for the central biomass—gaseous H ₂ truck delivery pathway85
Figure 6.5.13. WTW GHG emissions versus penetration for the central biomass—gaseous H ₂ truck delivery pathway
Figure 6.5.14. WTW petroleum use versus penetration for the central biomass—gaseous H ₂ truck delivery pathway
Figure 6.5.15. WTW fossil energy use versus penetration for the central biomass—gaseous H ₂ truck delivery pathway
Figure 6.5.16. Levelized cost versus city population for the central biomass—gaseous H ₂ truck delivery pathway
Figure 6.5.17. GHG emissions versus city population for the central biomass—gaseous H ₂ truck delivery pathway
Figure 6.5.18. Petroleum energy use versus city population for the central biomass—gaseous H ₂ truck delivery pathway
Figure 6.5.19. Levelized cost versus fuel economy for the central biomass—gaseous H ₂ truck delivery pathway
Figure 6.5.20. City hydrogen use versus fuel economy for the central biomass—gaseous H ₂ truck delivery pathway
Figure 6.5.21. GHG emissions versus fuel economy for the central biomass—gaseous H ₂ truck delivery pathway
Figure 6.5.22. Petroleum use versus fuel economy for the central biomass—gaseous H ₂ truck

delivery pathway
Figure 6.5.23. Levelized cost versus forecourt size for the central biomass—gaseous H ₂ truck
delivery pathway
delivery pathway
Figure 6.5.25. Petroleum energy use versus forecourt size for the central biomass—gaseous H ₂ truck delivery pathway
Figure 6.6.1. Summary of major inputs, assumptions, and outputs by subsystem for the central biomass—liquid truck delivery and gaseous dispensing pathway
Figure 6.6.2. Cost analysis inputs and high-level results for the central biomass—liquid truck
delivery and gaseous dispensing pathway
hydrogen for the central biomass—liquid truck delivery and gaseous dispensing pathway 96
Figure 6.6.4. Breakdown of levelized costs for the central biomass—liquid truck delivery and
gaseous dispensing pathway96
Figure 6.6.5. WTW energy inputs to deliver 116,000 Btu hydrogen to a vehicle using the central biomass—liquid truck delivery and gaseous dispensing pathway
Figure 6.6.6. WTW petroleum, natural gas, and coal inputs to deliver 116,000 Btu hydrogen using
the central biomass—liquid truck delivery and gaseous dispensing pathway
Figure 6.6.7. WTW emissions resulting from delivery of 116,000 Btu hydrogen using the central
biomass—liquid truck delivery and gaseous dispensing pathway
Figure 6.6.8. WTW CO ₂ , CH ₄ , and N ₂ O emissions resulting from delivery of 116,000 Btu hydrogen
to a vehicle using the central biomass—liquid truck delivery and gaseous dispensing pathway99
Figure 6.6.9. Production sensitivities for the central biomass—liquid truck delivery and gaseous dispensing pathway
Figure 6.6.10. Daily hydrogen consumption versus hydrogen vehicle penetration for the central
biomass—liquid truck delivery and gaseous dispensing pathway
Figure 6.6.11. Levelized cost versus hydrogen vehicle penetration and distance between
production facility and city gate for the central biomass—liquid truck delivery and gaseous
dispensing pathway102
Figure 6.6.12. Levelized cost versus hydrogen vehicle penetration and distance between
production facility and city gate for the central biomass—liquid truck delivery and gaseous dispensing pathway
Figure 6.6.13. Truck levelized cost versus distance between production facility and city gate for
the central biomass—liquid truck delivery and gaseous dispensing pathway
Figure 6.6.14. Liquefaction system levelized cost versus penetration for the central biomass— liquid truck delivery and gaseous dispensing pathway
Figure 6.6.15. Liquefaction system capital cost (levelized) versus penetration for the central
biomass—liquid truck delivery and gaseous dispensing pathway
Figure 6.6.16. Liquefaction system efficiency versus penetration for the central biomass—liquid
truck delivery and gaseous dispensing pathway106
Figure 6.6.17. WTW GHG emissions versus penetration for the central biomass—liquid truck
delivery and gaseous dispensing pathway107
Figure 6.6.18. WTW petroleum use versus penetration for the central biomass—liquid truck
delivery and gaseous dispensing pathway107
Figure 6.6.19. WTW fossil energy use versus penetration for the central biomass—liquid truck
delivery and gaseous dispensing pathway
Figure 6.6.20. Levelized cost versus city population for the central biomass—liquid truck delivery
and gaseous dispensing pathway
Figure 6.6.21. GHG emissions versus city population for the central biomass—liquid truck delivery
and gaseous dispensing pathway
Figure 6.6.22. Petroleum energy versus city population for the central biomass—liquid truck
delivery and gaseous dispensing pathway
and gaseous dispensing pathway
Figure 6.6.24. City hydrogen use versus fuel economy for the central biomass—liquid truck
rights store to sty injuration and to build the contoing for the contral pionage—injura have

dell'encode de la construcción de la constru
delivery and gaseous dispensing pathway
and gaseous dispensing pathway
Figure 6.6.26. Petroleum energy use versus fuel economy for the central biomass—liquid truck
delivery and gaseous dispensing pathway
Figure 6.6.27. Levelized cost versus forecourt size for the central biomass—liquid truck delivery
and gaseous dispensing pathway
Figure 6.6.28. GHG emissions versus forecourt size for the central biomass—liquid truck delivery
and gaseous dispensing pathway
Figure 6.6.29. Petroleum energy use versus forecourt size for the central biomass—liquid truck
delivery and gaseous dispensing pathway
Figure 6.7.1. Summary of major inputs, assumptions, and outputs by subsystem for the central
biomass—liquid truck delivery and cryo-compressed dispensing pathway
Figure 6.7.2. Cost analysis inputs and high-level results for the central biomass—liquid truck
delivery and cryo-compressed dispensing pathway116
Figure 6.7.3. Contribution of hydrogen production, delivery, and losses to the levelized cost of
hydrogen for the central biomass—liquid truck delivery and cryo-compressed dispensing
pathway
compressed dispensing pathway117
Figure 6.7.5. WTW energy inputs to deliver 116,000 Btu hydrogen to a vehicle using the central
biomass—liquid truck delivery and cryo-compressed dispensing pathway
Figure 6.7.6. WTW petroleum, natural gas, and coal inputs to deliver 116,000 Btu hydrogen using
the central biomass—liquid truck delivery and cryo-compressed dispensing pathway 119
Figure 6.7.7. WTW emissions resulting from delivery of 116,000 Btu hydrogen using the central
biomass—liquid truck delivery and cryo-compressed dispensing pathway
Figure 6.7.8. WTW CO ₂ , CH ₄ , and N ₂ O emissions resulting from delivery of 116,000 Btu hydrogen
to a vehicle using the central biomass—liquid truck delivery and cryo-compressed dispensing
pathway
Figure 6.7.9. Production sensitivities for the central biomass—liquid truck delivery and cryo-
compressed dispensing pathway
biomass—liquid truck delivery and cryo-compressed dispensing pathway
Figure 6.7.11. Levelized cost versus hydrogen vehicle penetration and distance between
production facility and city gate for the central biomass—liquid truck delivery and cryo-
compressed dispensing pathway
Figure 6.7.12. Levelized cost versus hydrogen vehicle penetration and distance between
production facility and city gate for the central biomass—liquid truck delivery and cryo-
compressed dispensing pathway
Figure 6.7.13. Truck levelized cost versus distance between production facility and city gate for
the central biomass—liquid truck delivery and cryo-compressed dispensing pathway
Figure 6.7.14. Liquefaction system levelized cost versus penetration for the central biomass—
liquid truck delivery and cryo-compressed dispensing pathway
Figure 6.7.15. Liquefaction system capital cost (levelized) versus penetration for the central
biomass—liquid truck delivery and cryo-compressed dispensing pathway
Figure 6.7.16. Liquefaction system efficiency versus penetration for the central biomass—liquid
truck delivery and cryo-compressed dispensing pathway
Figure 6.7.17. WTW greenhouse gas emissions versus penetration for the central biomass—liquid
truck delivery and cryo-compressed dispensing pathway 128
Figure 6.7.18. WTW petroleum use versus penetration for the central biomass—liquid truck
delivery and cryo-compressed dispensing pathway128
Figure 6.7.19. WTW fossil energy use versus penetration for the central biomass—liquid truck
delivery and cryo-compressed dispensing pathway129
Figure 6.7.20. Levelized cost versus city population for the central biomass—liquid truck delivery
and cryo-compressed dispensing pathway130
Figure 6.7.21. GHG emissions versus city population for the central biomass—liquid truck delivery

and cryo-compressed dispensing pathway
Figure 6.7.22. Petroleum use versus city population for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway
Figure 6.7.23. Levelized cost versus fuel economy for the central biomass—liquid truck delivery
and cryo-compressed dispensing pathway
Figure 6.7.24. City hydrogen use versus fuel economy for the central biomass—liquid truck
delivery and cryo-compressed dispensing pathway
Figure 6.7.25. GHG emissions versus fuel economy for the central biomass—liquid truck delivery
and cryo-compressed dispensing pathway
Figure 6.7.26. Petroleum use versus fuel economy for the central biomass—liquid truck delivery
and cryo-compressed dispensing pathway133
Figure 6.7.27. Levelized cost versus forecourt size for the central biomass—liquid truck delivery
and cryo-compressed dispensing pathway
and cryo-compressed dispensing pathway
Figure 6.7.29. Petroleum use versus forecourt size for the central biomass—liquid truck delivery
and cryo-compressed dispensing pathway
Figure 6.8.1. Summary of major inputs, assumptions, and outputs by subsystem for the central
natural gas—pipeline delivery pathway
Figure 6.8.2. Cost analysis inputs and high-level results for the central natural gas—pipeline
delivery pathway137
Figure 6.8.3. Contribution of hydrogen production, delivery, and losses to the levelized cost of
hydrogen from the central natural gas—pipeline delivery pathway
Figure 6.8.4. Breakdown of levelized costs for the central natural gas—pipeline delivery pathway138
Figure 6.8.5. WTW energy inputs to deliver 116,000 Btu hydrogen to a vehicle using the central natural gas—pipeline delivery pathway
Figure 6.8.6. WTW petroleum, natural gas, and coal inputs to deliver 116,000 Btu hydrogen using
the central natural gas—pipeline delivery pathway
Figure 6.8.7. WTW emissions resulting from delivery of 116,000 Btu hydrogen using the central
natural gas—pipeline delivery pathway141
Figure 6.8.8. WTW CO ₂ , CH ₄ , and N ₂ O emissions resulting from delivery of 116,000 Btu hydrogen
to a vehicle using the central natural gas—pipeline delivery pathway
Figure 6.8.9. Production sensitivities for central natural gas-pipeline delivery pathway
Figure 6.9.1. Summary of major inputs, assumptions, and outputs by subsystem for the central wind electricity—pipeline delivery pathway
Figure 6.9.2. Cost analysis inputs and high-level results for the central wind electricity—pipeline
delivery pathway
Figure 6.9.3. Contribution of hydrogen production, delivery, and losses to the levelized cost of
hydrogen from the central wind electricity—pipeline delivery pathway
Figure 6.9.4. Breakdown of levelized costs for the central wind electricity—pipeline delivery
pathway
Figure 6.9.6. WTW energy inputs to deliver 116,000 Btu hydrogen to a vehicle using the central
wind electricity—pipeline delivery pathway
the central wind electricity—pipeline delivery pathway
Figure 6.9.8. WTW emissions resulting from delivery of 116,000 Btu hydrogen using the central
wind electricity—pipeline delivery pathway
Figure 6.9.9. WTW CO ₂ , CH ₄ , and N ₂ O emissions resulting from delivery of 116,000 Btu hydrogen
to a vehicle using the central wind electricity—pipeline delivery pathway
Figure 6.9.10. Life-cycle petroleum, natural gas, and coal inputs for both the central wind
electricity—pipeline delivery pathway and the vehicle cycle
Figure 6.9.11. Life-cycle CO_2 , CH_4 , and N_2O emissions for both the central wind electricity—
pipeline delivery pathway and the vehicle cycle
Figure 6.10.1. Summary of major inputs, assumptions, and outputs by subsystem for the central
coal with CCS—pipeline delivery pathway

Figure 6.10.2. Cost analysis inputs and high-level results for the central coal with CCS—pipeline delivery pathway
Figure 6.10.3. Contribution of hydrogen production, delivery, and losses to the levelized cost of
hydrogen for the central coal with CCS—pipeline delivery pathway
Figure 6.10.4. Breakdown of levelized costs for the central coal with CCS—pipeline delivery
pathway
pathway156 Figure 6.10.5. WTW energy inputs to deliver 116,000 Btu hydrogen to a vehicle using the central
coal with CCS—pipeline delivery pathway
Figure 6.10.6. WTW petroleum, natural gas, and coal inputs to deliver 116,000 Btu hydrogen using
the central coal with CCS—pipeline delivery pathway
Figure 6.10.7. WTW emissions resulting from delivery of 116,000 Btu hydrogen using the central
coal with CCS—pipeline delivery pathway
Figure 6.10.8. WTW CO ₂ , CH ₄ , and N ₂ O emissions resulting from delivery of 116,000 Btu hydrogen
to a vehicle using the central coal with CCS—pipeline delivery pathway
Figure 6.10.9. Production sensitivities for the central coal with CCS—pipeline delivery pathway 160
Figure 7.0.1. Levelized cost of hydrogen for all pathways, based on 48 mpgge fuel economy 162
Figure 7.0.2. Levelized cost of hydrogen for all pathways for both 48 and 68 mpgge fuel economy162
Figure 7.0.3. Production levelized costs for 10 pathways
Figure 7.0.4. Normalized capital costs for 10 pathways
Figure 7.0.5. Pathway energy use for 10 pathways166
Figure 7.0.6. WTW, pathway, and production efficiencies for 10 hydrogen pathways
Figure 7.0.7. WTW petroleum energy use for 10 hydrogen pathways
Figure 7.0.8. WTW natural gas energy use for 10 hydrogen pathways
Figure 7.0.9. WTW GHG emissions for 10 hydrogen pathways
Figure 7.0.10. Comparison of pathways' petroleum use and GHG emissions (48 mpgge) 171
Figure 7.0.11a. Comparison of pathways' levelized costs per mile and GHG emissions (based on
48 mpgge fuel economy) 172
Figure 7.0.11b. Comparison of pathways' levelized costs per mile and GHG emissions (based on
68 mpgge fuel economy)
Figure 7.0.12. Per-mile levelized hydrogen costs for 10 hydrogen pathways
Figure 7.0.13. Levelized hydrogen costs with possible cost of carbon for 10 hydrogen pathways
(based on 48 mpgge fuel economy)

List of Tables

Table ES.1. Ten Hydrogen Production, Delivery, and Distribution Pathways	
Table 1.4.1. Ten Hydrogen Production, Delivery, and Distribution Pathways	
Table 4.2.1. Change in Exhaust as Compared to a Gasoline Vehicle	24
Table 4.3.1. FCEV Subsystem Costs	
Table 4.3.2. ICE Vehicle Subsystem Costs	
Table 4.4.1. FCEV Subsystem Mass Percentages	
Table 5.0.1. H2A Key Economic Parameters	27
Table 6.0.1. Ten Hydrogen Production, Delivery, and Distribution Pathways	29
Table 6.1.1. WTP and WTW Results for the Distributed Natural Gas Pathway	32
Table 6.1.2. Contribution of Production and CSD Processes to Levelized Hydrogen Cost for the	
Distributed Natural Gas Pathway	34
Table 6.1.3. The Effects of Production Energy Efficiency on Primary Energy Use and Emissions	
from the Distributed Natural Gas Pathway	
Table 6.1.4. The Effects of Fuel Economy and Grid Mix on Use of Primary Energy and Emissions	
from the Distributed Natural Gas Pathway	39
Table 6.2.1. WTP and WTW Results for the Distributed Ethanol Pathway	42
Table 6.2.2. Contribution of Production and CSD Processes to Levelized Hydrogen Cost for the	
Distributed Ethanol Pathway Table 6.2.3. The Effects of Production Energy Efficiency on Primary Energy Use and Emissions	45
Table 6.2.3. The Effects of Production Energy Efficiency on Primary Energy Use and Emissions	
from the Distributed Ethanol Pathway	48
Table 6.2.4. The Effects of Fuel Economy and Grid Mix on Use of Primary Energy and Emissions	
from the Distributed Ethanol Pathway	
Table 6.3.1. WTP and WTW Results for the Distributed Grid Electricity Pathway	51
Table 6.3.2. Contribution of Production and CSD Processes to Levelized Hydrogen Cost for the Distributed Grid Electricity Pathway	50
Table 6.3.3. The Effects of Production Energy Efficiency on Primary Energy Use and Emissions	55
	EC
from the Distributed Grid Electrolysis Pathway Table 6.3.4. The Effects of Fuel Economy and Grid Mix on Use of Primary Energy and Emissions	90
from the Distributed Grid Electrolysis Pathway	
Table 6.4.1. WTP and WTW Results for the Central Biomass—Pipeline Delivery Pathway	
Table 6.4.2. Contribution of Production and Delivery Processes to Levelized Hydrogen Cost for the	
Central Biomass—Pipeline Delivery Pathway	61
Table 6.4.3. The Effects of Production Energy Efficiency on Primary Energy Use and Emissions	•
from the Central Biomass—Pipeline Delivery Pathway	64
Table 6.4.4. The Effects of Fuel Economy and Grid Mix on Use of Primary Energy and Emissions	
from the Central Biomass—Pipeline Delivery Pathway	
Table 6.5.1. WTP and WTW Results for the Central Biomass—Gaseous H ₂ Truck Delivery Pathwa	iv77
Table 6.5.2. Contribution of Production and Delivery Processes to Levelized Hydrogen Cost for the	
Central Biomass—Gaseous H ₂ Truck Delivery Pathway	
Table 6.5.3. The Effects of Production Energy Efficiency on Primary Energy Use and Emissions	
from the Central Biomass—Gaseous H ₂ Truck Delivery Pathway	82
Table 6.5.4. The Effects of Fuel Economy and Grid Mix on Use of Primary Energy and Emissions	
from the Central Biomass—Gaseous H ₂ Truck Delivery Pathway	
Table 6.6.1. WTP and WTW Results for the Central Biomass—Liquid Truck Delivery and Gaseous	
Dispensing Pathway	
Table 6.6.2. Contribution of Production and Delivery Processes to Levelized Hydrogen Cost for t	
Central Biomass—Liquid Truck Delivery and Gaseous Dispensing Pathway	97
Table 6.6.3. The Effects of Production Energy Efficiency on Primary Energy Use and Emissions	
from the Central Biomass—Liquid Truck Delivery and Gaseous Dispensing Pathway	
Table 6.6.4. The Effects of Fuel Economy and Grid Mix on Use of Primary Energy and Emissions	
from the Central Biomass—Liquid Truck Delivery and Gaseous Dispensing Pathway	01
Table 6.7.1. WTP and WTW Results for the Central Biomass—Liquid Truck Delivery and Cryo-	40
Compressed Dispensing Pathway1	
Table 6.7.2. Contribution of Production and Delivery Processes to Levelized Hydrogen Cost for t	ne

Central Biomass—Liquid Truck Delivery and Cryo-Compressed Dispensing Pathway
Table 6.7.3. The Effects of Production Energy Efficiency on Primary Energy Use and Emissions
from the Central Biomass—Liquid Truck Delivery and Cryo-Compressed Dispensing Pathway121
Table 6.7.4. The Effects of Fuel Economy and Grid Mix on Use of Primary Energy and Emissions
from the Central Biomass—Liquid Truck Delivery and Cryo-Compressed Dispensing Pathway122
Table 6.8.1. WTP and WTW Results for the Central Natural Gas—Pipeline Delivery Pathway 137
Table 6.8.2. Contribution of Production and Delivery Processes to Levelized Hydrogen Cost for the
Central Natural Gas—Pipeline Delivery Pathway139
Table 6.8.3. The Effects of Fuel Economy and Grid Mix on Use of Primary Energy and Emissions
from the Central Natural Gas—Pipeline Delivery Pathway 142
Table 6.9.1. WTP and WTW Results for the Central Wind Electricity—Pipeline Delivery Pathway 145
Table 6.9.2. Contribution of Production and Delivery Processes to Levelized Hydrogen Cost from
the Central Wind Electricity—Pipeline Delivery Pathway 148
Table 6.10.1. WTP and WTW Results for the Central Coal with CCS—Pipeline Delivery Pathway 155
Table 6.10.2. Contribution of Production and Delivery Processes to Levelized Hydrogen Cost from
the Central Coal with CCS—Pipeline Delivery Pathway
Table 6.10.3. The Effects of Production Energy Efficiency on Primary Energy Use and Emissions
from the Central Coal with CCS—Pipeline Delivery Pathway
Table 6.10.4. The Effects of Grid Mix on Use of Primary Energy and Emissions from the Central
Coal with CCS—Pipeline Delivery Pathway160
Table 7.0.1. Key Analysis Parameters 161

1 Introduction

1.1 Document's Intent

The United States (U.S.) Department of Energy (DOE) has identified a need to understand the life-cycle cost, energy use, and emissions tradeoffs of various hydrogen production, delivery, and use pathways under consideration to enable a transition from a hydrocarbon-based economy to a hydrogen-and-electricity-based economy. In 2009 the National Renewable Energy Laboratory (NREL) addressed this need by analyzing and reporting on a life-cycle cost, energy use, and emissions evaluation of seven hydrogen production, delivery, and use pathways (Ruth, Laffen and Timbario 2009). The present analysis updates and expands on the 2009 evaluation, assessing life-cycle costs, energy use, and emissions of a set of hydrogen pathways using updated costs and technology assumptions. This report contains the results of the updated life-cycle evaluation, including the updated cost of delivered hydrogen for the seven hydrogen production, delivery, and use pathways previously studied using the Macro-System Model (MSM), as well as three additional potential hydrogen production, delivery, and use pathways. The report also provides the results of sensitivity evaluations of the cost of delivered hydrogen to varying assumptions regarding feedstock cost, capital cost, plant capacity, and utility cost.

This analysis will aid in understanding and assessing technology needs and progress, potential environmental impacts, and the energy-related economic benefits of various hydrogen supply and demand pathways.

The MSM was used to analyze the pathways by linking the H2A Production Model, the Hydrogen Delivery Scenario Analysis Model (HDSAM), the Greenhouse Gas, Regulated Emission, and Energy for Transportation (GREET) Model, and the Cost-per-Mile (CPM) Tool. The MSM links those models so they can be executed concurrently, utilizing the capabilities of each and ensuring consistency among them. Also, the MSM is available to the public and enables users to analyze pathways and complete sensitivity analyses that are not reported in this document. Consistent with the standard employed by the H2A Production model and HDSAM, costs are presented in 2007 U.S. dollars.

The primary differences between the 2009 report and this report are that the current study:

- Analyzed three additional pathways: distributed ethanol reforming, central biomass reforming with delivery in gaseous hydrogen trucks, and central biomass reforming with delivery in liquid hydrogen trucks with cryo-compressed dispensing.
- Added vehicle costs and vehicle-cycle energy use and emissions to calculate overall ownership costs and fuel-plus-vehicle-cycle energy use and emissions. The vehicle is assumed to be owned for 5 years and be driven 15,000 miles per year and sold in good condition at the end of that period. Energy use and emissions are averaged over a vehicle lifetime of 160,000 miles.

- Used H2A Version 3, HDSAM Version 2.3, GREET 1 2011, GREET 2.7, and the CPM Tool within the MSM.³ (The central coal with carbon-capture and sequestration [CCS] case still uses H2A Version 2.1.1, which is the most recent H2A version of this case.)
- Updated energy prices from the Energy Information Administration's Annual Energy Outlook 2009.
- Updated cost of delivered hydrogen in 2007 dollars from 2005 dollars (except for the central coal with CCS pathway).
- Reduced vehicle penetration rate from 50% to 15%.
- Increased vehicle fuel economy from 45 to 48 miles per gallon gasoline equivalent (mpgge). Additional sensitivity analyses using 68 mpgge were also performed.
- Increased hydrogen dispensing pressure from 5,000 psi (350 bar) to 10,000 psi (700 bar).

This document reports a greater level of detail than analyses that show only the full pathway results (or maybe have a single break-point in the pathway), but it reports little information at the unit-operation level. Parameters that are expected to have major effects on the results are reported at the unit-operation level.

1.2 Hypothetical Market State and Technology Development Assumptions

The pathways analyzed are intended to be plausible production scenarios for mature technologies with full deployment of a regional hydrogen fueling network. They are not transition scenarios where equipment may not be utilized fully, nor are they technology validation activities where production, delivery, and vehicle costs are higher due to first-of-a-kind plants and low production levels of vehicles. Specifically, today's technical status is extrapolated to a scenario where 15% of the vehicles are fueled by hydrogen in a city with the area (553 mi²) and population (1,247,364) of Indianapolis, Indiana, and all equipment is fully utilized for its lifetime. Production facilities are not scaled to meet demand; instead, necessary demand from other nearby communities is assumed available so the facilities are kept at the H2A-defined natural scale.

Costs, energy use, and emissions estimates in this study are based on current technologies, and costs are reported in 2007 U.S. dollars (except where noted). In this analysis, "current technology" refers to technology that is available currently at the bench scale—not necessarily technology that has been demonstrated at production scales. Thus, assumptions about larger-scale performance and equipment requirements and costs are necessary.

Designs and costs in this analysis do not include additional requirements of first-of-a-kind or one-of-a-kind technologies. In many cases, first-of-a-kind technologies require safety factors, instrumentation, and contingencies that are not necessary later in the development process. Those additional costs are not included in this analysis because they are difficult to account for and because they are not well understood. Instead, technology designs and costs are based on "nth

³ The versions of H2A, HDSAM, and GREET used were current at the time this life-cycle evaluation began. As of the publication of this report, H2A Version 3 and HDSAM Version 2.3 are still current, but more recent updates of the GREET 1 and GREET 2 models were made available in late 2012.

plant" techniques (techniques that inherently assume that the technology is mature and do not include additional contingency, capital costs, and yield loss necessary for first-of-a-kind plant cost estimation).

1.3 Analysis Boundaries

The "well-to-wheels" (WTW) energy use and emissions are assessed for each pathway using the GREET 1 fuel-cycle model. Included in the assessment are feedstock recovery, transportation, and storage; fuel production, transportation, storage, and distribution; and vehicle production, maintenance, operation, and disposal. The reported energy use includes both direct and indirect use of raw materials (natural gas, coal, and petroleum). For feedstock recovery, direct use of raw materials involves those used to recover and refine the feedstock, and indirect use of raw materials involves those needed to produce electricity and materials that are used directly. In addition to WTW analyses, life-cycle energy use and emissions are assessed for each pathway by combining the fuel-cycle WTW assessment from GREET 1 with the vehicle-cycle assessment from GREET 2.

Energy used and emissions generated to produce the equipment required to recover the feedstock, produce the fuel, produce the vehicles, and so on, are not included.

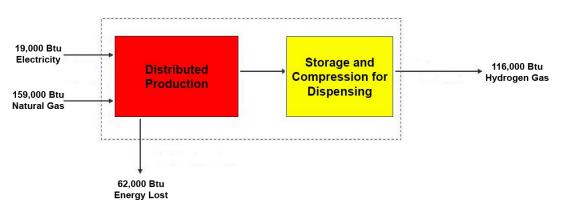
1.4 Pathways

The 10 pathways included in this analysis are shown in Table 1.4.1.

	Feedstock	Central or Distributed Production	Carbon Capture and Sequestration	Delivery Method	Hydrogen Distribution
1	Natural Gas	Distributed	No	Not applicable	700 bar, gaseous
2 ^a	Ethanol	Distributed	No	Not applicable	700 bar, gaseous
3	Grid Electricity	Distributed	No	Not applicable	700 bar, gaseous
4	Biomass	Central	No	Gaseous H ₂ in pipelines	700 bar, gaseous
5 ^a	Biomass	Central	No	Gaseous H ₂ truck	700 bar, gaseous
6	Biomass	Central	No	Liquid H ₂ truck	700 bar, gaseous
7 ^a	Biomass	Central	No	Liquid H ₂ truck	Cryo-compressed
8	Natural Gas	Central	No	Gaseous H ₂ in pipelines	700 bar, gaseous
9	Wind Electricity	Central	No	Gaseous H ₂ in pipelines	700 bar, gaseous
10	Coal	Central	Yes	Gaseous H₂ in pipelines	700 bar, gaseous

Table 1.4.1. Ten Hydrogen Production, Delivery, and Distribution Pathways

^a Newly analyzed pathways


For convenience, the pathways are identified throughout this report using the feedstock and the delivery method; for example: Pathway 1 is referred to as the distributed natural gas pathway, Pathway 2 is referred to as the distributed ethanol pathway, Pathway 3 is the distributed electrolysis pathway, and Pathway 4 is the central biomass with pipeline delivery pathway.

Each pathway description below includes a flowchart showing the major subsystems of the hydrogen production and delivery pathway and the amount of energy required for each. Not

included in these flowcharts are the energy requirements to supply the feedstock for hydrogen production; the energy use for feedstock production and delivery is included in the full WTW results presented in Section 6.0.

1.4.1 Pathway 1: Distributed Natural Gas

In the distributed natural gas pathway, hydrogen is produced from natural gas at the hydrogen refueling site using a 1,500 kg H_2 /day steam methane reformer (SMR) with water-gas shift (WGS). Pressure swing adsorption (PSA) is used to obtain the required hydrogen purity. The hydrogen is then compressed to 12,687 psi (875 bar) and stored on-site prior to dispensing as a gaseous fuel to the 10,000 psi (700 bar) vehicle fuel tank. The flow diagram in Figure 1.4.1 shows the fuel production and delivery components of the distributed natural gas pathway and the energy balance for the major hydrogen-related subsystems, on a 1-gallon gasoline equivalent (gge) basis. The production and forecourt technologies are detailed in Ruth, Laffen and Timbario (2009).

Values may not sum to zero due to rounding.

This pathway is considered among the least costly in the near term to establish early market refueling capability (Greene et al. 2008).

1.4.2 Pathway 2: Distributed Ethanol

In the distributed ethanol pathway, hydrogen is produced from corn stover-based ethanol at the hydrogen refueling site using a 1,500 kg H_2 /day steam reformer with a WGS reactor. PSA is used to obtain the required hydrogen purity. The hydrogen is then compressed to 12,687 psi (875 bar) and stored on-site prior to dispensing as a gaseous fuel to the 10,000 psi (700 bar) vehicle fuel tank. The flow diagram in Figure 1.4.2 shows the fuel production and delivery components of the distributed ethanol pathway and the energy balance for the major hydrogen-related subsystems, on a 1-gge basis. The production technologies are detailed in Section 2.2, and the delivery technologies are detailed in Ruth, Laffen and Timbario (2009).

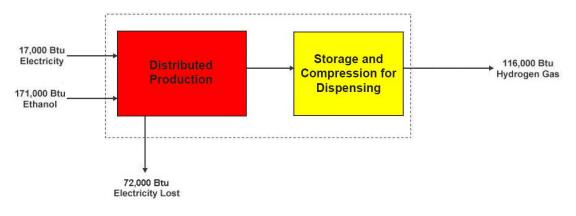


Figure 1.4.2. Flow diagram and energy balance of distributed ethanol pathway

Values may not sum to zero due to rounding.

1.4.3 Pathway 3: Distributed Electricity

In the distributed electricity pathway, hydrogen is produced from water at the hydrogen refueling site using a 1,500 kg H_2 /day grid-powered electrolyzer. A scrubber is used to obtain the required hydrogen purity. The hydrogen is then compressed to 12,687 psi (875 bar) and stored on-site prior to dispensing as a gaseous fuel to the 10,000 psi (700 bar) vehicle fuel tank. The flow diagram in Figure 1.4.3 shows the fuel production and delivery components of the distributed electricity pathway and the energy balance for the major hydrogen-related subsystems, on a 1-gge basis. The production and forecourt technologies are detailed in Ruth, Laffen and Timbario (2009).

This pathway offers an alternative to distributed natural gas, particularly in areas where clean, inexpensive electricity is available.

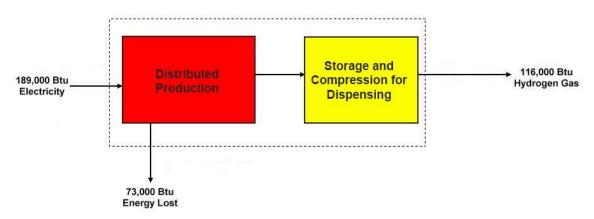


Figure 1.4.3. Flow diagram and energy balance of distributed electricity pathway

Values may not sum to zero due to rounding.

1.4.4 Pathway 4: Central Biomass—Pipeline Delivery

In the central biomass—pipeline delivery pathway, woody biomass (poplar) within a 50-mile radius is transported via truck to a central hydrogen production facility with a design capacity of

2,000 bone dry metric ton/day biomass (~155,000 kg H₂/day). An indirectly heated biomass gasifier converts the biomass to a biogas, which is then converted to hydrogen using a catalytic SMR with WGS. PSA is used to obtain the required hydrogen purity. The hydrogen is compressed to 1,000 psi (69 bar) and injected into a pipeline, through which it is transported to a 1,000 kg/day forecourt hydrogen refueling station. There the hydrogen is compressed to 12,687 psi (875 bar) and dispensed as a gaseous fuel to the 10,000 psi (700 bar) vehicle fuel tank. The flow diagram in Figure 1.4.4 shows the fuel production and delivery components of the central biomass—pipeline delivery pathway and the energy balance for the major hydrogen-related subsystems, on a 1-gge basis. The production, delivery, and forecourt technologies are detailed in Ruth, Laffen and Timbario (2009).

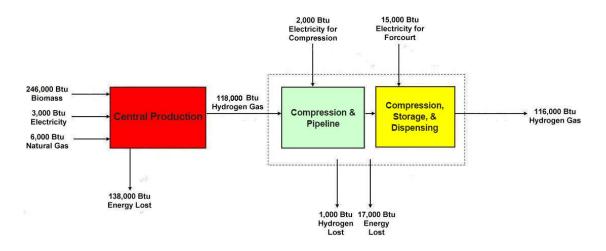


Figure 1.4.4. Flow diagram and energy balance of central biomass—pipeline delivery pathway

Values may not sum to zero due to rounding.

1.4.5 Pathway 5: Central Biomass—Gaseous H₂ Truck Delivery

In the central biomass—gaseous truck delivery pathway, woody biomass (poplar) within a 50mile radius is transported via truck to a central hydrogen production facility with a design capacity of 2,000 bone dry metric ton/day biomass (~155,000 kg H₂/day). An indirectly heated biomass gasifier converts the biomass to a biogas, which is then converted to hydrogen using a catalytic SMR with WGS. PSA is used to obtain the required hydrogen purity. The hydrogen is then transported via pipeline to a cavern for geologic storage. The cavern is designed to satisfy a surge in demand during the summer period and to provide storage during the annual shutdown of the hydrogen production facility. The usable capacity of the geologic storage is >1.3 million kg H₂. The hydrogen is then transported from the geologic storage facility to a terminal, where it is compressed to 3,777 psi and loaded into tube trailers. The tube trailers are transported via truck to a 800 kg/day forecourt hydrogen refueling station. There the hydrogen is compressed to 12,687 psi (875 bar) and dispensed as a gaseous fuel to the 10,000 psi (700 bar) vehicle fuel tank. The flow diagram in Figure 1.4.5 shows the fuel production and delivery components of the central biomass-gaseous truck delivery pathway and the energy balance for the major hydrogen-related subsystems, on a 1-gge basis. The production and forecourt technologies are detailed in Ruth. Laffen and Timbario (2009).

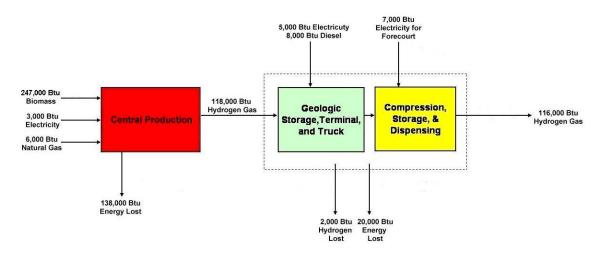


Figure 1.4.5. Flow diagram and energy balance of central biomass—gaseous truck delivery pathway

Values may not sum to zero due to rounding.

1.4.6 Pathway 6: Central Biomass—Liquid Truck Delivery and Gaseous Dispensing

In the central biomass—liquid truck delivery pathway, woody biomass (poplar) within a 50-mile radius is transported via truck to a central hydrogen production facility with a design capacity of 2,000 bone dry metric ton/day biomass (~155,000 kg H₂/day). An indirectly heated biomass gasifier converts the biomass to a biogas, which is then converted to hydrogen using a catalytic SMR with WGS. PSA is used to obtain the required hydrogen purity. The hydrogen is liquefied, stored as necessary, loaded into tube trailers, and delivered via truck to a 1,000 kg/day forecourt hydrogen refueling station, where it is vaporized, compressed to 12,687 psi (875 bar), and dispensed as a gaseous fuel to the 10,000 psi (700 bar) vehicle fuel tank. The flow diagram in Figure 1.4.6 shows the fuel production and delivery components of the central biomass—liquid truck delivery pathway and the energy balance for the major hydrogen-related subsystems, on a 1-gge basis. The production and forecourt technologies are detailed in Ruth, Laffen and Timbario (2009).

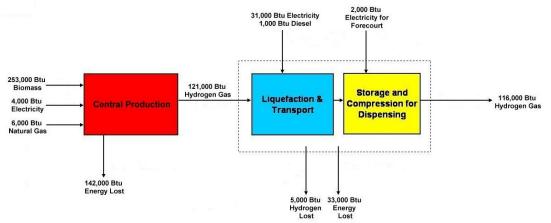
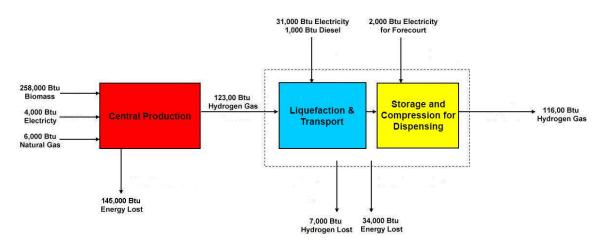



Figure 1.4.6. Flow diagram and energy balance of central biomass—liquid truck delivery pathway Values may not sum to zero due to rounding.

1.4.7 Pathway 7: Central Biomass—Liquid Truck Delivery and Cryo-Compressed Dispensing

In the central biomass—liquid truck delivery and cryo-compressed dispensing pathway, woody biomass (poplar) within a 50-mile radius is transported via truck to a central hydrogen production facility with a design capacity of 2,000 bone dry metric ton/day biomass (~155,000 kg H₂/day). An indirectly heated biomass gasifier converts the biomass to a biogas, which is then converted to hydrogen using a catalytic SMR with WGS. PSA is used to obtain the required hydrogen purity. The hydrogen is liquefied, stored as necessary, loaded into tube trailers, and delivered via truck to a 1,000 kg/day forecourt hydrogen refueling station, where it is dispensed via a cryogenic pump as a gaseous fuel to the 10,000 psi (700 bar) vehicle fuel tank. The flow diagram in Figure 1.4.7 shows the fuel production and delivery components of the central biomass—liquid truck delivery and cryo-compressed dispensing pathway and the energy balance for the major hydrogen-related subsystems, on a 1-gge basis. The production and delivery technologies are detailed in Ruth, Laffen and Timbario (2009).

The biomass pathways were selected for this study because of their potential to provide hydrogen with low or zero net carbon dioxide (CO_2) emissions and because there are feedstock availability, delivery, and handling issues that are unique to biomass. These pathways are also more dependent on regional resource availability and costs than other pathways are; while sensitivity studies to regionality are outside the scope of this study, they may be conducted as more data become available.

Figure 1.4.7. Flow diagram and energy balance of central biomass—liquid truck delivery and cryocompressed dispensing pathway

Values may not sum to zero due to rounding.

These are the only pathways studied that utilize liquid hydrogen delivery. Comparison of the liquid hydrogen delivery pathways with the central biomass—pipeline delivery pathway offers insights to the advantages, disadvantages, and issues associated with liquid hydrogen delivery. It also offers the opportunity to examine the sensitivity of delivery options (gaseous or liquid truck and gaseous pipeline) to parameters such as delivery distance and degree of hydrogen penetration in the vehicular fuel market.

1.4.8 Pathway 8: Central Natural Gas—Pipeline Delivery

In the central natural gas—pipeline delivery pathway, natural gas is carried via pipeline to a central hydrogen production facility with a design capacity of \sim 379,000 kg H₂/day, where an SMR with WGS is used to reform the natural gas to hydrogen. PSA is used to obtain the required hydrogen purity. The hydrogen is compressed to 1,000 psi (69 bar) and injected into a pipeline, through which it is transported to a 1,000 kg/day forecourt hydrogen refueling station. There the hydrogen is compressed to 12,687 psi (875 bar) and dispensed as a gaseous fuel to the 10,000 psi (700 bar) vehicle fuel tank. The flow diagram in Figure 1.4.8 shows the fuel production and delivery components of the central natural gas—pipeline delivery pathway and the energy balance for the major hydrogen-related subsystems, on a 1-gge basis. The production, delivery, and forecourt technologies are detailed in Ruth, Laffen and Timbario (2009).

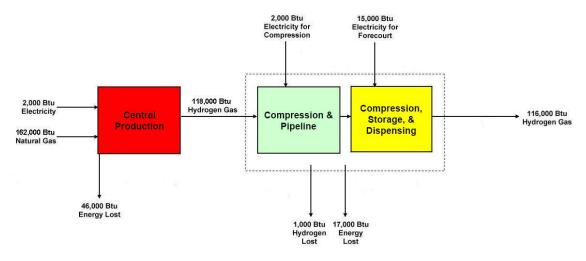


Figure 1.4.8. Flow diagram and energy balance of central natural gas—pipeline delivery pathway

Values may not sum to zero due to rounding.

The central natural gas—pipeline delivery pathway was selected as a benchmark case for this study. Large-scale natural gas reforming is a mature process being used to produce hydrogen for industrial applications such as merchant hydrogen sales, chemical production, and oil refining. It is expected to result in the lowest cost of hydrogen when pipeline delivery is employed.

1.4.9 Pathway 9: Central Wind Electricity—Pipeline Delivery

In the central wind electricity—pipeline delivery pathway, hydrogen is produced from water at a central production facility using a grid-powered electrolyzer with a design capacity of ~52,300 kg H₂/day. It is assumed that the facility buys wind-power credits for all of the electricity purchased. (From an emission perspective, solar photovoltaic or other forms of zero-emission electricity could be assumed, though the costs presented assume the purchase of wind power.) A scrubber is used to obtain the required hydrogen purity. The hydrogen is compressed to 1,000 psi (69 bar) and injected into a pipeline, through which it is transported to a 1,000 kg/day forecourt hydrogen refueling station. There the hydrogen is compressed to 12,687 psi (875 bar) and dispensed as a gaseous fuel to the 10,000 psi (700 bar) vehicle fuel tank. The flow diagram in Figure 1.4.9 shows the fuel production and delivery components of the central wind electricity—pipeline delivery pathway and the energy balance for the major hydrogen-related subsystems, on

a 1-gge basis. The production and forecourt technologies are detailed in Ruth, Laffen and Timbario (2009).

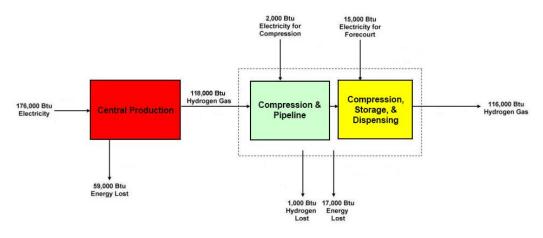


Figure 1.4.9. Flow diagram and energy balance of central wind electricity—pipeline delivery pathway

Values may not sum to zero due to rounding.

The central wind electricity—pipeline delivery pathway represents a low-carbon, renewable energy-based option for providing hydrogen as a transportation fuel. Unlike the biomass pathways, which have potential geographic limitations, the wind electricity pathway can be implemented anywhere that wind-power credits are available for purchase.

1.4.10 Pathway 10: Central Coal with Carbon Capture and Sequestration—Pipeline Delivery

In the central coal with carbon capture and sequestration (CCS)—pipeline delivery pathway, coal is delivered via rail to a central hydrogen production facility with a design capacity of ~308,000 kg H₂/day, where it is gasified. A shift converter is used to convert the syngas to a hydrogen-rich gas, which undergoes acid gas cleanup and removes hydrogen sulfide prior to entering a PSA unit to obtain the required hydrogen purity. Carbon dioxide is captured using a Selexol process and is compressed to 2,200 psi (152 bar) for injection to a pipeline. It is transported via pipeline to a sequestration site. The hydrogen is compressed to 1,000 psi (69 bar) and injected into a pipeline, through which it is transported to a 1,000 kg/day forecourt hydrogen refueling station. There the hydrogen is compressed to 12,687 psi (875 bar) and dispensed as a gaseous fuel to the 10,000 psi (700 bar) vehicle fuel tank. The flow diagram in Figure 1.4.10 shows the fuel production and delivery components of the central coal with CCS—pipeline delivery pathway and the energy balance for the major hydrogen-related subsystems, on a 1-gge basis. The production and forecourt technologies are detailed in Ruth, Laffen and Timbario (2009).

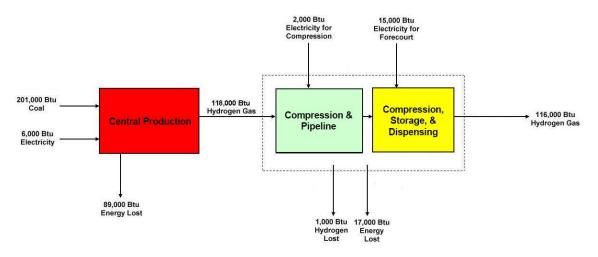


Figure 1.4.10. Flow diagram and energy balance of central coal with CCS—pipeline delivery pathway

Values may not sum to zero due to rounding.

Coal is an abundant fossil fuel in the United States, typically available at a relatively low cost. The central coal with CCS—pipeline delivery pathway was selected for this study to enable comparisons between coal and other fossil and renewable options for providing hydrogen transportation fuel. It is the only pathway studied that includes carbon capture and sequestration, thus offering opportunities for better understanding the effects of CCS on hydrogen costs, energy use, and emissions.

1.5 Models Used in the Pathway Analyses

The H2A Production Model Version 3.0 (Steward, Ramsden and Zuboy 2012) applies a standard discounted cash flow rate of return methodology to determine the minimum hydrogen selling price for central and forecourt hydrogen production technologies, including a specified after-tax internal rate of return. The H2A Production Model performs carbon sequestration calculations for centralized hydrogen production pathways and refueling station compression, storage, and dispensing calculations for distributed hydrogen production pathways.

HDSAM Version 2.3 (Mintz, Elgowainy and Gillette 2010) calculates the cost of hydrogen delivery using an engineering economics approach via a single or mixed mode for transmission and distribution (cryogenic tank truck, compressed gas truck, or pipeline) for a scenario defined by type and size of market, penetration rate, and refueling station capacity. Delivery in Version 2.3 includes all transport, storage, and conditioning activities from the outlets of a centralized hydrogen production facility to and including a fuel station that stores, in some cases further conditions, and dispenses the hydrogen to vehicles; this version does not model distributed production scenarios. Discounted cash flow is used to calculate the cost contribution of each component in the delivery chain.

The GREET models (Argonne National Laboratory, 2012) calculate the full fuel-cycle (GREET 1) and vehicle-cycle (GREET 2) emissions and energy use associated with various transportation fuels for light-duty vehicles. Emissions included are the five criteria pollutants (volatile organic compounds, carbon monoxide, oxides of nitrogen, oxides of sulfur, and particulate matter) and

three greenhouse gases (carbon dioxide, methane, and nitrous oxide). Additionally, total fuelcycle and vehicle-cycle energy consumption, fossil fuel consumption, and petroleum consumption are calculated. More than 100 fuel production pathways and more than 70 vehicle/fuel systems are available in the current version of GREET. For this hydrogen pathways report, the GREET 1 2011 and GREET 2.7 versions were utilized for GREET 1 and GREET 2, respectively.

The CPM Tool (Timbario et al. 2011) calculates the cost of vehicle ownership by estimating acquisition and operating costs for consumers and fleets. Operating costs include fuel, maintenance, tires, and repairs; ownership costs include insurance, registration, taxes and fees, depreciation, financing, and tax credits. The CPM Tool was developed to allow simultaneous comparisons of conventional light-duty internal combustion engine (ICE) vehicles, mild and full hybrid electric vehicles, and fuel cell electric vehicles (FCEVs). The tool assumes that the vehicle is kept for five years and is driven 15,000 miles per year. At the end of the ownership period, the vehicle is assumed to be sold in a clean, reconditioned state. All operating and ownership costs in 2007 dollars for the 5-year period are summed and divided by the annual vehicle miles traveled to obtain the annual cost per mile.

The MSM (Ruth et al. 2011) links the H2A Production Model, HDSAM, GREET, and the CPM Tool to perform WTW analysis of the energy use, emissions, and economics of hydrogen production and delivery pathways from feedstock extraction through end use of hydrogen in vehicles. The primary inputs to the MSM are technology year, city size and hydrogen fuel penetration, production and delivery technology, and vehicle fuel economy. H2A and HDSAM results are used for many of GREET's input parameters in each MSM run. Primary energy source requirements and emissions are analyzed. Outputs of the model include the amount and type of feedstock used to produce hydrogen, efficiency values of different technologies, energy use and emissions of various pathways, hydrogen production capacity to meet demand, and levelized cost of hydrogen at the pump achievable under different scenarios.

The MSM provides a Web-based interface that allows users to perform hydrogen pathway analyses following their own interests. It also allows for extensive single-parameter and multi-parameter sensitivity studies. The MSM will be updated with future versions of the H2A Production Model, HDSAM, GREET, and the CPM Tool as they are made public.⁴

⁴ For access to the MSM, please contact Victor Diakov at <u>victor.diakov@nrel.gov</u>.

2 Production Technology Descriptions and Assumptions

The hydrogen production technologies used in each of the 10 pathways examined in this study are summarized below. Full details for each production technology except ethanol reforming can be found in Ruth, Laffen and Timbario (2009). Note that this study assumes that energy used in the production facility for lighting, control systems, and other ancillary systems is small relative to the energy used directly in the production process; these items are therefore not included in the cost, energy use, and emissions calculations.

2.1 Distributed Natural Gas Reforming

The H2A distributed natural gas model (James 2012) determines a baseline delivered cost of hydrogen for the forecourt production of hydrogen from natural gas steam reforming. The natural gas reforming process is based on an ASPEN simulation of a 20-atm conventional SMR process, with an accompanying hydro-desulfurization pretreatment and PSA gas cleanup. The PSA is based on a four-bed Batta cycle achieving 75% hydrogen recovery (single pass). Multiple passes are used to increase recovery. The unit is assumed to be factory built (as opposed to on-site construction) and skid-mounted for easy and rapid installation.

A single 1,500 kg/day unit is assumed. The system is assumed to be air-cooled (and thus requires no cooling water flow). The product hydrogen exits the PSA at 300 psi and is compressed for storage in metal cylinder storage tanks (2,500 psi max pressures). The hydrogen is next compressed to 12,700 psi (maximum) for transfer into a four-bed, high-pressure cascade system to allow rapid filling of 10,000-psi onboard hydrogen vehicular tanks. A process flow diagram is shown in Ruth, Laffen and Timbario (2009).

2.2 Distributed Ethanol Reforming

The H2A distributed ethanol model (James 2012) determines a baseline delivered cost of hydrogen for the forecourt production of hydrogen from ethanol reforming. The ethanol reforming process is based on an ASPEN simulation of a 20-atm conventional tube-in-shell steam reactor with PSA gas cleanup. Precious metal catalyst is assumed. The catalyzed conversion of ethanol to methane occurs rapidly to near-full ethanol conversion in a compact adiabatic pre-reformer. Because methane is the primary component of the pre-reformer effluent, the remainder of the system is nearly identical to that of a natural gas reformer system. Ethanol is the sole feedstock and is also used as a supplemental fuel to the burner. An adiabatic flame temperature of 950°C is assumed for the burner, and the reformer temperature is assumed to be 850°C. Flue gas is exhausted at 110°C. The PSA is based on a four-bed Batta cycle achieving 75% hydrogen recovery. The unit is assumed to be factory built (as opposed to on-site construction) and is skid-mounted for easy and rapid installation.

A single 1,500 kg/day unit is assumed. The system is assumed to be air-cooled (and thus requires no cooling water flow). The product hydrogen exits the PSA at 300 psi and is compressed for storage in metal cylinder storage tanks (2,500 psi max pressures). The hydrogen is next compressed to 12,700 psi (maximum) for transfer into a four-bed high-pressure cascade system to allow rapid filling of 10,000-psi onboard hydrogen vehicular tanks. A process flow diagram is shown in Ruth, Laffen and Timbario (2009).

2.3 Distributed Electrolysis

The system modeled in the H2A distributed electrolysis model (Ruth and Ramsden 2012) is a standalone, grid-powered electrolyzer system with a total hydrogen production capacity of 1,500 kg/day. The system is based on the NEL Hydrogen (formerly Norsk Hydro) bi-polar alkaline electrolyzer system (Atmospheric Type No. 5040–5150 amp direct current). The electrolyzer system modeled is a skid-mounted unit, including the electrolyzer system and necessary auxiliary subsystems. The electrolyzer units use process water for electrolysis and cooling water. Potassium hydroxide is the electrolyte in the system. The system includes the following equipment: transformer, thyristor, electrolyzer unit, lye tank, feed water demineralizer, hydrogen scrubber, gas holder, two compressor units to 30 bar (435 psig), deoxidizer, and twin tower dryer.

As with the distributed natural gas and ethanol reforming pathways, the produced hydrogen is compressed to 12,700 psi to allow rapid filling of 10,000-psi onboard hydrogen vehicular tanks. A process flow chart and a mass balance diagram are shown in Ruth, Laffen and Timbario (2009).

2.4 Central Biomass Gasification

The systems examined in the H2A central biomass gasification model (Mann and Steward 2012) are based on the Battelle/FERCO indirectly heated biomass gasifier, conventional catalytic steam reforming, WGS, and PSA purification. The indirectly heated biomass gasifier uses hot sand circulating between the char combustor and the gasifier to provide the heat necessary for gasification. Steam is used as the fluidizing gas; no oxygen (as pure oxygen or air) is fed to the gasifier. The biomass feedstock is assumed to be a woody biomass, represented as hybrid poplar. A process flow chart is shown in Ruth, Laffen and Timbario (2009).

2.5 Central Natural Gas Reforming

Steam reforming of natural gas continues to be the most efficient, economical, and widely used process for production of hydrogen. The H2A central natural gas reforming model (Rutkowski 2012) assesses the economics of production of hydrogen by steam reforming of natural gas.

A process flow diagram and stream summaries for the central natural gas reforming process are shown in Ruth, Laffen and Timbario (2009). Natural gas is fed to the plant from a pipeline at a pressure of 450 psia. The gas is generally sulfur-free, but mercaptans (odorizers) must be cleaned from the gas to prevent contamination of the reformer catalyst. The desulfurized natural gas feedstock is mixed with process steam to be reacted over a nickel-based catalyst contained inside a system of high alloy steel tubes. The reforming reaction, which converts the methane to a mixture of carbon monoxide (CO) and H₂, is strongly endothermic, and the metallurgy of the tubes usually limits the reaction temperature to 760° – 930° C.

The flue gas path of the fired reformer is integrated with additional boiler tubes to produce about 700,000 lb/h steam. Of this, about 450,000 lb/h is superheated to 450 psia and 750°F to be added to the incoming natural gas. Excess steam from the boiler is sent off-site; however, revenue from the steam is not factored into the economic assessment. After the reformer, the process gas mixture of CO and H₂ passes through a heat recovery step and is fed into a WGS reactor to produce additional H₂.

2.6 Central Electrolysis with Renewable Power

The system modeled in the H2A central electrolysis model (Ramsden and Ruth 2011) is a standalone grid-powered electrolyzer system with a total hydrogen production capacity of 52,300 kg/day. The technology is identical to that used for distributed electrolysis even though it is 35 times larger, which provides economies of scale for the auxiliary components. Thus, the process description for distributed electrolysis in Section 2.3 applies to this production process as well.

The H2A central electrolysis model is not based on wind power, so this analysis assumes that a single facility is buying electricity from the grid and wind-power credits for all of the electricity purchased. Because the facility is using grid power, the operating capacity factor is 97%. If the facility were co-located with the wind turbines, it would likely have a lower operating capacity because the turbines would not be generating electricity all of the time. The optimal location and the capacity factor are not studied in this analysis.

2.7 Central Coal with Carbon Capture and Sequestration

The H2A central coal with carbon capture and sequestration model (Rutkowski 2008) uses capital and operating cost data to determine a plant-gate cost for hydrogen produced from coal gasification. The plant design for hydrogen production is based on commercially available process technologies with modifications to meet current permitting regulations for environmental compliance. The coal gasification production plant is designed to capture and sequester CO_2 emissions resulting from the shift conversion process.

The plant utilizes a Wabash River-scale ConocoPhillips (EGas) gasifier, conventional gas cooling, commercial shift conversion and acid gas cleanup, commercial sulfuric acid technology, and commercial PSA. A steam turbine supplies the electricity needed for the process except that required to compress the CO₂. A two-stage Selexol process is used to remove CO₂. Carbon dioxide is compressed to 2,200 psi for sequestration using electricity purchased from the grid (U.S. grid mix). The EGas gasifier is the gasifier of choice for this study because it has been operated on both bituminous and subbituminous coals. H2A simulations of hydrogen from coal in central plants are based on the use of Pittsburgh No. 8 bituminous coal, while GREET simulations are based on generic coal. The properties of Pittsburgh No. 8 coal used in the H2A analysis, a process flow chart, and the energy efficiencies are shown in Ruth, Laffen and Timbario (2009).

3 Delivery and Dispensing Technology Descriptions and Assumptions

The hydrogen delivery and distribution technologies used in each of the 10 pathways examined in this study are summarized below. Full details for each delivery and distribution technology used in the previous study can be found in Ruth, Laffen and Timbario (2009). Note that this study assumes that energy used in the hydrogen refueling station for items such as lighting, cryogenic pumping, and security cameras is small relative to the total delivery and distribution energy use; these items are therefore not included in the cost, energy use, and emissions calculations.

3.1 Gaseous Hydrogen via Pipeline

The pathways with delivery of gaseous hydrogen via pipeline include the following components: central production \rightarrow compressor \rightarrow geologic storage for plant outages \rightarrow transmission and distribution pipeline \rightarrow and gaseous hydrogen fuel station.

The largest diameter pipe of those in each scenario is the transmission pipeline. It extends from the production facility to the city gate. The diameter of the transmission pipeline is a function of its length, peak hydrogen demand, and the pressure differential between the pipeline inlet at the production end and the pipeline outlet at the city gate. An intermediate diameter pipe (trunk line) creates one or more rings within an area and is used to carry hydrogen from the transmission line to the individual service pipelines that connect to each individual hydrogen fuel station. HDSAM finds the least-cost combination of trunk and service lines and in doing so determines the number of trunk lines and their location, lengths, and diameters. The pipeline system requires a compressor to increase hydrogen pressure from its production level to the pressure at the terminus of the transmission line.

3.1.1 Pipeline

Pipeline diameter is calculated using the Panhandle B pipeline equation (see Ruth, Laffen and Timbario 2009) and is used to simulate compressible flow. HDSAM uses a cost curve to estimate the capital cost of a hydrogen pipeline system. Data from the curve are broken down into four parts: pipeline material cost, labor cost, miscellaneous cost, and right-of-way cost. It is assumed that the cost of a hydrogen pipeline will be 10% higher than that of a natural gas pipeline given that materials and weld-types may be different.

3.1.2 Compressor

Storage for production plant outages and demand surges is provided in geologic formations, which are assumed to be immediately adjacent to the production facility. A compressor is required to charge the hydrogen produced at a central facility into the geologic storage cavern. The same compressor is used to extract hydrogen from the cavern and push it into the pipeline at the operating pressure of the pipeline. HDSAM is designed to calculate the cost of a centralized compressor that can raise the pressure of a defined flow rate from one pressure to another. Spare compressor units are included in the model to ensure a high level of operational availability. It is assumed that there are no pressure drops in the after-cooler or interstage coolers. An electric-powered compressor is assumed.

A cost curve has been developed to estimate the uninstalled capital cost of transmission and terminal compressors. Figure 3.1.1 shows the cost of a compressor (2- and 3-stage) versus motor rating.

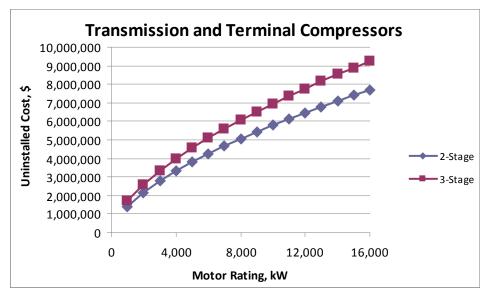


Figure 3.1.1. Compressor cost as a function of motor rating

Source: Elgowainy, Mintz and Gillette 2010 (costs are in 2007\$)

The capital cost of the compressor needs to be based on a unit that is capable of processing the peak hydrogen flow rate. During a typical operating year, however, the feed flow rate will fluctuate. Therefore, an average hydrogen flow rate is used as a basis to calculate the annual energy requirement and follows the compressor power equation in Ruth, Laffen and Timbario (2009).

3.2 Gaseous Hydrogen via Trucks

The pathways with delivery of gaseous hydrogen via trucks include the following components: central production \rightarrow compressor \rightarrow geologic storage for plant outages \rightarrow gaseous hydrogen terminal \rightarrow gaseous hydrogen truck transmission and distribution \rightarrow and gaseous hydrogen fuel station.

As described above for pathways with gaseous hydrogen delivery via pipeline, storage for production plant outages and demand surges is provided in geologic formations, which are assumed to be immediately adjacent to the production facility. From the geologic storage facility, the hydrogen is transported to a terminal or depot, where it is stored, compressed, and loaded onto trailers for delivery to stations. The terminal's storage requirement is determined by the following factors: peak daily demand, days of summer peak demand, and expected days per year that the production plant is off-line. The amount of required storage determines the number of truck-filling bays required at the terminal, the capacities of storage tanks, and the resulting capital and operating costs associated with the terminal.

For gaseous hydrogen truck transmission and distribution, tube trailers provide the primary onsite storage at the gaseous hydrogen fuel station. Because the compressor and cascade charging system operate at a constant rate, on-site storage is used to accommodate peak demand. Peak demand occurs on Fridays between 4:00 p.m. and 6:00 p.m. (Nexant 2008). Figure 3.2.1 shows the hourly Friday demand profile at a refueling station over 24 hours. The area under the curve above the daily average hourly demand represents the minimum storage requirement to satisfy the station demand during peak hours (approximately 30% of daily demand).

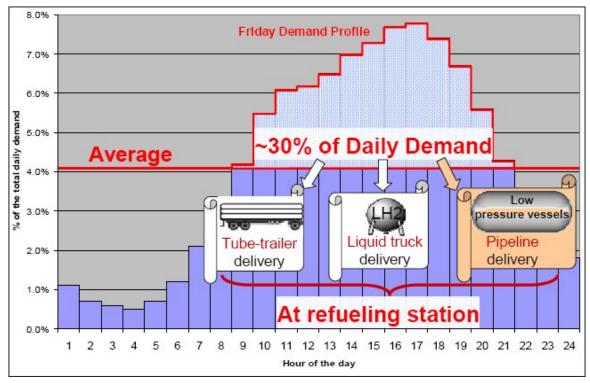


Figure 3.2.1. Hydrogen daily average demand for a peak dispensing day

Source: Nexant 2008

Capital and operating costs for dispensers, ancillary equipment, storage/cascade charging system, and forecourt compressors are calculated in HDSAM. The number of trucks and trailers and the distance traveled are used to calculate the capital and operating costs of delivery trucks as well as the amount of diesel fuel required.

3.2.1 Gaseous Hydrogen Truck

To maximize the usage of each truck, HDSAM assumes that a single tractor can serve multiple forecourt stations. The number of trailers (therefore the number of stations served) is optimized to maximize the use of the tractor. Because a trailer is assumed to be left at the fuel station and used as on-site storage, a single truck can move several trailers to any of the stations that it serves. HDSAM assumes that each trailer is refilled at the same terminal facility. The number of trailers for each tractor is calculated by considering the time required to empty the trailer at the forecourt station and the time required to deliver a full trailer and to return an empty one. The number of trailers required for each truck is typically more than the number of stations served by

that truck because there needs to be a full trailer ready to be delivered when the truck returns with an empty trailer.

The capital, labor, fuel, and other operating and maintenance costs for the truck and trailers are calculated and added together.

3.3 Compression, Storage, and Dispensing of Gaseous Hydrogen

Hydrogen distribution requires compression, storage, and dispensing at the fueling station to transfer hydrogen at 12,700 psi to vehicles in the required fill-up time.

Much like gasoline stations, hydrogen stations will experience seasonal demand (see Ruth, Laffen and Timbario 2009). In addition to seasonal demand, demand variation occurs daily during the week as well as hourly during the day as shown in Figure 3.2.1.

Daily and hourly fluctuations in demand are further described in Ruth, Laffen and Timbario (2009).

Refueling stations include a cascade charging system with at least one bank of three pressure vessels operating under different pressures (4,000, 8,000, and 11,000 psi) to satisfy vehicle refueling requirements. Each vessel holds 17 ft^3 of hydrogen at a maximum pressure of 14,200 psi.

The calculation for the number of dispensers is described in Ruth, Laffen and Timbario (2009).

3.4 Liquid Hydrogen via Trucks with Gaseous Hydrogen Dispensing

The pathways with delivery of liquid hydrogen via trucks and dispensing of gaseous hydrogen include the following components: central production \rightarrow liquefier \rightarrow liquid hydrogen terminal (including liquid storage for plant outages) \rightarrow liquid hydrogen truck transmission and distribution \rightarrow and gaseous hydrogen fuel station.

For liquid hydrogen truck transmission and distribution, HDSAM calculates the number and cost of the trucks and trailers required to deliver the fuel to fueling stations as well as the distances traveled. The capital and operating costs of the delivery trucks, including the amount of diesel fuel required, are computed. Additionally, the costs of appropriately sized liquefiers, terminal storage, liquid pumps, and vaporizers are calculated.

Peak demand is used to determine the design capacity of the terminal or depot where hydrogen is stored and loaded onto trailers for delivery to stations. Cryogenic storage tanks are used to mitigate production outages and demand surges and are assumed to be sited immediately adjacent to the production facility. The terminal's storage requirement is determined by the following factors: peak daily demand, days of summer peak demand, and expected days per year that the production plant is off-line. The amount of required storage tanks, and the resulting capital and operating costs associated with the terminal. Liquefier design is also linked to peak demand.

3.4.1 Liquid Hydrogen Truck

HDSAM calculates the amount of hydrogen that is loaded on a trailer when it leaves the terminal as well as the amount of boil-off losses during delivery to a station (see Ruth, Laffen and Timbario 2009).

HDSAM assumes there are only combinations of one tractor and one trailer. Additionally, it assumes that the stations are the same distance from the terminal and that the same amount of hydrogen is delivered to each station.

3.4.2 Liquefier

For the pathways analysis, HDSAM is able to cost a single liquefier unit based on an idealized liquefier power equation and an energy requirement based on literature data. The actual power requirement is calculated using the curve in Figure 3.4.1.

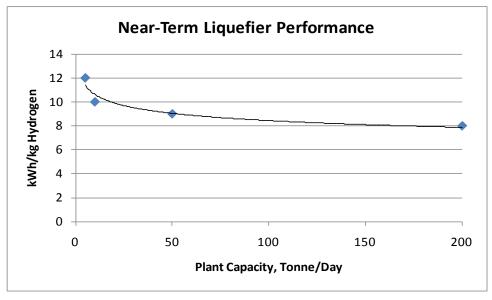
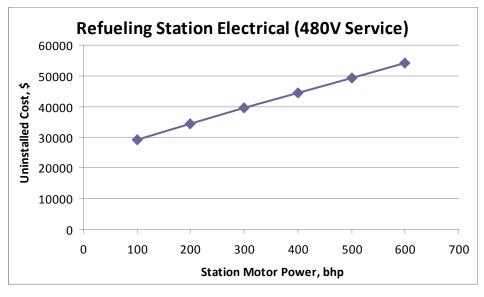


Figure 3.4.1. Liquefier energy requirement versus hydrogen flow rate Source: Elgowainy, Mintz and Gillette 2010

The liquefier efficiency is calculated by dividing the theoretical power by the actual power requirement as described in Ruth, Laffen and Timbario (2009).


It is assumed that the inlet and outlet pressures for the liquefier are both 1 atm and that the feed to the system is pure hydrogen.

A cost curve has been developed based on several literature sources that estimate the capital cost of a liquefier. Figure 3.4.2 displays the costs for an installed liquefier. For the purposes of this analysis, a conventional liquefier is assumed.

Figure 3.4.2. Liquefier cost versus design capacity Source: Elgowainy, Mintz and Gillette 2010 (costs are in 2007\$)

Refueling station electricity supply costs, assuming 480 V service, are shown in Figure 3.4.3.

Source: Elgowainy, Mintz and Gillette 2010 (costs are in 2007\$)

3.5 Liquid Hydrogen via Trucks with Dispensing of Cryo-Compressed Liquid Hydrogen

The liquid hydrogen pathway includes the following components: central production \rightarrow liquefier \rightarrow liquid hydrogen (including liquid storage for plant outages) \rightarrow liquid hydrogen truck transmission and distribution \rightarrow and liquid hydrogen fuel station.

For liquid hydrogen via trucks with dispensing of cryo-compressed liquid hydrogen, HDSAM calculates the number and cost of the trucks and trailers required to deliver the fuel to fueling stations and the distances traveled in the same way that it calculates this information for liquid hydrogen via trucks with gaseous hydrogen dispensing. The only subsystem in this pathway that differs from the liquid hydrogen via trucks with gaseous hydrogen dispensing pathway is the cryo-compressed dispensing, which comprises a cryogenic pump and a cryogenic dispenser.

4 Vehicle Assumptions

4.1 Vehicle Fuel Economy

Vehicle fuel economy is a primary parameter for these analyses because it has an inversely proportional effect on cost per mile as well as energy use and emissions per mile. For this study, the estimated fuel economy for the fuel cell vehicle is 48 mpgge, representing the expected actual on-road fuel economy of the vehicle (not "window sticker" reported fuel economy). As this study investigates current technology, the fuel cell vehicle is presumed to reflect a conventional vehicle, including a fuel cell-based powertrain and regenerative braking, but without significant light-weighting, advanced aerodynamics, low-rolling-resistance tires, or other advanced vehicle platform improvements to improve fuel economy. For this analysis, 48 mpgge is used as the base fuel economy, but a sensitivity analysis of all hydrogen pathways was conducted using 68 mpgge. This higher end fuel economy represents the average fuel economy of a Toyota fuel cell vehicle in on-road testing conducted in California in 2009 (Wipke, Anton and Sprik 2009).

Selection of the 48 mpgge fuel economy parameter is based on a consideration of NRELanalyzed FCEV data as well as modeling results from Argonne National Laboratory. NREL has collected fuel economy data under the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project (Wipke et al. 2012). Final fuel economy results for that project are displayed in Figure 4.1.1, which shows an on-road range of 36–52 mpgge for a second-generation FCEV. This range includes the 48 mppge fuel economy that was used in this analysis. The 48 mpgge value also reflects modeling of FCEV fuel economy by Argonne using its Autonomie model, based on Argonne's modeling assumptions and information from original equipment manufacturers (Rousseau 2012).

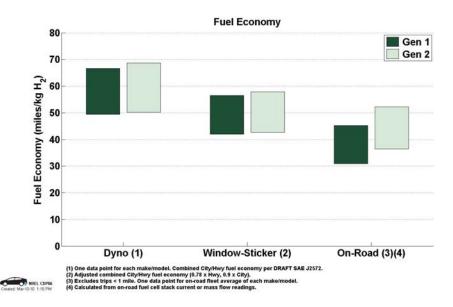


Figure 4.1.1. NREL hydrogen fleet and infrastructure demonstration and validation project fuel economy

Source: Wipke et al. 2012

4.2 Vehicle Criteria Pollutant Emissions

Table 4.2.1 presents the default values of emission change rates used in the GREET model for a hydrogen fuel cell vehicle as compared to the modeled gasoline vehicle. Those values are used for this study.

Hydrogen FCEVs run on hydrogen instead of combustible carbon compounds, so there are no volatile organic carbon compounds (VOC) to either evaporate or be exhausted due to incomplete emissions. Likewise, there are no CO or methane (CH₄) emissions. Because these vehicles run on fuel cells instead of combustion engines, combustion-caused pollutants are also avoided; therefore, there are no PM₁₀, NOx, or N₂O emissions.

Vehicles within the same class (mid-size passenger car), whether powered by a gasoline internal combustion engine or a hydrogen fuel cell, are assumed to have similar tire- and brake-wear (TBW) particulate matter (PM) emissions (Wang, 1999).

			•		•			
Vehicle	Exhaust VOC	Evap. VOC	CO	NOx	Exhaust PM	CH₄	N₂O	TBW PM
H ₂ FCEV	-100%	-100%	-100%	-100%	-100%	-100%	-100%	0%

 Table 4.2.1. Change in Exhaust as Compared to a Gasoline Vehicle

4.3 Vehicle Cost

Vehicle ownership costs are based on purchasing a new vehicle, driving it 15,000 miles/year over a 5-year period, and selling it in good condition at the end of that timeframe.

To estimate the purchase cost, original equipment manufacturer data beginning with model year 1993 (when available) were obtained for six conventional ICE mid-size-class sedans: the Chevrolet Malibu, Ford Fusion, Honda Accord, Nissan Altima, Saturn Aura, and Toyota Camry. In addition, manufacturer's data for the Ford Taurus (which was discontinued in 2006 and subsequently reintroduced in 2008) were also collected to help fill in early 1990s data because vehicles like the Fusion and Aura are both relatively new models. Manufacturer's suggested retail price (MSRP) data were collected for each of the seven models through model year 2010. MSRP data were then averaged together for each model year. For example, MSRP data for a 2002 Chevrolet Malibu, Honda Accord, Nissan Altima, and Toyota Camry were averaged together to get a generic 2002 mid-size sedan MSRP. Not all seven models were used in the averaging due to class change or vehicle model availability in that model year. The process was repeated for model years 1993–2010. The resulting averaged MSRP was used to define a generic mid-size conventional ICE cost for each model year.

Both MSRP and invoice price, which were provided in current dollars for 1993–2010, were converted to 2007 constant dollars using the Consumer Price Index for All Urban Consumers for New Cars. MSRP and invoice were plotted in 2007 constant dollars and projected using a best-fit curve to obtain future vehicle pricing.

To determine the MSRP of an FCEV, the FCEV subsystem costs were calculated relative to a conventional ICE vehicle. Cost estimates and DOE cost goals were taken from Plotkin et al. (2009). Revised hydrogen storage system costs for 700 bar compressed gas storage were based on cost analyses conducted by Strategic Analysis, Inc. (James 2012). Table 4.3.1 and Table 4.3.2

list those subsystem components and accompanying costs for the model-year 2015 FCEV and conventional ICE vehicles. The conventional ICE vehicle subsystem costs were then subtracted from the FCEV subsystem costs to obtain the incremental subsystem costs of the FCEV. As outlined in Plotkin et al. (2009), the costs in Table 4.3.1 and Table 4.3.2 are manufacturing costs and are not representative of MSRP. Therefore, Plotkin et al. (2009) multiplied these manufacturing costs by 1.5 to obtain the retail price equivalent (RPE). The incremental RPE of the FCEV over the conventional ICE vehicle was obtained by summing the incremental subsystem costs and multiplying by 1.5. This increment was then added to the conventional ICE vehicle MSRP.

	2015
Fuel cell system	\$4,500
Hydrogen storage	\$2,400
Motor	\$700
Battery	\$1,000
Transmission	\$100
Electronics	\$500
Exhaust	\$0

Table 4.3.2. ICE Vehicle Subsystem Costs

	2015
Engine	\$1,800
Hydrogen storage	\$0
Motor	\$0
Battery	\$0
Transmission	\$100
Electronics	\$0

Maintenance costs for ICEs were estimated by extrapolating the maintenance cost history of four sedans. Those were adjusted by a maintenance cost ratio range used by the National Energy Modeling System to estimate maintenance costs for FCEVs. The ratio's value is 1.08 in 2015 and goes down to 1.04 in 2019.

Tire and repair costs for FCEVs were assumed to be the same as those for ICEs. Expenses for registration, taxes, and fees were estimated using the same tax rate as for ICEs.

Insurance premiums for ICEs were estimated by extrapolating the national averages of combined (collision, liability, and comprehensive) insurance premiums for sedans. Those costs were multiplied by a ratio of 1.11 to estimate insurance premiums for FCEVs. The ratio was set to the premium ratio of a natural gas Honda Civic to a conventional ICE Honda Civic.

Vehicle depreciation was based on NADA resale values for five sedans. The percentage of retained MSRP for each sedan was averaged to develop a common percentage applied to all ICEs in each ownership year. That percentage was then adjusted by the difference between the conventional ICE Honda Civic and the natural gas Honda Civic to estimate the depreciation of the FCEVs.

Standard financing at a loan rate of 7.51% over a 5-year period with 8.23% down was used to calculate financing costs.

4.4 Vehicle-Cycle Energy Use and Emissions

Energy use and emissions for the vehicle cycle are estimated using GREET 2 as described above. They include energy use and emissions for creating vehicle materials, vehicle assembly, vehicle maintenance, and disposal/recycling including all upstream energy and emissions requirements. GREET 2 default values are used for all vehicle parameters.

The GREET 2 default FCEV is defined as a 3,020 lb vehicle with a 70 kW fuel cell stack. The fuel cell stack is estimated to weigh 226 lb and require 546 lb of auxiliary systems. The vehicle is assumed to have a 30 kW nickel-metal hydride (NiMH) battery for hybridization. The battery weighs 110 lb and needs to be replaced twice over the vehicle lifetime.

The component mass of the vehicle (i.e., the mass without batteries or fluids) is estimated at 2,832 lb, and the percentage of mass in each subsystem is shown in Table 4.4.1.

Powertrain system			
Transmission system			
Chassis (without battery)	23.0%		
Traction motor	3.8%		
Generator	0.0%		
Electronic controller	3.4%		
Fuel cell auxiliary system	19.3%		
Body: including body-in-white, interior, exterior, and glass	39.9%		

Table 4.4.1. FCEV Subsystem Mass Percentages

5 Financial Assumptions

DOE's hydrogen cost analysis models (the H2A Production Model and HDSAM) use a common set of economic assumptions to allow for consistent and comparable results across technology options. Table 5.0.1 provides a set of key economic parameters selected by H2A analysts and discussed with industry collaborators who participated in the H2A effort.

Parameter	Value		
Start-up year	2015		
Reference year	2007 dollars		
Percentage equity financing	100%		
After-tax internal rate of return	10% real		
Inflation rate	1.9%		
Effective corporate income tax rate	38.9%		
Depreciation schedule	Modified Accelerated Cost Recovery System		
Economic analysis period:			
Central plant production	40 years		
Forecourt production	20 years		

In cases where the capital cost component is a large fraction of the levelized cost of producing hydrogen, the assumed after-tax internal rate of return (IRR) strongly affects the results calculated by H2A. As seen in Table 5.0.1, H2A uses an IRR of 10% real, after tax. The 10% real, after-tax value was derived from return on equity statistics (adjusted for inflation) for large company stocks over the period of 1926–2002. Because returns already account for corporate taxes, this value is an after-tax return. The use of a 10% real IRR is intended to reflect a steady-state situation in the future in which hydrogen is a familiar and publicly accepted fuel and in which a significant demand for hydrogen for transportation exists (Pacific Northwest National Laboratory 2004).

This 10% after-tax IRR is linked to the H2A assumption of 100% equity financing. Actual projects would probably be financed with a combination of debt and equity, but H2A analysts have been told that firms typically assume 100% equity financing for paper studies and analyses. When debt financing is used, a higher after-tax IRR can be achieved with the same levelized cost. The increase is dependent upon the fraction of debt financing and the interest rate on that debt. Figure 5.0.1 shows the after-tax IRR for multiple combinations of equity and debt financing at three different interest rates for production of hydrogen from coal in central facilities; delivery costs are not included in the data shown. Technologies with different ratios of capital to operating cost will result in slightly different curves.

Figure 5.0.1 also shows the before-tax IRR for the same combinations of equity and debt financing. Corporate income tax can be considered a reduction in profits, so a pre-tax IRR is always greater than an after-tax IRR. Figure 5.0.1 shows pre-tax and after-tax IRR ranges for different debt interest rates and different percentages of equity financing.

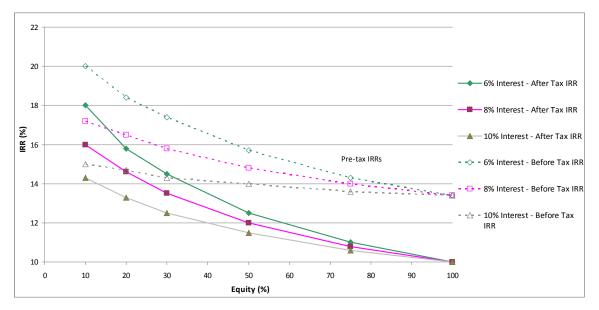


Figure 5.0.1. Post-tax and pre-tax IRRs that result in the same levelized cost for multiple combinations of equity and debt financing (central production of hydrogen from coal with CCS pathway)

6 Pathway Results

This study assessed the life-cycle cost, energy use, and greenhouse gas (GHG) emissions of each of the 10 pathways listed in Table 6.0.1 (see detailed descriptions of each pathway in Section 1.4).

	Feedstock	Central or Distributed Production	Carbon Capture and Sequestration	Delivery Method	Hydrogen Distribution
1	Natural Gas	Distributed	No	Not applicable	700 bar,
2 ^a	Ethanol	Distributed	No	Not applicable	gaseous 700 bar,
3	Grid Electricity	Distributed	No	Not applicable	gaseous 700 bar,
4	Biomass	Central	No	Gaseous H_2 in	gaseous 700 bar,
5 ^a	Biomass	Central	No	pipelines Gaseous H ₂ truck	gaseous 700 bar,
6	Biomass	Central	No	Liquid H ₂ truck	gaseous 700 bar,
7 ^a	Biomass	Central	No	Liquid H ₂ truck	gaseous Cryo-
8	Natural Gas	Central	No	Gaseous H_2 in	compressed 700 bar,
9	Wind	Central	No	pipelines Gaseous H ₂ in	gaseous 700 bar,
10	Electricity Coal	Central	Yes	pipelines Gaseous H_2 in	gaseous 700 bar,
				pipelines	gaseous

Table 6.0.1. Ten Hydrogen Production, Delivery, and Distribution Pathways

^a Newly analyzed pathways

The hydrogen production technologies are described in Section 2, and the delivery technologies are detailed in Section 3. Fuel cell vehicle assumptions and financial assumptions are discussed in Sections 4 and 5, respectively. This section presents the results of the life-cycle cost, energy use, and GHG emissions analysis for each pathway. As noted above, the base analysis is conducted using a fuel economy of 48 mpgge, with a sensitivity analysis conducted using a fuel economy of 68 mpgge. Results presented are for a fuel economy of 48 mpgge, except where noted.

6.1 Distributed Natural Gas

Figure 6.1.1 shows the major inputs, assumptions, and outputs for each of the subsystems considered in the well-to-tank analysis, including feedstock supply and hydrogen dispensing. (See Appendix A for more details on this pathway.)

The well-to-pump (WTP) and WTW cost of hydrogen, energy use, and emissions for the distributed natural gas pathway are summarized in Table 6.1.1.

6.1.1 Cost Breakdown

Figure 6.1.2 shows the feedstock and energy price inputs and the resulting hydrogen production, delivery, and distribution costs for the distributed natural gas pathway. The financial assumptions used in this analysis are detailed in Section 5.0.

Figure 6.1.3 shows the contributions of hydrogen production, distribution (compression, storage, and dispensing—CSD), and losses to the levelized cost of hydrogen shown in Figure 6.1.2.

Figure 6.1.4 and Table 6.1.2 show the breakdown of levelized costs for the distributed natural gas pathway.

Inputs		Assumption	ıs	Outputs		
				NG Delivery Pressure	Average of gas companies	
		NG Recovery, Processing	g, & Transport	NG Quality at Delivery	Average of gas companies	
		NG Recovery Efficiency	95.7%			
		NG emitted & combusted during recovery	399 g/MMbtu	NG Cost	\$6.09 2007 \$ / mmBTU	
		NG processing energy efficiency	97.2%	NG Share of H2 Levelized Cost	\$1.28 2007\$ / kg H2 dispensed	
		NG emitted & combusted during processing	33 g/MMbtu			
		NG emitted & combusted during transport	199,400 g/MMbtu	WTG CO2 Emissions	650 g CO2 eq./ 116000 Btu	
Coal Input (including upstream)	300 Btu / 116000Btu to Pump	NG transport distance	500 miles	WTG CH4 Emissions	1,750 g CO2 eq./ 116000 Btu	
Natural Gas Input (including upstream)	127,200 Btu / 116000Btu to Pump	Compression Req'ts. (stages & efficiency)	Average of gas companies	WTG N2O Emissions	3 g CO2 eq./ 116000 Btu	
Petroleum Input (including upstream)	500 Btu / 116000Btu to Pump		5 5 1	WTG GHG Emissions	2,390 g CO2 eq./ 116000 Btu	
		Hydrogen Produ	ction	Hydrogen Output Pressure	300 psi	
Natural gas consumption	0.156 MMBtu/kg H2 produced	nyarogon rioda		Hydrogen Outlet Quality	99.9%	
Electricity consumption	1.11 kWh / kg H2 produced			Tydrogen Outer Quality	00.070	
Process Water Consumption	5.77 gal / kg H2 produced	Distributed plant design capacity	1,500 kg / day	Total capital investment	\$1,150 2007\$ / daily kg H2 (effective capacity)	
Cooling Water Consumption	0.00 gal / kg H2 produced	Capacity factor	89%	Levelized Cost of Capital	\$0.59 2007\$ / kg H2 dispensed	
	0.00 gai/ kg Hz produced	# of Plants Needed to Meet City Demand	92	Fixed O&M Costs	\$0.19 2007\$ / kg H2 dispensed \$0.19 2007\$ / kg H2 dispensed	
Total Capital Investment per station	\$1,530,000 2007\$	Process energy efficiency	71.4%	Variable O&M Costs	\$0.19 2007\$ / kg H2 dispensed \$0.12 2007\$ / kg H2 dispensed	
Total Capital Investment per station	\$1,330,000 2007\$	Electricity Mix	US Mix	Total Levelized Cost	\$2.17 2007\$ / kg H2 dispensed	
		After-tax IRR	10%	Iotal Levenzed Cost		
Coal Input (including upstream)	5.600 Btu / 116000Btu to Pump	Assumed Plant Life	20	Production CO2 Emissions	10,410 g CO2 eg./ 116000 Btu	
Natural Gas Input (including upstream)	49,200 Btu / 116000Btu to Pump	Assumed Flam Life	20	Production CH4 Emissions	690 g CO2 eq./ 116000 Btu	
Petroleum Input (including upstream)	400 Btu / 116000Btu to Pump			Production N2O Emissions	8 g CO2 eq./ 116000 Btu	
Petroleum input (including upstream)	400 Blu / 116000Blu to Pump			Production GHG Emissions	11,100 g CO2 eq./ 116000 Btu	
				FIGUELION GHG EINISSIONS	11,100 g CO2 eq./ 110000 Btu	
Electricity consumption	4.4 kWh / kg H2 produced	Forecourt Disper	nsina	Hydrogen outlet pressure	12,700 psi	
				Basis Hydrogen Quantity	116,000 Btu (116,000 Btu/gal non-oxygenated	
		City Population	1,247,000 people	Dubio Hydrogen Quantity	conventional unleaded gasoline)	
Total Capital Investment (per station)	\$5.059.000 2007\$ / station	Hydrogen Vehicle Penetration	15%			
Total Capital Investment	\$465.391.000 2007\$ / all stations	City hydrogen use	121,100 kg / day	Total capital investment	\$3,810 2007\$ / daily kg H2 (effective capacity)	
		Average Dispensing Rate per Station	1,330 kg / day	Levelized Cost of Capital	\$1.49 2007\$ / kg H2 dispensed	
		Number of Dispensing Stations	92	Energy & Fuel	\$0.40 2007\$ / kg H2 dispensed	
		Number of Compression Steps	5	Other O&M Costs	\$0.54 2007\$ / kg H2 dispensed	
		Usable Low Pressure Storage per Station	1,450 kg H2	Levelized Cost of Dispensing	\$2.43 2007\$ / kg H2 dispensed	
		Usable Cascade Storage per Station	200 kg H2	2010.200 COCCO Disperioling		
Coal Input (including upstream)	21,900 Btu / 116000Btu to Pump	Site storage	100% % of design capacity	CSD CO2 Emissions	3,020 g CO2 eq./ 116000 Btu	
Natural Gas Input (including upstream)	9,700 Btu / 116000Btu to Pump	# of 2-hose Dispensers per Station	3	CSD CH4 Emissions	190 g CO2 eq./ 116000 Btu	
Petroleum Input (including upstream)	800 Btu / 116000Btu to Pump	Hydrogen losses	0.50%	CSD N2O Emissions	12 g CO2 eq./ 116000 Btu	
r cubicum mput (moldaling apoucant)			0.0078	CSD GHG Emissions	3,220 g CO2 eq./ 116000 Btu	
Vehicle Mass	3,020 lb	Vehicle		Cost Per Mile	\$0.66 2007\$ / mi	
Fuel cell size	70 kW	Fuel Economy	48.0 mi / GGE	Fuel Share	\$0.10 2007\$ / mi	
Size of hybridization battery	30 kW	Vehicle Miles Traveled	15,000 mi / yr	Maintenance, Tires, Repairs	\$0.07 2007\$ / mi	
		Vehicle Lifetime	160,000 mi	Insurance & Registration	\$0.12 2007\$ / mi	
		Purchase Year	2015	Depreciation	\$0.27 2007\$ / mi	
		Vehicle Purchase Cost	\$33,700 2007\$	Financing	\$0.10 2007\$ / mi	
		Fuel Cell System Cost	\$4,500 2007\$			
Coal Input (including upstream)	2,300 Btu / gge fuel consumed	Hydrogen Storage System Cost	\$2,400 2007\$	Vehicle Cycle CO2 Emissions	1,670 g CO2 eq / gge fuel consumed	
Natural Gas Input (including upstream)	12,100 Btu / gge fuel consumed	Tax Credit	\$0 2007\$	Vehicle Cycle CH4 Emissions	170 g CO2 eq / gge fuel consumed	
Petroleum Input (including upstream)	6,900 Btu / gge fuel consumed			Vehicle Cycle N2O Emissions	6 g CO2 eq / gge fuel consumed	
				Vehicle Cycle GHG Emissions	1,850 g CO2 eq / gge fuel consumed	

Figure 6.1.1. Summary of major inputs, assumptions, and outputs by subsystem for the distributed natural gas pathway

	WTP		WTW	
Coal input (including upstream) ^a	27,700	Btu/116,000 Btu	580	Btu/mi
Natural gas input (including upstream) ^a	186,100	Btu/116,000 Btu	3,900	Btu/mi
Petroleum input (including upstream) ^a	1,700	Btu/116,000 Btu	40	Btu/mi
Fossil energy input (including upstream) ^a	215,500	Btu/116,000 Btu	4,500	Btu/mi
WTP CO ₂ emissions ^b	14,100	g/116,000 Btu	290	g/mi
WTP CH ₄ emissions	100	g/116,000 Btu	2	g/mi
WTP N ₂ O emissions	20	g/116,000 Btu	0	g/mi
WTP GHG emissions	16,700	g CO ₂ -eq./	350	g/mi
		116,000 Btu		
	Cost per	' kg	Cost p	er mile
Levelized cost of hydrogen	\$4.60	2007\$/kg	\$0.10	2007\$/mi

Table 6.1.1. WTP and WTW Results for the Distributed Natural Gas Pathway

^a Coal, natural gas, and petroleum inputs include those used directly in the hydrogen production and delivery pathway as feedstocks and fuels; those used to produce electricity and other materials used in the pathway; and those used upstream of the pathway to recover, refine, and deliver the feedstock. ^b Includes the carbon content of CO, CH₄, and volatile organic compound emissions that decompose in the

atmosphere to CO_2 .

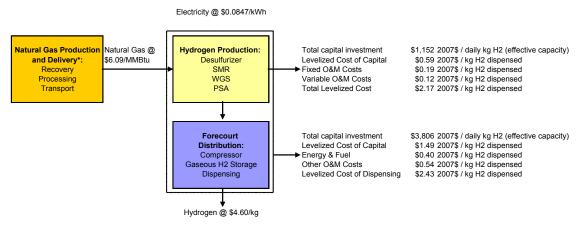


Figure 6.1.2. Cost analysis inputs and high-level results for the distributed natural gas pathway

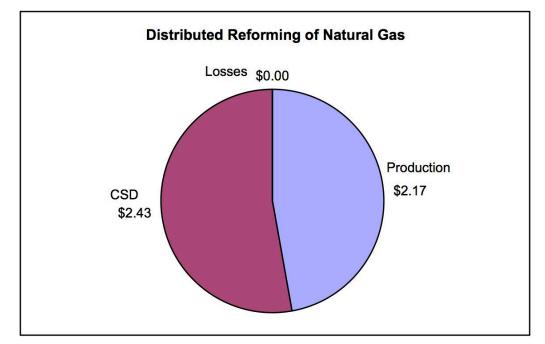


Figure 6.1.3. Contribution of hydrogen production, CSD, and losses to the levelized cost of hydrogen for the distributed natural gas pathway

Figure 6.1.4. Breakdown of levelized costs for the distributed natural gas pathway

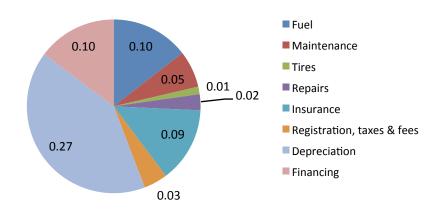

	_	Other		Energy/	
Cost Component	Capital	O&M ^a	Feedstock	Fuel	Total
Production	\$0.58	\$0.32	\$1.28		\$2.17
Feed and desulfurization	\$0.06				
Reformer	\$0.13				
WGS	\$0.10				
PSA	\$0.04				
Cooling and condensing	\$0.04				
Supports and controls	\$0.03				
System assembly	\$0.12				
Miscellaneous	\$0.05				
CSD	\$1.49	\$0.54		\$0.40	\$2.43
Compressor (levelized)					\$1.04
Storage (levelized)					\$0.99
Dispenser (levelized)					\$0.10
Refrigeration (levelized)					\$0.16
Remainder of station (levelized)					\$0.14
Losses					\$0.00
Total	\$2.07	\$0.86	\$1.28	\$0.40	\$4.60

Table 6.1.2. Contribution of Production and CSD Processes to Levelized Hydrogen Cost for the Distributed Natural Gas Pathway

O&M: operations and maintenance

Total Vehicle Ownership Costs

(\$/mile, not discounted)

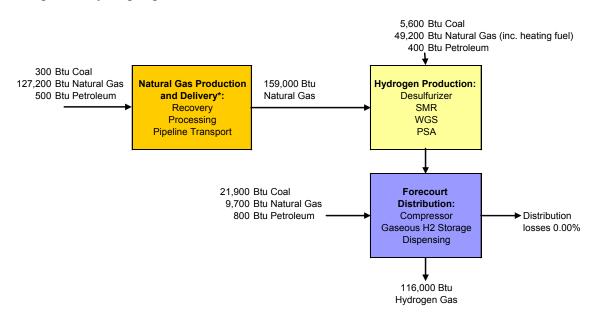


Figure 6.1.5. Breakdown of vehicle ownership costs for the distributed natural gas pathway

Fuel costs are not the only costs of ownership of a vehicle. Vehicle ownership costs including fuel, maintenance, tires, repairs, insurance, registration, and vehicle depreciation and financing are shown in Figure 6.1.5. Note that the costs in the figure are not discounted (i.e., a discount rate was not used to reduce future costs to their net present values). That methodology has the same effect as a discount rate of 0%.

6.1.2 Energy Use and Emissions Breakdown

Figures 6.1.6 and 6.1.7 show the WTW energy inputs and losses for the distributed natural gas pathway. The WTW energy inputs to natural gas production and delivery include those necessary to produce 116,000 Btu of natural gas for reforming. Additional WTW energy inputs for natural gas needed for heating and lost in reforming are reported as inputs to hydrogen production.

* This box represents the natural gas that is converted to hydrogen or otherwise consumed/lost as a process feedstock. It does not include natural gas used as a heating fuel or to produce electricity.

Figure 6.1.6. WTW energy inputs to deliver 116,000 Btu hydrogen to a vehicle using the distributed natural gas pathway

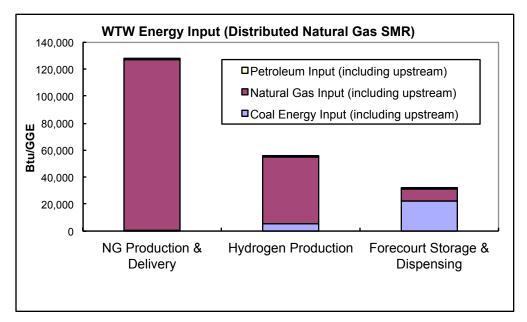
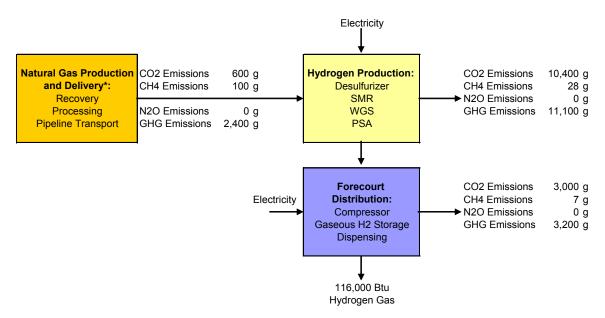



Figure 6.1.7. WTW petroleum, natural gas, and coal inputs to deliver 116,000 Btu hydrogen using the distributed natural gas pathway

Figures 6.1.8 and 6.1.9 show the WTW emissions resulting from the delivery of 116,000 Btu hydrogen to a vehicle fuel tank using the distributed natural gas pathway.

* This box represents the natural gas that is converted to hydrogen or otherwise consumed/lost as a process feedstock. It does not include natural gas used as a heating fuel or to produce electricity.

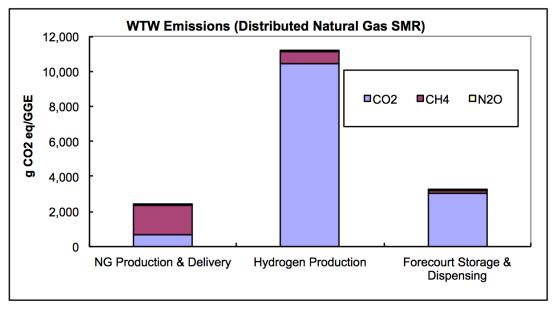


Figure 6.1.9. WTW CO₂, CH₄, and N₂O emissions resulting from delivery of 116,000 Btu hydrogen to a vehicle using the distributed natural gas pathway

Figures 6.1.10 and 6.1.11 show the energy inputs and emissions, respectively, for the vehicle cycles in addition to those for the fuel production cycle. The fuel production cycle values are consistent with those reported in Figures 6.1.7 and 6.1.9.

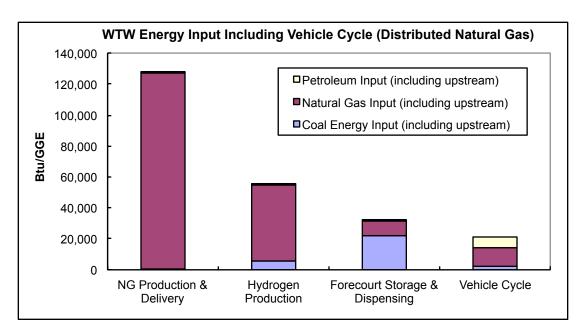


Figure 6.1.10. WTW petroleum, natural gas, and coal inputs for both the distributed natural gas pathway and the vehicle cycle

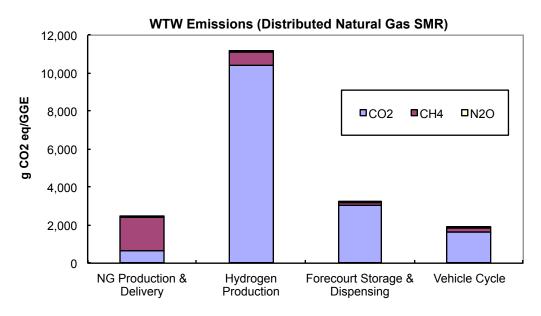


Figure 6.1.11. WTW CO₂, CH₄, and N₂O emissions for both the distributed natural gas pathway and the vehicle cycle

6.1.3 Sensitivities

6.1.3.1 Production Sensitivities

The parameters used for this analysis are not known absolutely, so sensitivity analyses were performed to better understand the potential effects of that lack of knowledge on the final results. Several sensitivities were run on this pathway. They focused primarily on cost factors; however, several sensitivities also affect energy use and emissions. Figure 6.1.12 shows the effects of several production parameters on the pathway's levelized cost, and Table 6.1.3 shows the effect of production energy efficiency on WTW energy use and emissions.

The assumed electrical grid mix also affects the energy use and emissions. Table 6.1.4 shows the differences in energy use and GHG emissions between the U.S. average grid mix (which was used for all other sensitivities) and a hypothetical green grid mix that is 100% renewable energy (solar and wind).

Figure 6.1.12. Production sensitivities for the distributed natural gas pathway

Table 6.1.3. The Effects of Production Energy Efficiency on Primary Energy Use and
Emissions from the Distributed Natural Gas Pathway

	60% Efficiency	71% Efficiency	75% Efficiency
WTW GHG emissions (g/mile)	400	350	340
WTW fossil energy (Btu/mile)	5,200	4,500	4,300
WTW petroleum energy (Btu/mile)	40	40	40
WTW total energy (Btu/mile)	5,400	4,700	4,500

Table 6.1.4. The Effects of Fuel Economy and Grid Mix on Use of Primary Energy and Emissions from the Distributed Natural Gas Pathway

	U.S. Average Grid Mix (48 mpgge)	U.S. Average Grid Mix (68 mpgge)	"Green" Grid Mix (48 mpgge)
WTW GHG emissions (g/mile)	350	250	270
WTW fossil energy (Btu/mile)	4,500	3,200	3,600
WTW petroleum energy (Btu/mile)	40	30	10
WTW Total energy (Btu/mile)	4,700	3,300	4,100

6.2 Distributed Ethanol

Figure 6.2.1 shows the major inputs, assumptions, and outputs for each of the subsystems considered in the well-to-tank analysis, including feedstock supply and hydrogen dispensing. (See Appendix B for more details on this pathway.)

The WTP and WTW cost of hydrogen, energy use, and emissions for the distributed ethanol pathway are summarized in Table 6.2.1.

6.2.1 Cost Breakdown

Figure 6.2.2 shows the feedstock and energy price inputs and the resulting hydrogen production, delivery, and distribution costs for the distributed ethanol pathway. The financial assumptions used in this analysis are detailed in Section 5.

Figure 6.2.3 shows the contributions of hydrogen production, distribution (CSD), and losses to the levelized cost of hydrogen shown in Figure 6.2.2.

Figure 6.2.4 and Table 6.2.2 show the breakdown of levelized costs for the distributed ethanol pathway.

In	puts	Assumption	ns		Outputs
		Ethanol Production			
Coal Input (including upstream)	-21,100 Btu / 116000Btu to Pump	Percent from Corn Stover Corn Stover Production Ethanol Yield from Corn Stover	100% 2.21 dry ton / acre 90.0 gal / dry ton	Ethanol Cost Ethanol Share of H2 Cost	\$3.04 2007 \$ / gal \$5.29 2007\$ / kg H2 dispensed
Natural Gas Input (including upstream) Petroleum Input (including upstream)	400 Btu / 116000Btu to Pump 12,700 Btu / 116000Btu to Pump	Elec. Co-Prod. from Corn Stover Conversion	2.28 kWh / gal ethanol	WTG CO2 Emissions WTG CH4 Emissions	-14,010 g CO2 eq./ 116000 Btu -20 g CO2 eq./ 116000 Btu
Energy use and emissions calcs include	electricity displaced by ethanol production	Displacement method used fo of co-produced electricity	•	WTG N2O Emissions WTG GHG Emissions	1,140 g CO2 eq./ 116000 Btu -12,900 g CO2 eq./ 116000 Btu
Ethanol Consumption Electricity consumption	2.19 gal / kg H2 produced 0.49 kWh / kg H2 produced	Hydrogen Production		Hydrogen Output Pressure Hydrogen Outlet Quality	300 psi 99.9%
Process Water Consumption Cooling Water Consumption	8.18 gal / kg H2 produced 0.00 gal / kg H2 produced	Distributed plant design capacity Capacity factor # of Plants Needed to Meet City Demand	1,500 kg / day 89% 92	Total capital investment Levelized Cost of Capital Fixed O&M Costs	\$1,430 2007\$ / daily kg H2 (effective capacity) \$0.83 2007\$ / kg H2 dispensed \$0.24 2007\$ / kg H2 dispensed
Total Capital Investment per station	\$1,907,000 2007\$	Process energy efficiency Electricity Mix After-tax IRR	67.4% US Mix 10%	Variable O&M Costs Total Levelized Cost	\$0.07 2007\$ / kg H2 dispensed \$6.42 2007\$ / kg H2 dispensed
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	2,400 Btu / 116000Btu to Pump 1,100 Btu / 116000Btu to Pump 100 Btu / 116000Btu to Pump	Assumed Plant Life	20	SMR CO2 Emissions SMR CH4 Emissions SMR N2O Emissions SMR GHG Emissions	13,080 g CO2 eq./ 116000 Btu 20 g CO2 eq./ 116000 Btu 1 g CO2 eq./ 116000 Btu 14,010 g CO2 eq./ 116000 Btu
Electricity consumption	4.4 kWh / kg H2	Forecourt Dispe	nsing	Hydrogen outlet pressure Basis Hydrogen Quantity	12,700 psi 116,000 Btu (116,000 Btu/gal non-oxygenated
Total Capital Investment (per station) Total Capital Investment	\$5,059,000 2007\$ / station \$465,390,000 2007\$ / all stations	City Population Hydrogen Vehicle Penetration City hydrogen use Average Dispensing Rate per Station Number of Dispensing Stations Number of Compression Steps	1,247,000 people 15% 121,100 kg / day 1,329 kg / day 92 5	Total capital investment Levelized Cost of Capital Energy & Fuel Other O&M Costs Levelized Cost of Dispensing	 sover bit (16,000 bit) and interpretational unleaded gasoline) \$3,810 2007\$ / daily kg H2 (effective capacity) \$1.49 2007\$ / kg H2 dispensed \$0.40 2007\$ / kg H2 dispensed \$0.54 2007\$ / kg H2 dispensed \$2.43 2007\$ / kg H2 dispensed
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	21,900 Btu / 116000Btu to Pump 9,700 Btu / 116000Btu to Pump 800 Btu / 116000Btu to Pump	Usable Low Pressure Storage per Station Usable Cascade Storage per Station Site storage # of 2-hose Dispensers per Station Hydrogen losses	1450 kg H2 200 kg H2 100% % of design capacity 3 0.50%	CSD CO2 Emissions CSD CH4 Emissions CSD N2O Emissions CSD GHG Emissions	3,020 g CO2 eq./ 116000 Btu 190 g CO2 eq./ 116000 Btu 12 g CO2 eq./ 116000 Btu 11,320 g CO2 eq./ 116000 Btu
Vehicle Mass	3,020 lb	Vehicle	40.0 mil/005	Cost Per Mile	\$0.75 2007\$ / mi
Fuel cell size Size of hybridization battery	70 kW 30 kW	Fuel Economy Vehicle Miles Traveled Vehicle Lifetime Purchase Year Vehicle Purchase Cost	48.0 mi/GGE 15,000 mi/yr 160,000 mi 2015 \$33,700 2007\$	Fuel Share Maintenance, Tires, Repairs Insurance & Registration Depreciation Financing	\$0.18 2007\$ / mi \$0.07 2007\$ / mi \$0.12 2007\$ / mi \$0.27 2007\$ / mi \$0.10 2007\$ / mi
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	2,300 Btu / gge fuel consumed 12,100 Btu / gge fuel consumed 6,900 Btu / gge fuel consumed	Fuel Cell System Cost Hydrogen Storage System Cost Tax Credit	\$33,700 2007\$ \$4,500 2007\$ \$2,400 2007\$ \$0 2007\$	Veh. Cycle CO2 Emissions Veh. Cycle CH4 Emissions Veh. Cycle N2O Emissions Veh. Cycle GHG Emissions	1,670 g CO2 eq / gge fuel consumed 170 g CO2 eq / gge fuel consumed 6 g CO2 eq / gge fuel consumed 1,850 g CO2 eq / gge fuel consumed

Figure 6.2.1. Summary of major inputs, assumptions, and outputs by subsystem for the distributed ethanol pathway

	WTP		WTW	
Coal input (including upstream) ^a	3,200	Btu/116,000 Btu	70	Btu/mi
Natural gas input (including upstream) ^a	11,200	Btu/116,000 Btu	200	Btu/mi
Petroleum input (including upstream) ^a	13,600	Btu/116,000 Btu	300	Btu/mi
Fossil energy input (including upstream) ^a	28,000	Btu/116,000 Btu	600	Btu/mi
WTP CO ₂ emissions ^b	2,100	g/116,000 Btu	45	g/mi
WTP CH ₄ emissions	7	g/116,000 Btu	0	g/mi
WTP N ₂ O emissions	4	g/116,000 Btu	0	g/mi
WTP GHG emissions	3,400	g CO ₂ -eq./ 116,000 Btu	70	g/mi
	Cost per	' kg	Cost p	er mile
Levelized cost of hydrogen	\$8.84	2007\$/kg	\$0.18	2007\$/mi

Table 6.2.1. WTP and WTW Results for the Distributed Ethanol Pathway
--

^a Coal, natural gas, and petroleum inputs include those used directly in the hydrogen production and delivery pathway as feedstocks and fuels; those used to produce electricity and other materials used in the pathway; and those used upstream of the pathway to recover, refine, and deliver the feedstock. ^b Includes the carbon content of CO, CH₄, and volatile organic compound emissions that decompose in the

atmosphere to CO_2 .

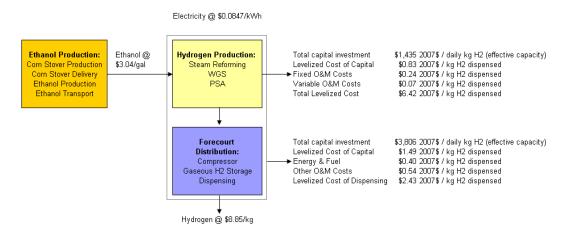


Figure 6.2.2. Cost analysis inputs and high-level results for the distributed ethanol pathway

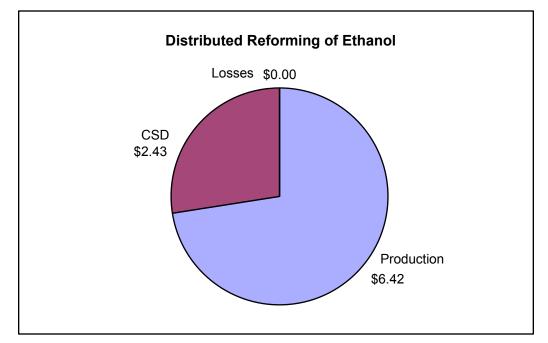


Figure 6.2.3. Contribution of hydrogen production, CSD, and losses to the levelized cost of hydrogen for the distributed ethanol pathway

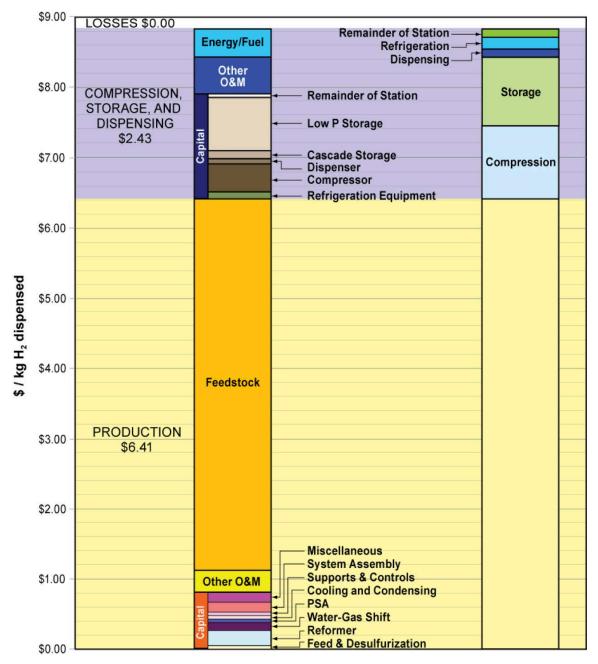


Figure 6.2.4. Breakdown of levelized costs for the distributed ethanol pathway

		Other		Energy/	
Cost Component	Capital	O&M	Feedstock	Fuel	Total
Production	\$0.82	\$0.31	\$5.29		\$6.42
Feed and desulfurization	\$0.06				
Reformer	\$0.20				
WGS	\$0.13				
PSA	\$0.05				
Cooling and condensing	\$0.05				
Supports and controls	\$0.04				
System assembly	\$0.14				
Miscellaneous	\$0.16				
CSD	\$1.49	\$0.54		\$0.40	\$2.43
Compressor (levelized)					\$1.04
Storage (levelized)					\$0.99
Dispenser (levelized)					\$0.10
Refrigeration (levelized)					\$0.16
Remainder of station (levelized)					\$0.14
Losses					\$0.00
Total	\$2.31	\$0.86	\$5.29	\$0.40	\$8.85

Table 6.2.2. Contribution of Production and CSD Processes to Levelized Hydrogen Costfor the Distributed Ethanol Pathway

6.2.2 Energy Use and Emissions Breakdown

Figures 6.2.5 and 6.2.6 show the WTW energy inputs and losses for the distributed ethanol pathway. The WTW energy inputs to ethanol production and delivery include those necessary to produce 116,000 Btu of ethanol for reforming. Additional WTW energy inputs for natural gas needed for heating and lost in reforming are reported as inputs to hydrogen production.

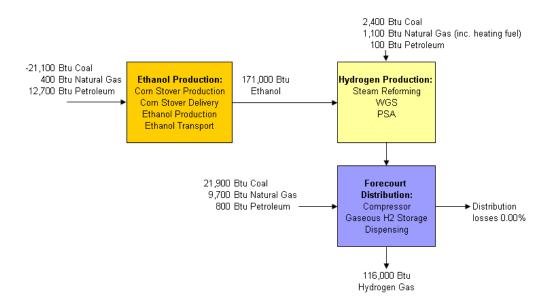


Figure 6.2.5. WTW energy inputs to deliver 116,000 Btu hydrogen to a vehicle using the distributed ethanol pathway

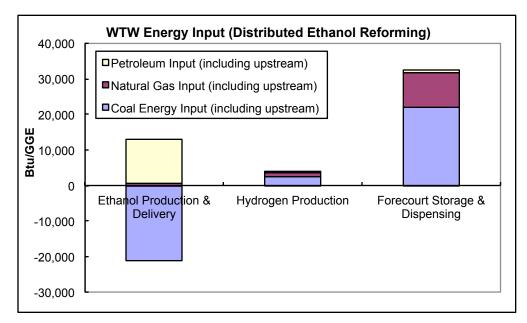


Figure 6.2.6. WTW petroleum, natural gas, and coal inputs to deliver 116,000 Btu hydrogen using the distributed ethanol pathway

Figures 6.2.7 and 6.2.8 show the WTW emissions resulting from the delivery of 116,000 Btu hydrogen to a vehicle fuel tank using the distributed ethanol pathway.

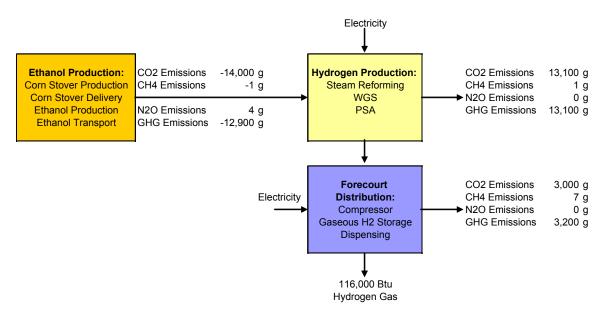


Figure 6.2.7. WTW emissions resulting from delivery of 116,000 Btu hydrogen using the distributed ethanol pathway

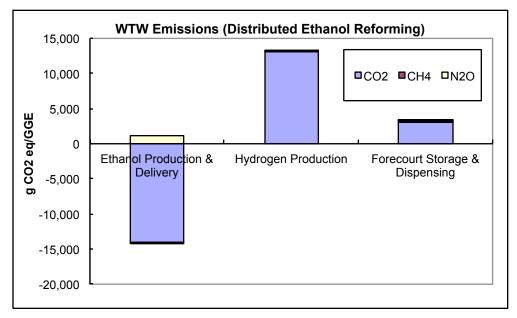


Figure 6.2.8. WTW CO₂, CH₄, and N₂O emissions resulting from delivery of 116,000 Btu hydrogen to a vehicle using the distributed ethanol pathway

6.2.3 Sensitivities

6.2.3.1 Production Sensitivities

The parameters used for this analysis are not known absolutely, so sensitivity analyses were performed to better understand the potential effects of that lack of knowledge on the final results. Several sensitivities were run on this pathway. They focused primarily on cost factors; however, several sensitivities also affect energy use and emissions. Figure 6.2.9 shows the effects of several production parameters on the pathway's levelized cost, and Table 6.2.3 shows the effect of production energy efficiency on WTW energy use and emissions.

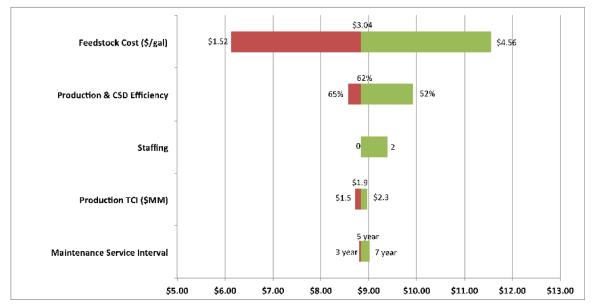


Figure 6.2.9. Production sensitivities for the distributed ethanol pathway

Table 6.2.3. The Effects of Production Energy Efficiency on Primary Energy Use and
Emissions from the Distributed Ethanol Pathway

	56% Efficiency	67% Efficiency	70% Efficiency
WTW GHG emissions (g/mile)	70	70	70
WTW fossil energy (Btu/mile)	550	590	590
WTW petroleum energy (Btu/mile)	340	280	270
WTW total energy (Btu/mile)	9,300	7,900	7,500

The assumed electrical grid mix also affects the energy use and emissions. Table 6.2.4 shows the differences in energy use and GHG emissions between the U.S. average grid mix (which was used for all other sensitivities) and a hypothetical green grid mix that is 100% renewable energy (solar and wind).

 Table 6.2.4. The Effects of Fuel Economy and Grid Mix on Use of Primary Energy and Emissions from the Distributed Ethanol Pathway

	U.S. Average Grid Mix (48 mpgge)	U.S. Average Grid Mix (68 mpgge)	"Green" Grid Mix (48 mpgge)
WTW GHG emissions (g/mile)	70	50	60
WTW fossil energy (Btu/mile)	590	410	490
WTW petroleum energy (Btu/mile)	280	200	280
WTW total energy (Btu/mile)	7,900	5,600	7,800

6.3 Distributed Electricity

Figure 6.3.1 shows the major inputs, assumptions, and outputs for each of the subsystems considered in the well-to-tank analysis, including feedstock supply and hydrogen dispensing. (See Appendix C for more details on this pathway.)

The WTP and WTW cost of hydrogen, energy use, and emissions for the distributed electricity pathway are summarized in Table 6.3.1.

6.3.1 Cost Breakdown

Figure 6.3.2 shows the feedstock and energy price inputs and the resulting hydrogen production, delivery, and distribution costs for the distributed electricity pathway. The financial assumptions used in this analysis are detailed in Section 5.

Figure 6.3.3 shows the contributions of hydrogen production, distribution (CSD), and losses to the levelized cost of hydrogen shown in Figure 6.3.2.

Figure 6.3.4 and Table 6.3.2 show the breakdown of levelized costs for the distributed electricity pathway.

In	puts	Assumptions			Outputs
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	159,600 Btu / 116000Btu to Pump 70,800 Btu / 116000Btu to Pump 6,100 Btu / 116000Btu to Pump	Electricity Generation & U.S. Grid Mix Biomass Fraction Coal Fraction Natural Gas Fraction Nuclear Fraction Residual Oil Fraction Others (Carbon Neutral)	& Transmission 1% 44% 21% 21% 1% 1% 12%	Electricity price at H2 production Electricity Share of H2 Cost WTG CO2 Emissions WTG CH4 Emissions WTG N2O Emissions WTG GHG Emissions	0.0574 2007\$ / kWh \$3.22 2007\$ / kg H2 dispensed 36,930 g CO2 eq./ 116000 Btu 2,280 g CO2 eq./ 116000 Btu 150 g CO2 eq./ 116000 Btu 39,360 g CO2 eq./ 116000 Btu
Electricity consumption Process Water Consumption Cooling Water Consumption Total Capital Investment per station Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	50.0 kWh / kg H2 produced 2.94 gal / kg H2 produced 0.11 gal / kg H2 produced \$2,258,000 2007\$ 86,400 Btu / 116000Btu to Pump 38,300 Btu / 116000Btu to Pump 3,300 Btu / 116000Btu to Pump	Hydrogen Proc Distributed plant design capacity Capacity factor # of Plants Needed to Meet City Demand Process energy efficiency Electricity Mix After-tax IRR Assumed Plant Life	Juction 1,500 kg / day 89% 91 66.8% US Mix 10% 20 years	Hydrogen Output Pressure Hydrogen Outlet Quality Total capital investment Levelized Cost of Capital Fixed O&M Costs Variable O&M Costs Total Levelized Cost Production CO2 Emissions Production CM4 Emissions Production QHG Emissions	300 psi 100.0% \$1,700 2007\$ / daily kg H2 (effective capacity) \$0.77 2007\$ / kg H2 dispensed \$0.28 2007\$ / kg H2 dispensed \$0.06 2007\$ / kg H2 dispensed \$4.32 2007\$ / kg H2 dispensed 0 g CO2 eq./ 116000 Btu 0 g CO2 eq./ 116000 Btu 0 g CO2 eq./ 116000 Btu 0 g CO2 eq./ 116000 Btu
Electricity consumption Electricity price Total Capital Investment (per station) Total Capital Investment	4.4 kWh / kg H2 \$0.088 2007\$ / kWh \$5,059,000 2007\$ / station \$465,391,000 2007\$ / all stations	Forecourt Disp City Population Hydrogen Vehicle Penetration City hydrogen use Average Dispensing Rate per Station Number of Dispensing Stations	ensing 1,247,000 people 15% 121,100 kg / day 1,330 kg / day 92	Hydrogen outlet pressure Basis Hydrogen Quantity Total capital investment Levelized Cost of Capital Energy & Fuel	 12,700 psi 116,000 Btu (116,000 Btu/gal non-oxygenated conventional unleaded gasoline) \$3,810 2007\$ / daily kg H2 (effective capacity) \$1.49 2007\$ / kg H2 dispensed \$0.40 2007\$ / kg H2 dispensed
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	21,900 Btu / 116000Btu to Pump 9,700 Btu / 116000Btu to Pump 800 Btu / 116000Btu to Pump	Number of Compression Steps Usable Low Pressure Storage per Station Usable Cascade Storage per Station Site storage # of 2-hose Dispensers per Station Hydrogen losses	0 1,450 kg H2 200 kg H2 100% % of design capacity 3 0.50%	Cher O&M Costs Levelized Cost of Dispensing CSD CO2 Emissions CSD CH4 Emissions CSD N2O Emissions CSD GHG Emissions	\$0.54 2007\$ / kg H2 dispensed \$2.43 2007\$ / kg H2 dispensed 3,020 g CO2 eq./ 116000 Btu 190 g CO2 eq./ 116000 Btu 12 g CO2 eq./ 116000 Btu 3,220 g CO2 eq./ 116000 Btu
Vehicle Mass Fuel cell size Size of hybridization battery	3,020 lb 70 kW 30 kW	Vehicle Fuel Economy Vehicle Miles Traveled Vehicle Lifetime Purchase Year Vehicle Purchase Cost Fuel Cell System Cost	48.0 mi / gge 15,000 mi / yr 160,000 mi 2015 \$33,700 2007\$ \$4,500 2007\$	Cost Per Mile Fuel Share Maintenance, Tires, Repairs Insurance & Registration Depreciation Financing	\$0.71 2007\$ / mi \$0.14 2007\$ / mi \$0.07 2007\$ / mi \$0.12 2007\$ / mi \$0.27 2007\$ / mi \$0.10 2007\$ / mi
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	2,300 Btu / gge fuel consumed 12,100 Btu / gge fuel consumed 6,900 Btu / gge fuel consumed	Hydrogen Storage System Cost Tax Credit	\$2,400 2007\$ \$0 2007\$	Vehicle Cycle CO2 Emissions Vehicle Cycle CH4 Emissions Vehicle Cycle N2O Emissions Vehicle Cycle GHG Emissions	1,670 g CO2 eq / gge fuel consumed 7 g CO2 eq / gge fuel consumed 0 g CO2 eq / gge fuel consumed 1,850 g CO2 eq / gge fuel consumed

Figure 6.3.1. Summary of major inputs, assumptions, and outputs by subsystem for the distributed grid electricity pathway

	WTP		WTW	
Coal input (including upstream) ^a	267,900	Btu/116,000 Btu	5,590	Btu/mi
Natural gas input (including upstream) ^a	118,800	Btu/116,000 Btu	2,480	Btu/mi
Petroleum input (including upstream) ^a	10,200	Btu/116,000 Btu	210	Btu/mi
Fossil energy input (including upstream) ^a	396,900	Btu/116,000 Btu	8,280	Btu/mi
WTP CO_2 emissions ^b	40,000	g/116,000 Btu	770	g/mi
WTP CH₄ emissions	100	g/116,000 Btu	2	g/mi
WTP N ₂ O emissions	1	g/116,000 Btu	0	g/mi
WTP GHG emissions	42,600	g CO ₂ -eq./	820	g/mi
		116,000 Btu		
	Cost per	kg	Cost pe	er mile
Levelized cost of hydrogen	\$6.75	2007\$/kg	\$0.14	2007\$/mi

^a Coal, natural gas, and petroleum inputs include those used directly in the hydrogen production and delivery pathway as feedstocks and fuels; those used to produce electricity and other materials used in the pathway; and those used upstream of the pathway to recover, refine, and deliver the feedstock.

^b Includes the carbon content of CO, CH_4 , and volatile organic compound emissions that decompose in the atmosphere to CO_2 .

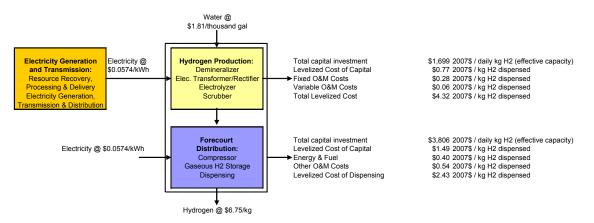
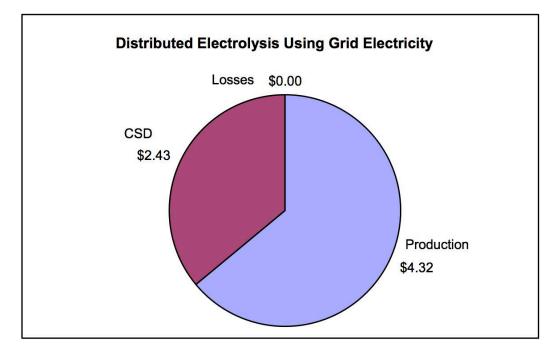
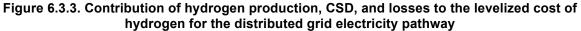
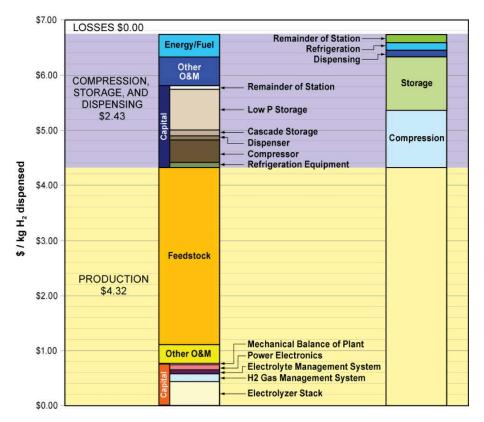
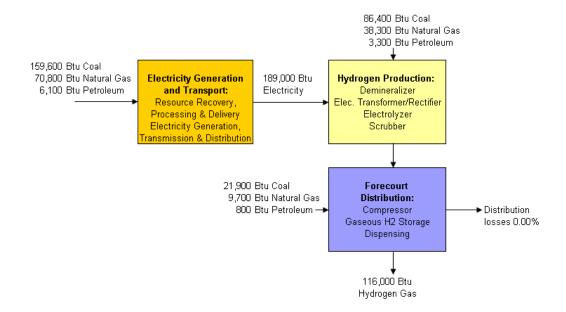




Figure 6.3.2. Cost analysis inputs and high-level results for the distributed grid electricity pathway




Figure 6.3.4. Breakdown of levelized costs for the distributed grid electricity pathway

		Other		Energy/	
Cost Component	Capital	O&M	Feedstock	Fuel	Total
Production	\$0.76	\$0.35	\$3.22		\$4.23
Electrolyzer stack	\$0.42				
H ₂ gas management system	\$0.14				
Electrolyte management system	\$0.09				
Power electronics	\$0.09				
Balance of plant	\$0.02				
CSD	\$1.49	\$0.54		\$0.40	\$2.43
Compressor (levelized)					\$1.04
Storage (levelized)					\$0.99
Dispenser (levelized)					\$0.10
Refrigeration (levelized)					\$0.16
Remainder of Station (levelized)					\$0.14
Losses					\$0.00
Total	\$2.24	\$0.89	\$3.22	\$0.40	\$6.75

Table 6.3.2. Contribution of Production and CSD Processes to Levelized Hydrogen Cost for the Distributed Grid Electricity Pathway

6.3.2 Energy Use and Emissions Breakdown

Figures 6.3.5 and 6.3.6 show the WTW energy inputs and losses for the distributed electricity pathway.

Figure 6.3.5. WTW energy inputs to deliver 116,000 Btu hydrogen to a vehicle using the distributed grid electricity pathway

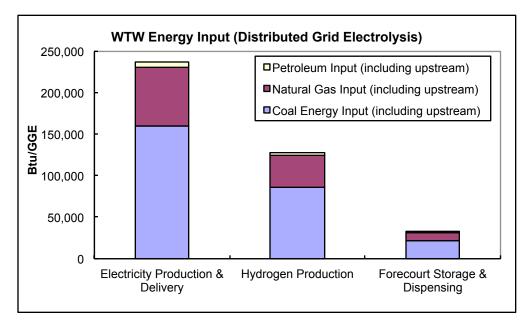


Figure 6.3.6. WTW petroleum, natural gas, and coal inputs to deliver 116,000 Btu hydrogen using the distributed grid electricity pathway

Figures 6.3.7 and 6.3.8 show the WTW emissions resulting from the delivery of 116,000 Btu hydrogen to a vehicle fuel tank using the distributed electricity pathway.

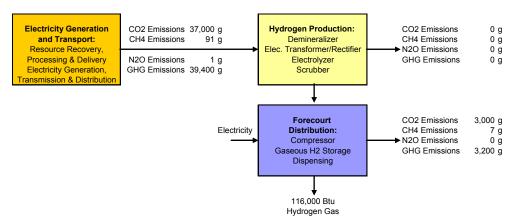


Figure 6.3.7. WTW emissions resulting from delivery of 116,000 Btu hydrogen using the distributed grid electricity pathway

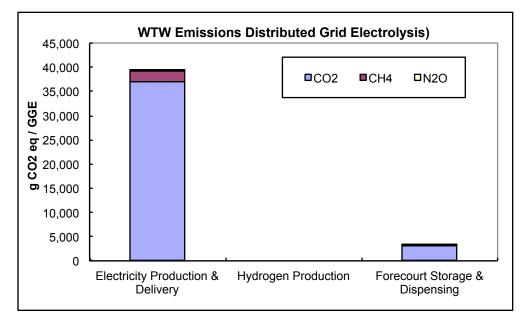


Figure 6.3.8. WTW CO₂, CH₄, and N₂O emissions resulting from delivery of 116,000 Btu hydrogen to a vehicle using the distributed grid electricity pathway

6.3.3 Sensitivities

6.3.3.1 Production Sensitivities

The parameters used for this analysis are not known absolutely, so sensitivity analyses were performed to better understand the potential effects of that lack of knowledge on the final results. Several sensitivities were run on this pathway. They focused primarily on cost factors; however, several sensitivities also affect energy use and emissions. Figure 6.3.9 shows the effects of several production parameters on the pathway's levelized cost, and Table 6.3.3 shows the effect of production energy efficiency on WTW energy use and emissions.

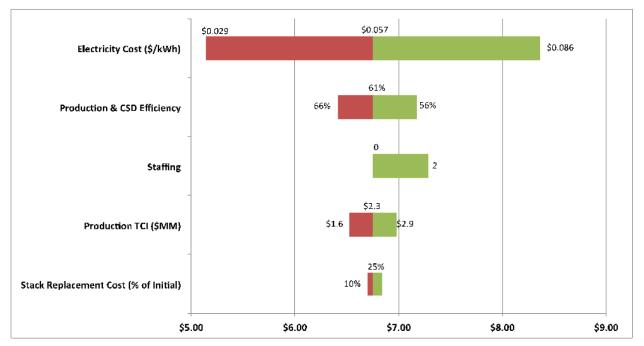


Figure 6.3.9. Production sensitivities for the distributed grid electrolysis pathway

Table 6.3.3. The Effects of Production Energy Efficiency on Primary Energy Use and Emissions
from the Distributed Grid Electrolysis Pathway

	61% Efficiency	67% Efficiency	72% Efficiency
WTW GHG Emissions (g/mile)	900	820	760
WTW Fossil Energy (Btu/mile)	9,000	8,300	7,700
WTW Petroleum Energy (Btu/mile)	230	210	200
WTW Total Energy (Btu/mile)	10,700	9,800	9,100

The assumed electrical grid mix also affects the energy use and emissions. If a hypothetical green grid mix that is 100% renewable energy (solar and wind) is used instead of the average grid mix (which was used for all other sensitivities), no fossil energy is used, nor are there any GHG emissions (Table 6.3.4).

Table 6.3.4. The Effects of Fuel Economy and Grid Mix on Use of Primary Energy and Emissions
from the Distributed Grid Electrolysis Pathway

	U.S. Average Grid Mix (48 mpgge)	U.S. Average Grid Mix (68 mpgge)	"Green" Grid Mix (48 mpgge)
WTW GHG emissions (g/mile)	820	580	10
WTW fossil energy (Btu/mile)	8,300	5,800	0
WTW petroleum energy (Btu/mile)	210	150	0
WTW total energy (Btu/mile)	9,800	6,800	4,300

6.4 Central Biomass—Pipeline Delivery

Figure 6.4.1 shows the major inputs, assumptions, and outputs for each of the subsystems considered in the well-to-tank analysis, including feedstock supply and hydrogen dispensing. (See Appendix D for more details on this pathway.)

The WTP and WTW cost of hydrogen, energy use, and emissions for the central biomass pipeline delivery pathway are summarized in Table 6.4.1.

Net GHG emissions include carbon dioxide uptake occurring during growth of the biomass. The analysis assumes that 100% of the carbon in the biomass is provided by atmospheric carbon dioxide. No other carbon uptake is assumed (e.g., carbon utilized to produce roots is assumed to be returned to the atmosphere through decomposition). Likewise, land use change is assumed to have neither positive nor negative effects on emissions.

6.4.1 Cost Breakdown

Figure 6.4.2 shows the feedstock and energy price inputs and the resulting hydrogen production, delivery, and distribution costs for the central biomass—pipeline delivery pathway. The financial assumptions used in this analysis are detailed in Section 5.

Figure 6.4.3 shows the contributions of hydrogen production, delivery, and losses to the levelized cost of hydrogen shown in Figure 6.4.2.

Figure 6.4.4 and Table 6.4.2 show the breakdown of levelized costs for the central biomass—pipeline delivery pathway.

In	puts	Assumptio	ons		Outputs
				Biomass moisture content	25%
Energy Use for Farming Trees	235,000 Btu / dry ton	Biomass Production	n & Delivery	Woody biomass LHV	16,013,200 Btu / dry ton
			-	Biomass price at H2 production	\$75 2007 \$ / dry ton
		Fraction of Woody Biomass	100%	Biomass Share of Levelized Cos	
			='Params - U g / dry ton		1
Coal Input (including upstream)	200 Btu / 116000Btu to Pump	Average dist from farm to H2 production p		WTG CO2 Emissions	-24,830 g CO2 eg./ 116000 Btu
Natural Gas Input (including upstream)	600 Btu / 116000Btu to Pump			WTG CH4 Emissions	13 g CO2 eq./ 116000 Btu
Petroleum Input (including upstream)	2,900 Btu / 116000Btu to Pump			WTG N2O Emissions	35 g CO2 eq./ 116000 Btu
· · · · · · · · · · · · · · · · · · ·	_,			WTG GHG Emissions	-24,780 g CO2 eg./ 116000 Btu
				Hydrogen Output Pressure	300 psi
Biomass consumption	13.5 kg (dry) / kg H2 produced	Hydrogen Proc	luction	Hydrogen Outlet Quality	99.9%
· ·		nyurogen Froc	luction	Trydrogen Outlet Quality	33.370
Natural gas consumption	0.0059 MMBtu / kg H2 produced	Operators all and all a single services its	155 000 km / day	Total and ital investor and	
Electricity consumption	0.98 kWh / kg H2 produced	Central plant design capacity	155,200 kg / day	Total capital investment	\$1,300 2007\$ / daily kg H2 (effective capacity)
Process Water Consumption	1.32 gal / kg H2 produced	Capacity factor	90%	Levelized Cost of Capital	\$0.64 2007\$ / kg H2 dispensed
Cooling Water Consumption	79.3 gal / kg H2 produced	Number of production facilities necessary	0.87	Fixed O&M Costs	\$0.23 2007\$ / kg H2 dispensed
		Process energy efficiency	46.0%	Variable O&M Costs	\$0.40 2007\$ / kg H2 dispensed
Total Capital Investment	\$181,080,000 2007\$	Electricity Mix	US Mix	Total Levelized Cost	\$2.24 2007\$ / kg H2 dispensed
		After-tax IRR	10%		
Coal Input (including upstream)	5,100 Btu / 116000Btu to Pump	Assumed Plant Life	40	Production CO2 Emissions	26,510 g CO2 eq./ 116000 Btu
Natural Gas Input (including upstream)	9,500 Btu / 116000Btu to Pump			Production CH4 Emissions	140 g CO2 eq./ 116000 Btu
Petroleum Input (including upstream)	3,400 Btu / 116000Btu to Pump			Production N2O Emissions	43 g CO2 eq./ 116000 Btu
				Production GHG Emissions	26,690 g CO2 eq./ 116000 Btu
-					
Electricity consumption for compressor	0.56 kWh / kg H2 dispensed	Pipelines for D	eliverv	Total capital investment	\$3,300 2007\$ / daily kg H2 (effective capacity)
Electricity consumption for geo storage	0.01 kWh / kg H2 dispensed		,		++,+++ ==++++++++++++++++++++++++++++++
Total electricity consumption	0.57 kWh / kg H2 dispensed	City Population	1,247,000 people	Levelized Cost of Capital	\$1.71 2007\$ / kg H2 dispensed
Total electricity consumption	0.57 KWIT7 Kg T12 dispensed	Hydrogen Vehicle Penetration	15%	Energy & Fuel	\$0.04 2007\$ / kg H2 dispensed
		City hydrogen use		Other O&M Costs	
Total Capital Investment	\$404.341.000 2007\$	Distance from City to Production Facility	121,100 kg / day 62 miles		\$0.40 2007\$ / kg H2 dispensed \$2.15 2007\$ / kg H2 dispensed
Total Capital Investment	\$404,341,000 2007\$			Levelized Cost of Delivery	\$2.15 2007\$7 kg Hz disperised
		Geologic storage capacity	1,325,000 kg H2	Daliana 000 Emissions	000 - 000 / //0000 Phy
		Number of trunk pipelines	3	Delivery CO2 Emissions	390 g CO2 eq./ 116000 Btu
Coal Input (including upstream)	2,800 Btu / 116000Btu to Pump	Service-line length	1.5 miles / line	Delivery CH4 Emissions	24 g CO2 eq./ 116000 Btu
Natural Gas Input (including upstream)	1,300 Btu / 116000Btu to Pump	Number of service lines	122	Delivery N2O Emissions	2 g CO2 eq./ 116000 Btu
Petroleum Input (including upstream)	100 Btu / 116000Btu to Pump	Hydrogen losses	0.80%	Delivery GHG Emissions	420 g CO2 eq./ 116000 Btu
				Hydrogen outlet pressure	12,700 psi
Electricity consumption	4.4 kWh / kg H2 dispensed	Forecourt Disp	ensing	Basis Hydrogen Quantity	116,000 Btu (116,000 Btu/gal non-oxygenated
	0 1		0	, , , ,	conventional unleaded gasoline)
Total Capital Investment per Station	\$2.629.000 2007\$ / station	Average Dispensing Rate per Station	1,000 kg/day	Total capital investment	\$2,650 2007\$ / daily kg H2 (effective capacity)
Total Capital Investment	\$320,679,000 2007\$ / all stations	Number of Dispensing Stations	122	Levelized Cost of Capital	\$1.08 2007\$ / kg H2 dispensed
lotal Capital Investment	\$320,075,000 2007¢7 all stations	Number of Compression Steps	5	Energy & Fuel	\$0.41 2007\$ / kg H2 dispensed
Inlet pressure of hydrogen at stations	300 psi	Usable Low Pressure Storage per Station	370 kg H2	Other O&M Costs	\$0.43 2007\$ / kg H2 dispensed
inier pressure of hydrogen at stations	500 psi	Usable Cascade Storage per Station	130 kg H2	Levelized Cost of Dispensing	\$1.93 2007\$ / kg H2 dispensed
		Usable Cascade Storage per Station	150 Kg 112	Levenzed Cost of Disperising	\$1.95 2007\$7 kg Hz dispensed
Coal Input (including upstream)	24,400 Btu / 116000 Btu to Pump	Site storage	42% % of design capacity	CSD CO2 Emissions	3,370 g CO2 eg./ 116000 Btu
Natural Gas Input (including upstream)	10,800 Btu / 116000 Btu to Pump	# of 2-hose Dispensers per Station	2	CSD CH4 Emissions	210 g CO2 eq./ 116000 Btu
Petroleum Input (including upstream)	900 Btu / 116000 Btu to Pump	Hydrogen Losses	0.50%	CSD N2O Emissions	14 g CO2 eq./ 116000 Btu
			0.00 /0	CSD GHG Emissions	3,590 g CO2 eq./ 116000 Btu
				Cost Per Mile	\$0.70 2007\$ / mi
Vehicle Mass	3.020 lb	Vehicle		Fuel Share	\$0.13 2007\$ / mi
Fuel cell size	70 kW	Fuel Economy	48.0 mi/gge	Maintenance, Tires, Repairs	\$0.07 2007\$ / mi
	30 kW	Vehicle Miles Traveled			\$0.12 2007\$ / mi
Hybridization battery (peak power)	SU KVV	Vehicle Lifetime	15,000 mi / yr	Insurance & Registration	
			160,000 mi	Depreciation	\$0.27 2007\$ / mi
		Purchase Year	2015	Financing	\$0.10 2007\$ / mi
		Vehicle Purchase Cost	\$33,700 2007\$		1.070 000 / 1.1
Coal Input (including upstream)	2,300 Btu / gge fuel consumed	Fuel Cell System Cost	\$4,500 2007\$	Veh. Cycle CO2 Emissions	1,670 g CO2 eq/ gge fuel consumed
Natural Gas Input (including upstream)	12,100 Btu / gge fuel consumed	Hydrogen Storage System Cost	\$2,400 2007\$	Veh. Cycle CH4 Emissions	7 g CO2 eq/ gge fuel consumed
Petroleum Input (including upstream)	6,900 Btu / gge fuel consumed	Tax Credit	\$0 2007\$	Veh. Cycle N2O Emissions	0 g CO2 eq/ gge fuel consumed
				Veh. Cycle GHG Emissions	1,850 g CO2 eq/ gge fuel consumed

Figure 6.4.1. Summary of major inputs, assumptions, and outputs by subsystem for the central biomass—pipeline delivery pathway

	WTP		WTW	
Coal input (including upstream) ^a	32,600	Btu/116,000 Btu	680	Btu/mi
Natural gas input (including upstream) ^a	22,600	Btu/116,000 Btu	460	Btu/mi
Petroleum input (including upstream) ^a	7,300	Btu/116,000 Btu	150	Btu/mi
Fossil energy input (including upstream) ^a	62,100	Btu/116,000 Btu	1,300	Btu/mi
WTP CO_2 emissions ^b	5,400	g/116,000 Btu	110	g/mi
WTP CH ₄ emissions	15	g/116,000 Btu	0	g/mi
WTP N ₂ O emissions	0	g/116,000 Btu	0	g/mi
WTP GHG emissions	5,900	g CO ₂ -eq./ 116,000 Btu	120	g/mi
	Cost pe	,	Cost p	er mile
Levelized cost of hydrogen	\$6.32	2007\$/kg	\$0.13	2007\$/mi

Table 6.4.1. WTP and WTW Results for the Central Biomass—Pipeline Delivery Pathway

^a Coal, natural gas, and petroleum inputs include those used directly in the hydrogen production and delivery pathway as feedstocks and fuels; those used to produce electricity and other materials used in the pathway; and those used upstream of the pathway to recover, refine, and deliver the feedstock. ^b Includes the carbon content of CO, CH₄, and volatile organic compound emissions that decompose in the atmosphere to CO₂.

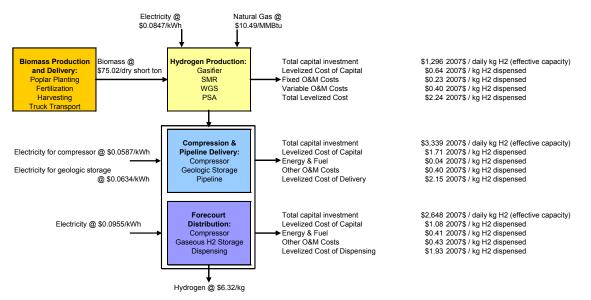


Figure 6.4.2. Cost analysis inputs and high-level results for the central biomass—pipeline delivery pathway

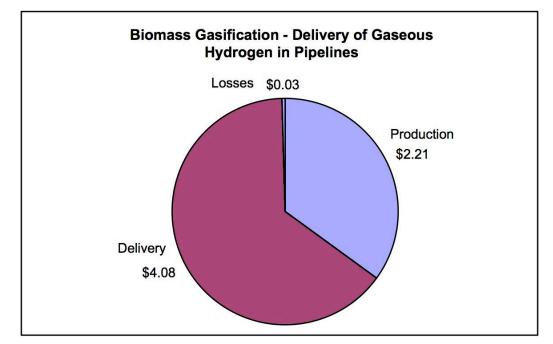


Figure 6.4.3. Contribution of hydrogen production, delivery, and losses to the levelized cost of hydrogen for the central biomass—pipeline delivery pathway

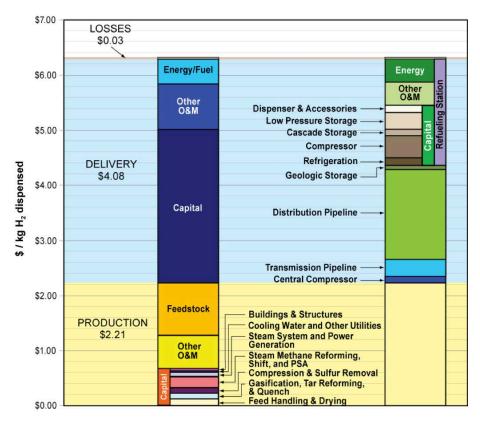


Figure 6.4.4. Breakdown of levelized costs for the central biomass—pipeline delivery pathway

	•				
		Other		Energy/	
Cost Component	Capital	O&M	Feedstock	Fuel	Total
Production	\$0.64	\$0.62	\$0.96		\$2.21
Feed handling and drying	\$0.11				
Gasification, tar reforming, and quench	\$0.10				
Compression and sulfur removal	\$0.09				
SMR, WGS, and PSA	\$0.18				
Steam system and power generation	\$0.09				
Cooling water and other utilities	\$0.02				
Buildings and structures	\$0.04				
Delivery	\$2.80	\$0.83		\$0.45	\$4.08
Central compressor					\$0.12
Transmission pipeline					\$0.30
Distribution pipeline					\$1.64
Geologic storage					\$0.09
Gaseous refueling station	\$1.08	\$0.43		\$0.41	\$1.93
Refrigeration	\$0.12				
Compressor	\$0.41				
Cascade storage	\$0.12				
Low pressure storage	\$0.30				
Dispenser and accessories	\$0.13				
Losses					\$0.03
Total	\$3.44	\$1.45	\$0.96	\$0.45	\$6.32

 Table 6.4.2. Contribution of Production and Delivery Processes to Levelized Hydrogen Cost for the Central Biomass—Pipeline Delivery Pathway

6.4.2 Energy Use and Emissions Breakdown

Figures 6.4.5 and 6.4.6 show the WTW energy inputs and losses for the central biomass—pipeline delivery pathway.

Figures 6.4.7 and 6.4.8 show the WTW emissions resulting from the delivery of 116,000 Btu hydrogen to a vehicle fuel tank using the central biomass—pipeline delivery pathway.

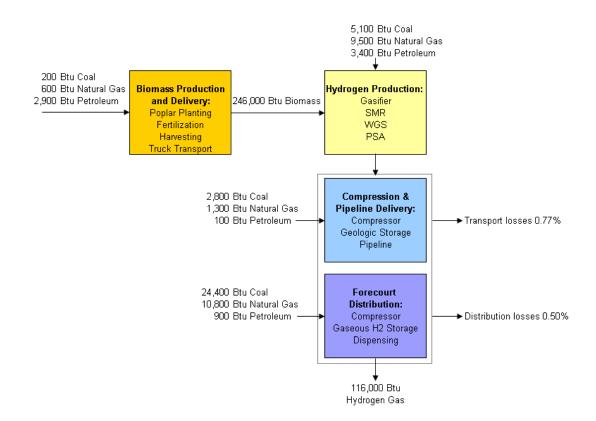


Figure 6.4.5. WTW energy inputs to deliver 116,000 Btu hydrogen to a vehicle using the central biomass—pipeline delivery pathway

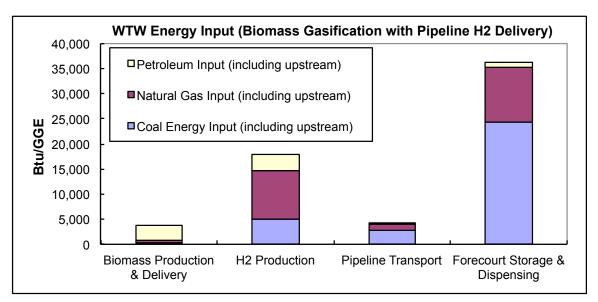


Figure 6.4.6. WTW petroleum, natural gas, and coal inputs to deliver 116,000 Btu hydrogen using the central biomass—pipeline delivery pathway

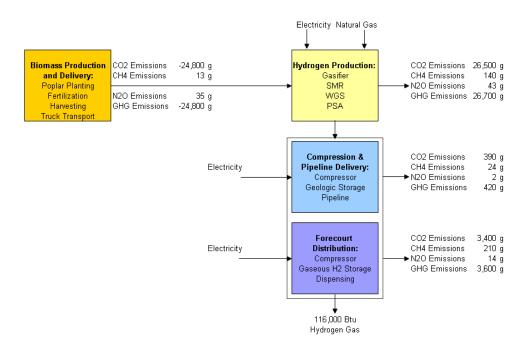


Figure 6.4.7. WTW emissions resulting from delivery of 116,000 Btu hydrogen using the central biomass—pipeline delivery pathway

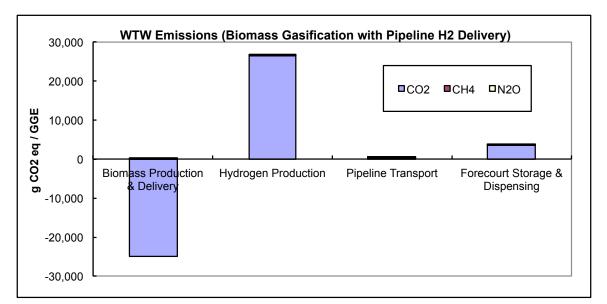


Figure 6.4.8. WTW CO₂, CH₄, and N₂O emissions resulting from delivery of 116,000 Btu hydrogen to a vehicle using the central biomass—pipeline delivery pathway

6.4.3 Sensitivities

6.4.3.1 Production Sensitivities

Several sensitivities were run on the production portion of the central biomass—pipeline delivery pathway. These sensitivities focused primarily on cost factors; however, several sensitivities also affect energy use and emissions. Figure 6.4.9 shows the effects of several production parameters

on the pathway's levelized cost, and Table 6.4.3 shows the effects of varying production energy efficiency on WTW energy use and emissions.

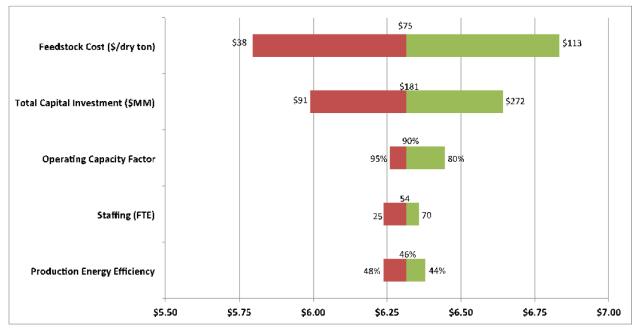


Figure 6.4.9. Production sensitivities for the central biomass—pipeline delivery pathway

Table 6.4.3. The Effects of Production Energy Efficiency on Primary Energy Use and Emissions from the Central Biomass—Pipeline Delivery Pathway

	44% Efficiency	46% Efficiency	48% Efficiency
WTW GHG emissions (g/mile)	120	120	120
WTW fossil energy (Btu/mile)	1,300	1,300	1,300
WTW petroleum energy (Btu/mile)	160	150	150
WTW total energy (Btu/mile)	6,900	6,600	6,300

The assumed electrical grid mix also affects the energy use and emissions. Table 6.4.4 shows the differences in energy use and GHG emissions between the U.S. average grid mix (which was used for all other sensitivities) and a hypothetical green grid mix that is 100% renewable energy (solar and wind).

Table 6.4.4. The Effects of Fuel Economy and Grid Mix on Use of Primary Energy and Emissions
from the Central Biomass—Pipeline Delivery Pathway

	U.S. Average Grid Mix (48 mpgge)	U.S. Average Grid Mix (68 mpgge)	"Green" Grid Mix (48 mpgge)
WTW GHG emissions (g/mile)	120	90	20
WTW fossil energy (Btu/mile)	1,300	900	300
WTW petroleum energy (Btu/mile)	150	110	130
WTW total energy (Btu/mile)	6,600	4,700	5,900

6.4.3.2 Delivery Sensitivities

Delivery cost, energy use, and emissions are strongly dependent upon daily consumption of hydrogen within a city and delivery distance from the central facility to the city gate. Sensitivities were run to show some of those effects. Daily consumption was varied by keeping the city size constant and adjusting the penetration of hydrogen vehicles from the base case of 15%. The resulting consumption is shown in Figure 6.4.10.

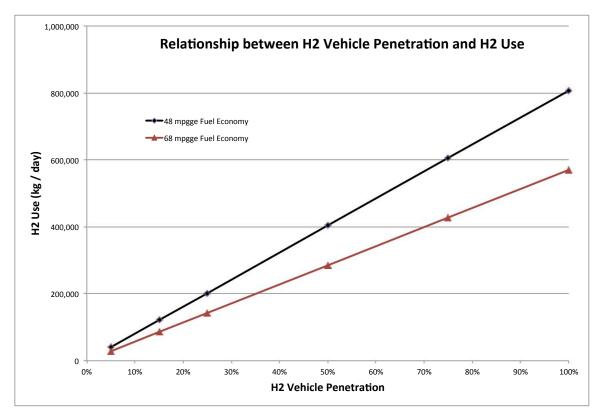


Figure 6.4.10. Daily hydrogen consumption versus hydrogen vehicle penetration for the central biomass—pipeline delivery pathway

As expected there are economies of scale for higher vehicle penetration/hydrogen consumption, and the levelized cost of delivery decreases as the distance from the production plant to the city gate is shortened. Figures 6.4.11 and 6.4.12 show those economic effects (the figures show identical data but are organized differently).

As Figure 6.4.12 shows, the cost increase due to distance from the city is more gradual with higher penetration because the cost of the transmission pipeline is shared more fully with increased demand.

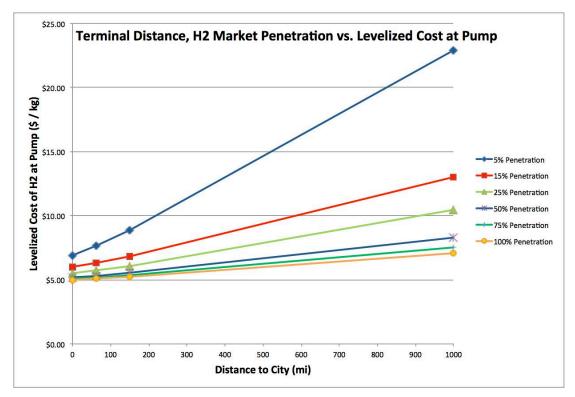


Figure 6.4.11. Levelized cost versus hydrogen vehicle penetration and distance between production facility and city gate for the central biomass—pipeline delivery pathway

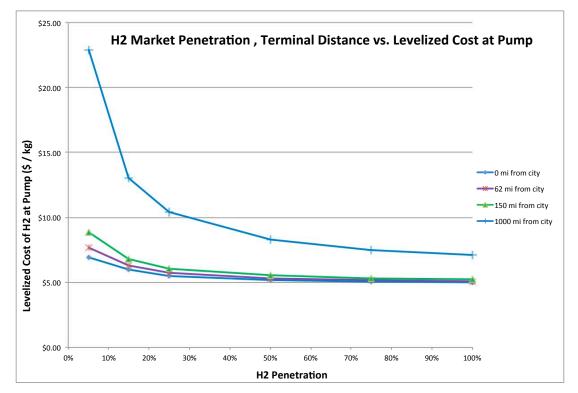


Figure 6.4.12. Levelized cost versus hydrogen vehicle penetration and distance between production facility and city gate for the central biomass—pipeline delivery pathway

The effects of penetration and distance between the production facility and city gate on WTW GHG emissions, WTW petroleum use, and WTW fossil energy use are shown in Figures 6.4.13, 6.4.14, and 6.4.15. The overall emissions change little with penetration because the additional energy required for distance is minimal. That additional electricity requirement is for compression over the distance. The total energy required for compression varies little with increased penetration because the total electricity required to compress each kilogram of hydrogen is nearly constant for all penetrations. That is the case because only a small portion of the total energy is needed for compression for the pipelines (see Figure 6.4.1), and much of the pressure drop is in the service pipelines instead of the transmission or trunk pipelines.

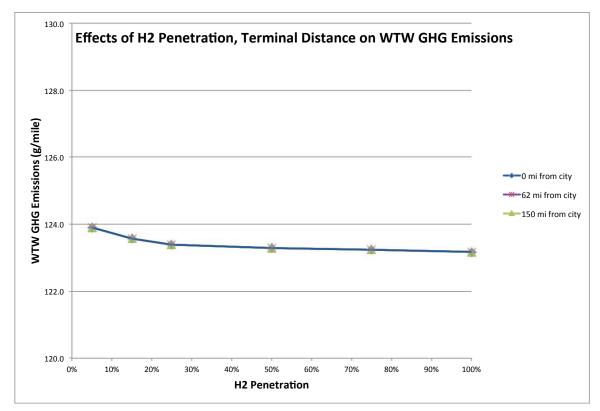


Figure 6.4.13. WTW GHG emissions versus penetration for the central biomass—pipeline delivery pathway

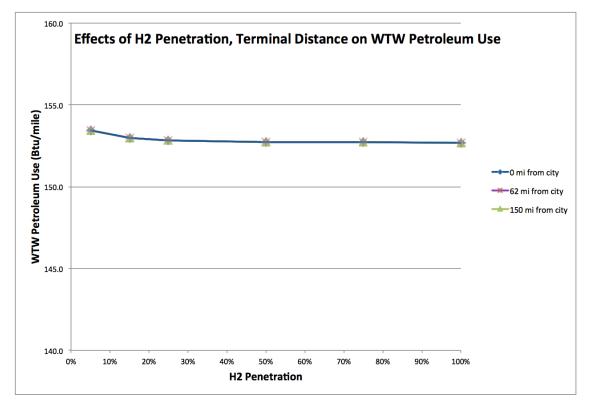


Figure 6.4.14. WTW petroleum use versus penetration for the central biomass—pipeline delivery pathway

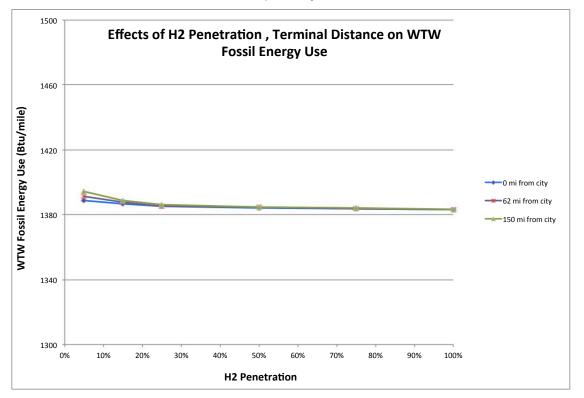


Figure 6.4.15. WTW fossil energy use versus penetration for the central biomass—pipeline delivery pathway

The effects of city population on levelized cost of hydrogen, GHG emissions, and petroleum energy use are shown in Figures 6.4.16, 6.4.17, and 6.4.18. Levelized hydrogen cost, GHG emissions, and petroleum energy use decrease only gradually with population increases for cities with populations of 5,000 or greater. The increase in cost between 500,000 people and 1,250,000 people shown in Figure 6.4.16 is caused by increased installed pipeline costs per kg hydrogen dispensed. In both cases, there are two trunk pipeline rings; however, because population density is essentially constant, the larger population results in a larger city area and thus longer rings in the trunk pipelines. Those longer rings result in higher pipeline capital costs per kg dispensed. Additional people result in HDSAM-calculated optimums with more than two rings, thus reducing the pipeline capital costs per kg dispensed.

Figure 6.4.19 shows the effect of fuel economy on the levelized cost of hydrogen. The hydrogen cost increases with increasing fuel economy, with the greatest increase in hydrogen cost occurring when fuel economy is increased from 40 mpgge to 50 mpgge. Lower demand for hydrogen resulting from higher fuel economy, as shown in Figure 6.4.20, is the reason for the increasing hydrogen costs. HDSAM optimization calculations calculated an optimum of two rings for all fuel economies except 48 mpgge. In that case it calculated three rings, resulting in a large jump in levelized cost between 40 mpgge and 48 mpgge.

Figures 6.4.21 and 6.4.22 show that GHG emissions and petroleum energy use decrease with increasing fuel economy, as one might expect.

Figures 6.4.23, 6.4.24, and 6.4.25 show the effects of forecourt size on levelized cost of hydrogen, GHG emissions, and petroleum energy use for the central biomass—pipeline delivery pathway. Cost, emissions, and petroleum energy use decrease with increasing forecourt size. The apparent inconsistent result at 1,000 kg/day forecourt size in Figure 6.4.23 is due to a step-change in distribution pipeline capital cost. At 750 kg/day, the diameter is 0.75 in. and at 1,000 kg/day the diameter is 1.0 in. Because discrete diameters are chosen, a jump between them is required and the larger pipeline is not as fully utilized as the smaller one is.

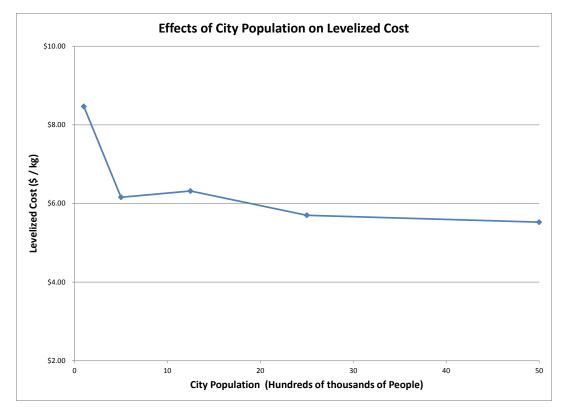


Figure 6.4.16. Levelized cost versus city population for the central biomass—pipeline delivery pathway

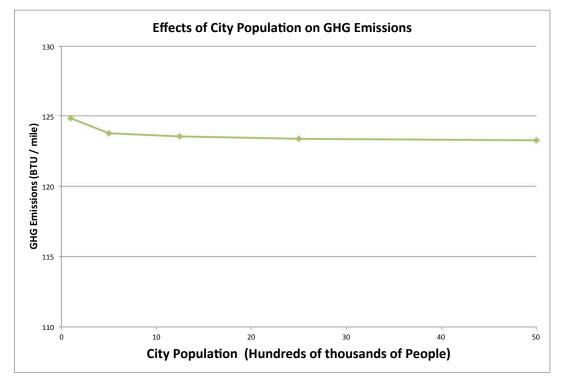


Figure 6.4.17. GHG emissions versus city population for the central biomass—pipeline delivery pathway

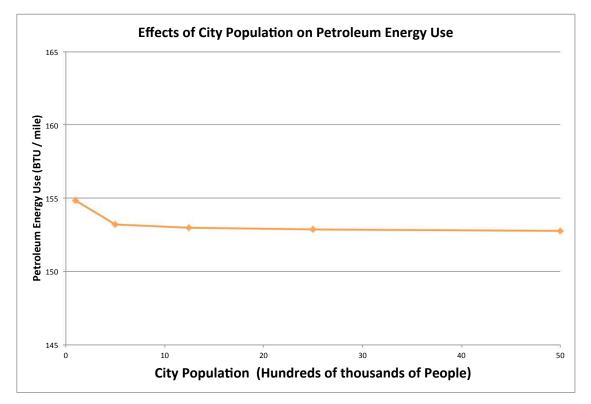


Figure 6.4.18. Petroleum energy use versus city population for the central biomass—pipeline delivery pathway

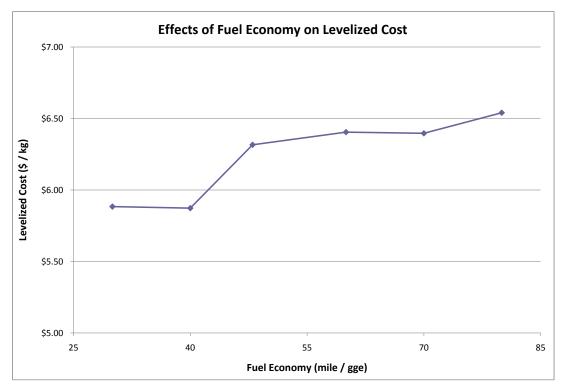


Figure 6.4.19. Levelized cost versus fuel economy for the central biomass—pipeline delivery pathway

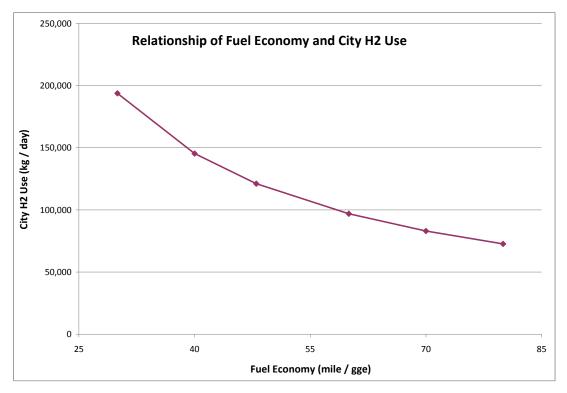


Figure 6.4.20. City hydrogen use versus fuel economy for the central biomass—pipeline delivery pathway

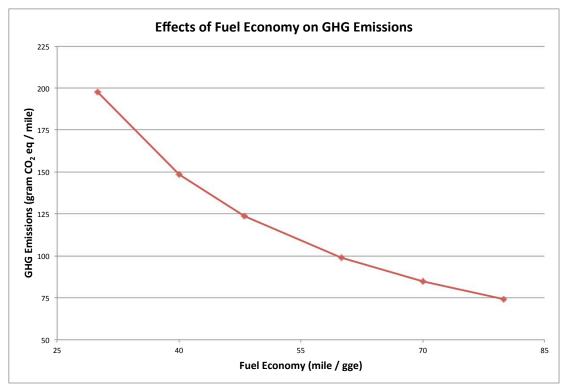


Figure 6.4.21. GHG emissions versus fuel economy for the central biomass—pipeline delivery pathway

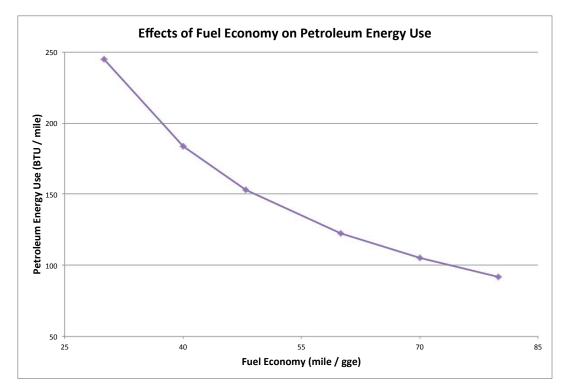


Figure 6.4.22. Petroleum use versus fuel economy for the central biomass—pipeline delivery pathway

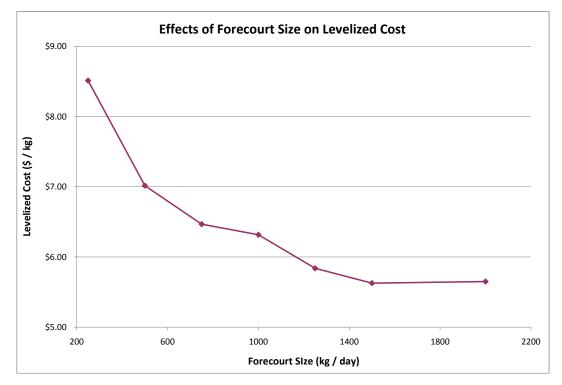


Figure 6.4.23. Levelized cost versus forecourt size for the central biomass—pipeline delivery pathway

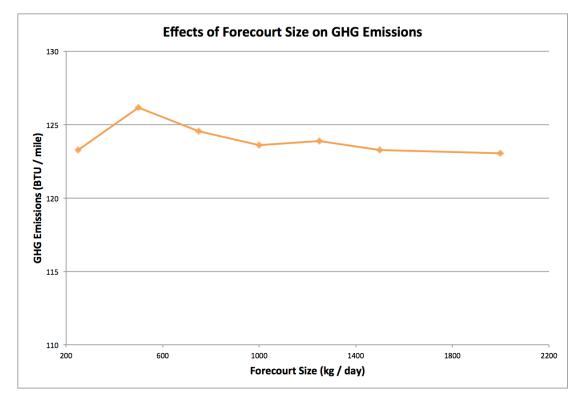


Figure 6.4.24. GHG emissions versus forecourt size for the central biomass—pipeline delivery pathway

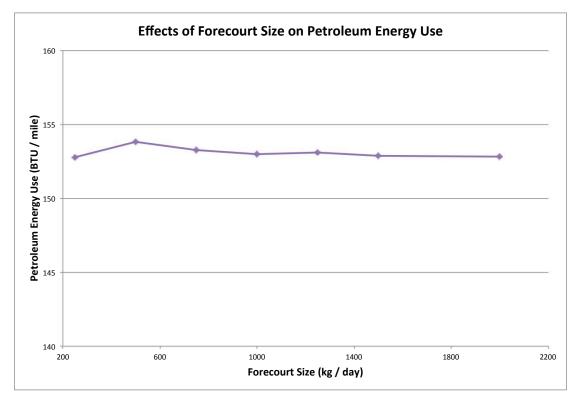


Figure 6.4.25. Petroleum energy use versus forecourt size for the central biomass—pipeline delivery pathway

6.5 Central Biomass—Gaseous H₂ Truck Delivery

Figure 6.5.1 shows the major inputs, assumptions, and outputs for each of the subsystems considered in the well-to-tank analysis, including feedstock supply and hydrogen dispensing. (See Appendix E for more details on this pathway.)

The WTP and WTW cost of hydrogen, energy use, and emissions for the central biomass—gaseous H_2 truck delivery pathway are summarized in Table 6.5.1.

Net GHG emissions include carbon dioxide uptake occurring during growth of the biomass. As noted above, the analysis assumes that 100% of the carbon in the biomass is provided by atmospheric carbon dioxide and that land use change is assumed to have neither positive nor negative effects on emissions.

6.5.1 Cost Breakdown

Figure 6.5.2 shows the feedstock and energy price inputs and the resulting hydrogen production, delivery, and distribution costs for the central biomass—gaseous H_2 truck delivery pathway. The financial assumptions used in this analysis are detailed in Section 5.

Figure 6.5.3 shows the contributions of hydrogen production, delivery, and losses to the levelized cost of hydrogen shown in Figure 6.5.2.

Figure 6.5.4 and Table 6.5.2 show the breakdown of levelized costs for the central biomass—gaseous H_2 truck delivery pathway.

Inputs		Assumptio	ons	Outputs		
				Biomass moisture content 25%		
		Biomass Production	n & Delivery	Woody biomass LHV	16,013,000 Btu / dry ton	
Energy Use for Farming Trees	235,000 Btu / dry ton			Biomass price at H2 production	\$75.02 2007 \$ / dry ton	
		Fraction of Woody Biomass	100%	Biomass Share of Levelized Cos	\$0.97 2007\$ / kg H2 dispensed	
		LUC GHG changes	0 g / dry ton			
Coal Input (including upstream)	300 Btu / 116000Btu to Pump	Average distance from farm to H2 prod.	40 miles	WTG CO2 Emissions	-24,850 g CO2 eq./ 116000 Btu	
Natural Gas Input (including upstream)	800 Btu / 116000Btu to Pump			WTG CH4 Emissions	15 g CO2 eq./ 116000 Btu	
Petroleum Input (including upstream)	3,200 Btu / 116000Btu to Pump			WTG N2O Emissions	35 g CO2 eq./ 116000 Btu	
				WTG GHG Emissions	-24,800 g CO2 eq./ 116000 Btu	
				Hydrogen Output Pressure	300 psi	
Biomass consumption	13.5 kg (dry) / kg H2 produced	Hydrogen Prod	uction	Hydrogen Outlet Quality	99.9%	
Natural gas consumption	0.0059 MMBtu / kg H2 produced					
Electricity consumption	0.98 kWh / kg H2 produced	Central plant design capacity	155,200 kg / day	Total capital investment	\$1,300 2007\$ / daily kg H2 (effective capacity)	
Process Water Consumption	1.32 gal / kg H2 produced	Capacity factor	90%	Levelized Cost of Capital	\$0.65 2007\$ / kg H2 dispensed	
Cooling Water Consumption	79.3 gal / kg H2 produced	Number of production facilities necessary	0.87	Fixed O&M Costs	\$0.23 2007\$ / kg H2 dispensed	
	0 0 1	Process energy efficiency	46.0%	Variable O&M Costs	\$0.40 2007\$ / kg H2 dispensed	
Total Capital Investment	\$181,080,000 2007\$	Electricity Mix	US Mix	Total Levelized Cost	\$2.25 2007\$ / kg H2 dispensed	
		After-tax IRR	10%			
Coal Input (including upstream)	5,200 Btu / 116000Btu to Pump	Assumed Plant Life	40	Production CO2 Emissions	26,620 g CO2 eq./ 116000 Btu	
Natural Gas Input (including upstream)	9,700 Btu / 116000Btu to Pump			Production CH4 Emissions	140 g CO2 eq./ 116000 Btu	
Petroleum Input (including upstream)	3,700 Btu / 116000Btu to Pump			Production N2O Emissions	43 g CO2 eq./ 116000 Btu	
				Production GHG Emissions	26,800 g CO2 eq./ 116000 Btu	
				Total capital investment	\$2,100 2007\$ / daily kg delivered	
Electricity consumption at terminal	1.31 kWh / kg H2 dispensed	Gas Trucks for Delivery (with Termi	nal and Geologic Storage)	Levelized Electricity cost	\$0.09 2007\$ / kg H2 delivered	
Electricity consumption for geo storage	0.01 kWh / kg H2 dispensed			Levelized Diesel cost	\$0.20 2007\$ / kg H2 delivered	
Total electricity consumption	1.32 kWh / kg H2 dispensed	City Population	1,247,000 people	Levelized Labor cost	\$0.41 2007\$ / kg H2 delivered	
Diesel consumption	58.9 gal / 1000 kg H2	Hydrogen Vehicle Penetration	15%	Levelized Other operating costs	\$0.34 2007\$ / kg H2 delivered	
	o o	City hydrogen use	121,100 kg / day	1 0		
		One-way distance for delivery	62 miles	Levelized Cost of Delivery	\$1.88 2007\$ / kg H2 delivered	
Total Capital Investment	\$254,858,000 2007\$	Storage capacity (geologic + terminal)	1,470,000 kg H2	,		
		Number of truck-trips required	79,700 per year	Delivery CO2 Emissions	910 g CO2 eq./ 116000 Btu	
Coal Input (including upstream)	400 Btu / 116000Btu to Pump	Truck hydrogen capacity	560 kg / truckload	Delivery CH4 Emissions	32 g CO2 eq./ 116000 Btu	
Natural Gas Input (including upstream)	1,400 Btu / 116000Btu to Pump	Efficiency of truck loading compressors	88.0%	Delivery N2O Emissions	7 g CO2 eq./ 116000 Btu	
Petroleum Input (including upstream)	9,800 Btu / 116000Btu to Pump	Hydrogen losses	1.0%	Delivery GHG Emissions	950 g CO2 eq./ 116000 Btu	
				Hydrogen outlet pressure	12,700 psi	
Electricity consumption	2.1 kWh / kg H2	Forecourt Dispe	ensing	Basis Hydrogen Quantity	116,000 Btu (116,000 Btu/gal non-oxygenated	
Electricity price	\$0.096 2007\$ / kWh				conventional unleaded gasoline)	
		Average Dispensing Rate per Station	800 kg / day	Total capital investment	\$2,190 2007\$ / daily kg	
Total Capital Investment per Station	\$1,744,000 2007\$ / station	Number of Dispensing Stations	152	Levelized Cost of Capital	\$0.95 2007\$ / kg H2 dispensed	
Total Capital Investment	\$265,136,000 2007\$ / all stations	Number of Compressor Steps	5	Energy & Fuel	\$0.20 2007\$ / kg H2 dispensed	
		Usable Low Pressure Storage per Station	N/A (storage on trucks)	Other O&M Costs	\$0.46 2007\$ / kg H2 dispensed	
Minimum inlet pressure from tube trailer	220 psi	Usable Cascade Storage per Station	130 kg H2	Levelized Cost of Dispensing	\$1.61 2007\$ / kg H2 dispensed	
Coal Input (including upstream)	16.700 Btu / 116000Btu to Pump	Site storage	14% % of design capacity	CSD CO2 Emissions	2,310 g CO2 eg./ 116000 Btu	
Natural Gas Input (including upstream)	7.400 Btu / 116000Btu to Pump	# of 2-hose Dispensers per Station	2	CSD CH4 Emissions	140 g CO2 eq./ 116000 Btu	
Petroleum Input (including upstream)	700 Btu / 116000Btu to Pump	Hydrogen loss factor	0.50%	CSD N2O Emissions	9 g CO2 eq./ 116000 Btu	
r cubican input (including upstican)		nyurogen ioss ideloi	0.00 %	CSD GHG Emissions	2,470 g CO2 eq./ 116000 Btu	
				Cost Per Mile	\$0.69 2007\$ / mi	
Vehicle Mass	3.020 lb	Vehicle		Fuel Share	\$0.12 2007\$ / mi	
Fuel cell size	70 kW	Fuel Economy	48.0 mi/gge		\$0.07 2007\$ / mi	
Hybridization battery (peak power)	70 kW 30 kW	Vehicle Miles Traveled	48.0 mi / gge 15,000 mi / yr	Maintenance, Tires, Repairs Insurance & Registration	\$0.07 2007\$7 mi \$0.12 2007\$ / mi	
rybhulzation battery (peak power)	JU KVV	Vehicle Lifetime	160,000 mi	Depreciation	\$0.12 2007\$7 mi \$0.27 2007\$ / mi	
		Purchase Year	2015	Financing	\$0.27 2007\$7 mi \$0.10 2007\$ / mi	
		Vehicle Purchase Cost	\$33.700 2007\$	rinancing	φ0.10 2007φ/111	
Coal Input (including upstream)	2,400 Btu / gge fuel consumed	Fuel Cell System Cost	\$33,700 2007\$	Vehicle Cycle CO2 Emissions	1,750 g CO2 eq/ gge fuel consumed	
Natural Gas Input (including upstream)	12,400 Btu / gge fuel consumed	Hydrogen Storage System Cost	\$2,400 2007\$	Vehicle Cycle CH4 Emissions	170 g CO2 eq/ gge fuel consumed	
Petroleum Input (including upstream)	7,700 Btu / gge fuel consumed	Tax Credit	\$0 2007\$	Vehicle Cycle N2O Emissions	7 g CO2 eq/ gge fuel consumed	
(including upstream)	r, roo biu ryge her consumed	lux orodit	ψυ 2007ψ	Vehicle Cycle GHG Emissions	1,940 g CO2 eq/ gge fuel consumed	
				Venicie Cycle Grid Linissions	1,040 g 002 cq/ ggc luci consumed	

Figure 6.5.1. Summary of major inputs, assumptions, and outputs by subsystem for the central biomass—gaseous H₂ truck delivery pathway

	WTP		WTW	
Coal input (including upstream) ^a	22,700	Btu/116,000 Btu	470	Btu/mi
Natural gas input (including upstream) ^a	15,300	Btu/116,000 Btu	400	Btu/mi
Petroleum input (including upstream) ^a	17,500	Btu/116,000 Btu	360	Btu/mi
Fossil energy input (including upstream) ^a	59,500	Btu/116,000 Btu	1,240	Btu/mi
WTP CO ₂ emissions ^b	5,000	g/116,000 Btu	100	g/mi
WTP CH ₄ emissions	13	g/116,000 Btu	0	g/mi
WTP N ₂ O emissions	0	g/116,000 Btu	0	g/mi
WTP GHG emissions	5,400	g CO ₂ -eq./	110	g/mi
		116,000 Btu		-
	Cost per kg		Cost p	er mile
Levelized cost of hydrogen	\$5.74	2007\$/kg	\$0.12	2007\$/mi

Table 6.5.1. WTP and WTW Results for the Central Biomass—Gaseous H₂ Truck Delivery Pathway

^a Coal, natural gas, and petroleum inputs include those used directly in the hydrogen production and delivery pathway as feedstocks and fuels; those used to produce electricity and other materials used in the pathway; and those used upstream of the pathway to recover, refine, and deliver the feedstock.

^b Includes the carbon content of CO, CH_4 , and volatile organic compound emissions that decompose in the atmosphere to CO_2 .

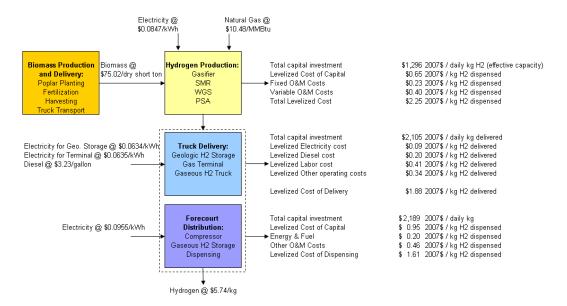
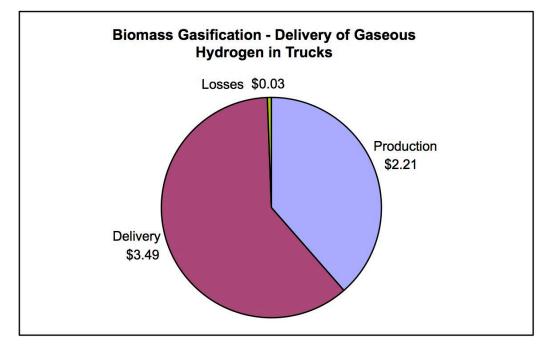
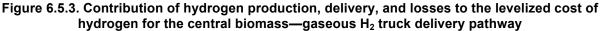




Figure 6.5.2. Cost analysis inputs and high-level results for the central biomass—gaseous H₂ truck delivery pathway

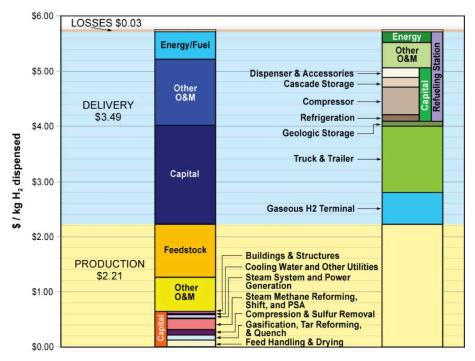


Figure 6.5.4. Breakdown of levelized costs for the central biomass—gaseous H₂ truck delivery pathway

		Other		Energy/	
Cost Component	Capital	O&M	Feedstock	Fuel	Total
Production	\$0.64	\$0.62	\$0.96		\$2.21
Feed handling and drying	\$0.11				
Gasification, tar reforming, and quench	\$0.10				
Compression and sulfur removal	\$0.09				
SMR, WGS, and PSA	\$0.18				
Steam system and power generation	\$0.09				
Cooling water and other utilities	\$0.02				
Buildings and structures	\$0.04				
Delivery	\$1.81	\$1.18		\$0.51	\$3.49
Gaseous H ₂ terminal					\$0.59
Truck and trailer					\$1.19
Geologic storage					\$0.11
Gaseous refueling station	\$0.95	\$0.46		\$0.20	\$1.61
Refrigeration	\$0.12				
Compressor	\$0.50				
Cascade storage	\$0.17				
Low pressure storage	\$0.00				
Dispenser and accessories	\$0.17				
Losses					\$0.03
Total	\$2.45	\$1.80	\$0.96	\$0.51	\$5.74

Table 6.5.2. Contribution of Production and Delivery Processes to Levelized Hydrogen Cost for the Central Biomass—Gaseous H_2 Truck Delivery Pathway

6.5.2 Energy Use and Emissions Breakdown

Figures 6.5.5 and 6.5.6 show the WTW energy inputs and losses for the central biomass—gaseous H_2 truck delivery pathway.

Figures 6.5.7 and 6.5.8 show the WTW emissions resulting from the delivery of 116,000 Btu hydrogen to a vehicle fuel tank using the central biomass—gaseous H_2 truck delivery pathway.

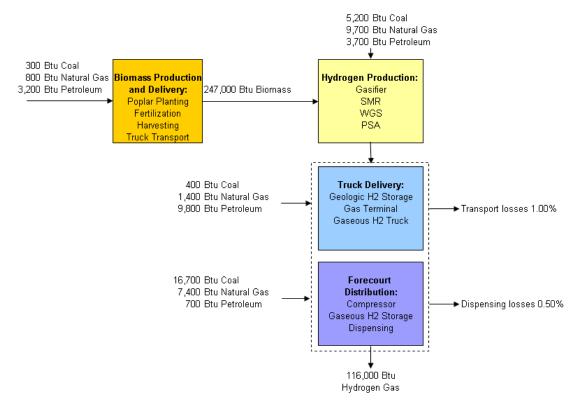


Figure 6.5.5. WTW energy inputs to deliver 116,000 Btu hydrogen to a vehicle using the central biomass—gaseous H₂ truck delivery pathway

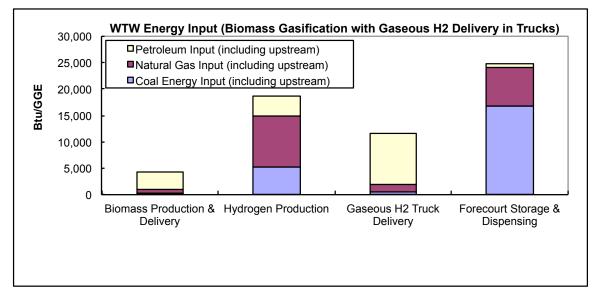


Figure 6.5.6. WTW petroleum, natural gas, and coal inputs to deliver 116,000 Btu hydrogen using the central biomass—gaseous H₂ truck delivery pathway

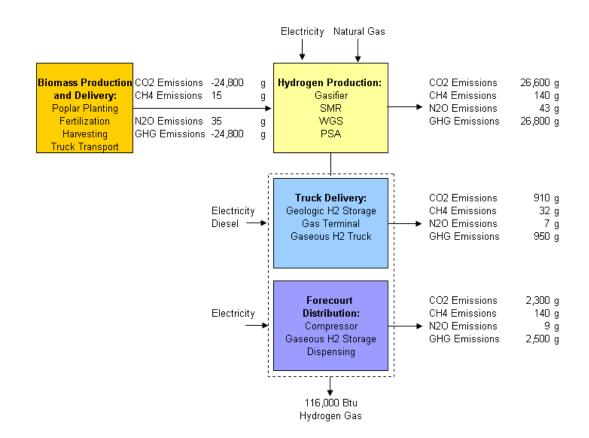


Figure 6.5.7. WTW emissions resulting from delivery of 116,000 Btu hydrogen using the central biomass—gaseous H₂ truck delivery pathway

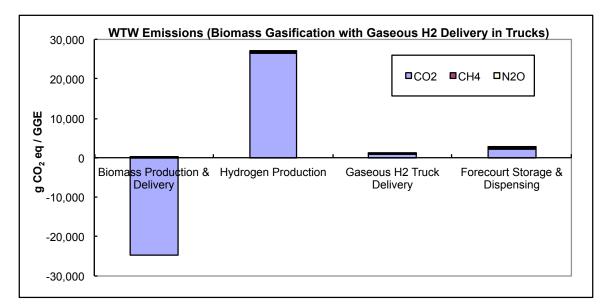


Figure 6.5.8. WTW CO₂, CH₄, and N₂O emissions resulting from delivery of 116,000 Btu hydrogen to a vehicle using the central biomass—gaseous H₂ truck delivery pathway

6.5.3 Sensitivities

6.5.3.1 Production Sensitivities

Several sensitivities were run on the production portion of the central biomass—pipeline delivery pathway. These sensitivities focused primarily on cost factors; however, several sensitivities also affect energy use and emissions. Figure 6.5.9 shows the effects of several production parameters on the pathway's levelized cost, and Table 6.5.3 shows the effects of varying production energy efficiency on WTW energy use and emissions.

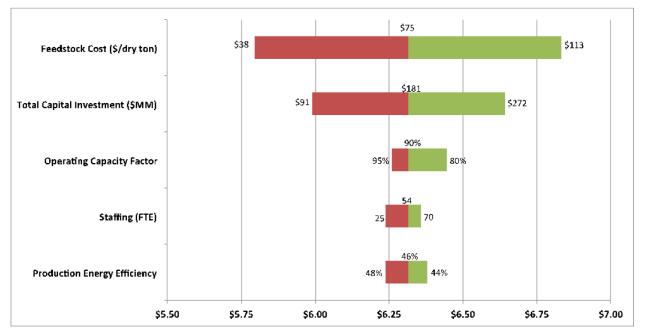


Figure 6.5.9. Production sensitivities for the central biomass—gaseous H₂ truck delivery pathway

 Table 6.5.3. The Effects of Production Energy Efficiency on Primary Energy Use and Emissions

 from the Central Biomass—Gaseous H2 Truck Delivery Pathway

	44% Efficiency	46% Efficiency	48% Efficiency
WTW GHG emissions (g/mile)	110	110	110
WTW fossil energy (Btu/mile)	1,300	1,200	1,200
WTW petroleum energy (Btu/mile)	370	360	360
WTW total energy (Btu/mile)	6,800	6,500	6,200

The assumed electrical grid mix also affects the energy use and emissions. Table 6.5.4 shows the differences in energy use and GHG emissions between the U.S. average grid mix (which was used for all other sensitivities) and a hypothetical green grid mix that is 100% renewable energy (solar and wind).

	U.S. Average Grid Mix (48 mpgge)	U.S. Average Grid Mix (68 mpgge)	"Green" Grid Mix (48 mpgge)
WTW GHG emissions (g/mile)	110	80	40
WTW fossil energy (Btu/mile)	1,200	900	500
WTW petroleum energy (Btu/mile)	360	260	340
WTW total energy (Btu/mile)	6,500	4,600	6,000

Table 6.5.4. The Effects of Fuel Economy and Grid Mix on Use of Primary Energy and Emissionsfrom the Central Biomass—Gaseous H2 Truck Delivery Pathway

6.5.3.2 Delivery Sensitivities

Delivery cost, energy use, and emissions are strongly dependent upon the daily consumption of hydrogen within a city and the delivery distance from the central facility to the city gate. Sensitivities were run to show some of those effects. Daily consumption was varied by keeping the city size constant and adjusting the penetration of hydrogen vehicles from the base case of 15%. The resulting consumption is shown in Figure 6.5.10.

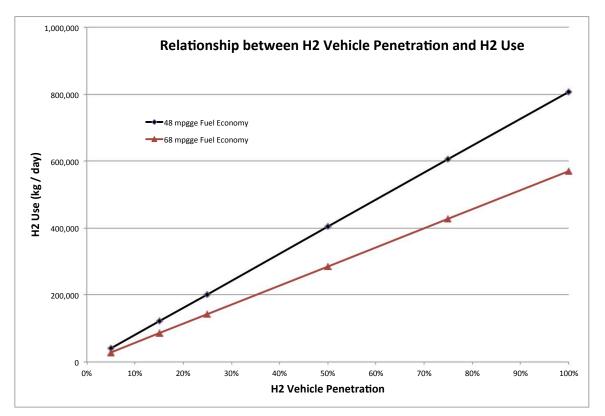


Figure 6.5.10. Daily hydrogen consumption versus hydrogen vehicle penetration for the central biomass—gaseous H₂ truck delivery pathway

As expected there are economies of scale for higher vehicle penetration/hydrogen consumption, and the levelized cost of delivery decreases as the distance from the production plant to the city gate is shortened. Figures 6.5.11 and 6.5.12 show those economic effects (the figures show identical data but are organized differently).

As Figure 6.5.12 shows, there is a \$1.17 increase in levelized cost when the production facility is assumed to be 150 miles from the city gate as compared to being at the city gate. There is a much larger levelized-cost increase when the distance is assumed to be 1,000 miles because the levelized cost of trucking increases with added distance due to additional driver time, additional fuel requirements, and an increased number of trucks and trailers required.

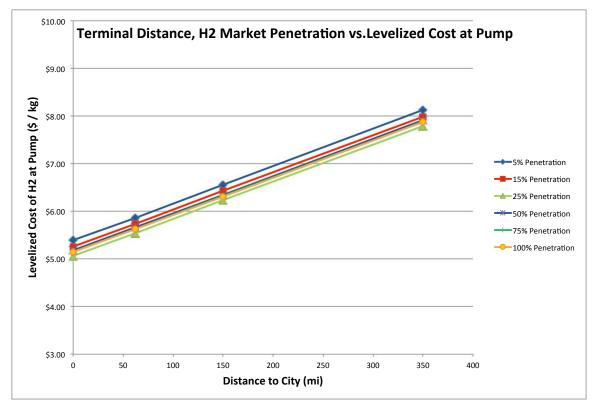


Figure 6.5.11. Levelized cost versus hydrogen vehicle penetration and distance between production facility and city gate for the central biomass—gaseous H_2 truck delivery pathway

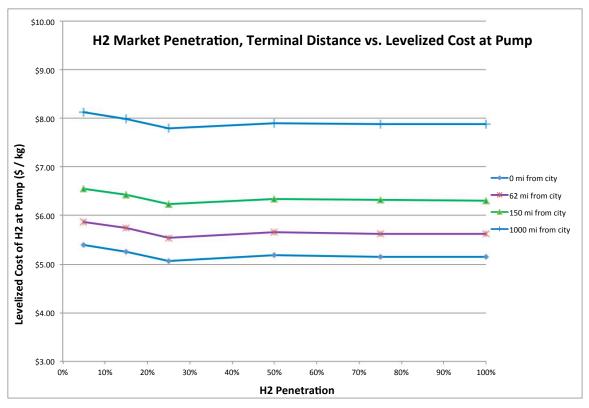


Figure 6.5.12. Levelized cost versus hydrogen vehicle penetration and distance between production facility and city gate for the central biomass—gaseous H₂ truck delivery pathway

The effects of penetration and distance between the production facility and the city gate on WTW GHG emissions, WTW petroleum use, and WTW fossil energy use are shown in Figures 6.5.13, 6.5.14, and 6.5.15, respectively. In each case, the energy use and emissions decrease when the production facility is closer to the city gate because of reduced diesel use for trucking.

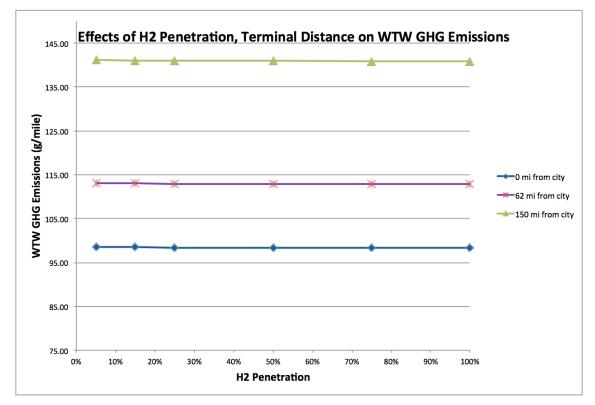


Figure 6.5.13. WTW GHG emissions versus penetration for the central biomass—gaseous H₂ truck delivery pathway

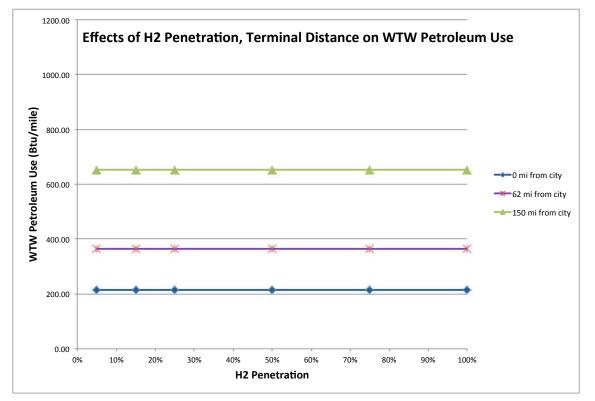


Figure 6.5.14. WTW petroleum use versus penetration for the central biomass—gaseous H₂ truck delivery pathway

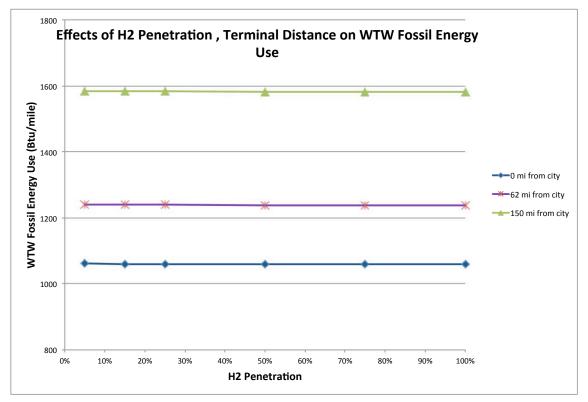


Figure 6.5.15. WTW fossil energy use versus penetration for the central biomass—gaseous H₂ truck delivery pathway

The effects of city population on levelized cost of hydrogen, GHG emissions, and petroleum energy use are shown in Figures 6.5.16, 6.5.17, and 6.5.18. Levelized hydrogen cost remains nearly constant for all city populations studied. GHG emissions and petroleum energy use generally increase with increasing city population. The apparent bounce at 500,000 people in Figure 6.5.16 is caused by a difference between costs for the terminal and for the trucks. The terminal costs are declining through the entire range as population increases due to economies of scale (not shown). The truck costs are increasing through the entire population range due to increased city size increasing truck travel distance (not shown). In most cases, they cancel each other out; however, between 100,000 and 500,000 people the decrease in terminal cost is greater than the increase in truck cost.

Figure 6.5.19 shows the effect of fuel economy on the levelized cost of hydrogen. The relationship between fuel economy and city hydrogen use is shown in Figure 6.5.20.

Figures 6.5.21 and 6.5.22 show that GHG emissions and petroleum energy use decrease with increasing fuel economy, as one might expect.

Figures 6.5.23, 6.5.24, and 6.5.25 show the effects of forecourt size on levelized cost of hydrogen, GHG emissions, and petroleum energy use for the central biomass—gaseous H_2 truck delivery pathway. Cost, emissions, and petroleum energy use decrease with increasing forecourt size up to 800 kg/day.

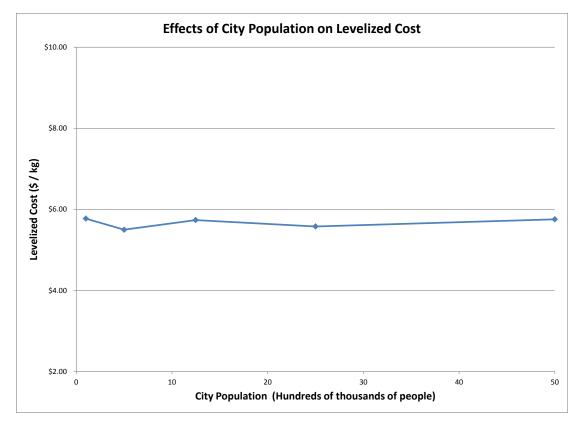


Figure 6.5.16. Levelized cost versus city population for the central biomass—gaseous H₂ truck delivery pathway

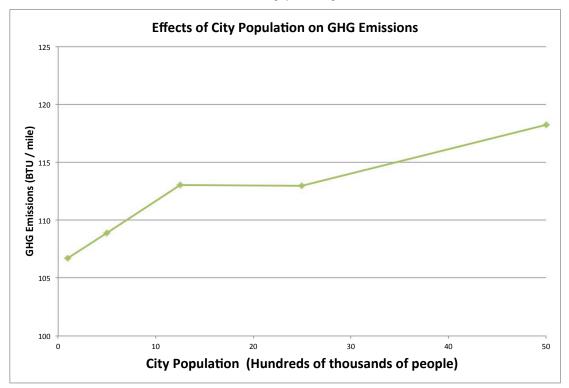


Figure 6.5.17. GHG emissions versus city population for the central biomass—gaseous H₂ truck delivery pathway

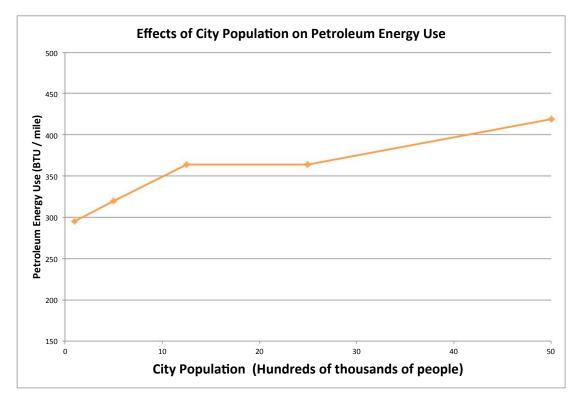


Figure 6.5.18. Petroleum energy use versus city population for the central biomass—gaseous H₂ truck delivery pathway

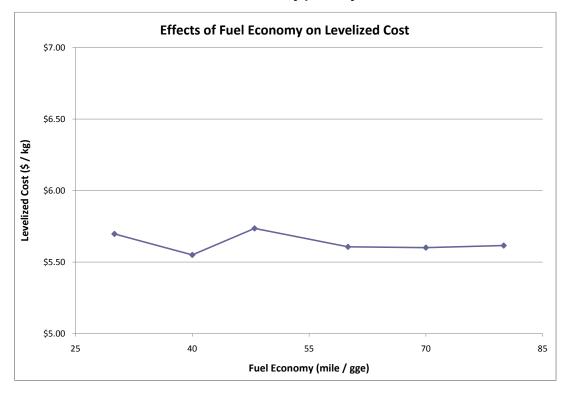


Figure 6.5.19. Levelized cost versus fuel economy for the central biomass—gaseous H₂ truck delivery pathway

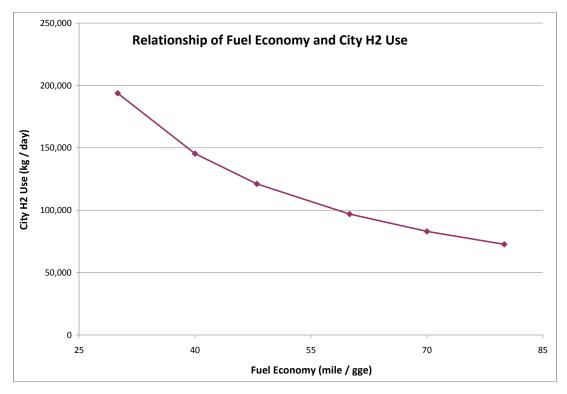


Figure 6.5.20. City hydrogen use versus fuel economy for the central biomass—gaseous H_2 truck delivery pathway

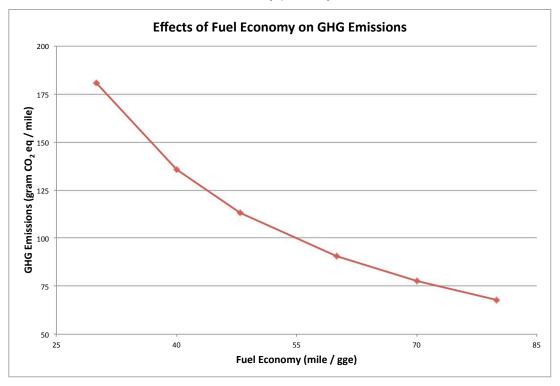


Figure 6.5.21. GHG emissions versus fuel economy for the central biomass—gaseous H_2 truck delivery pathway

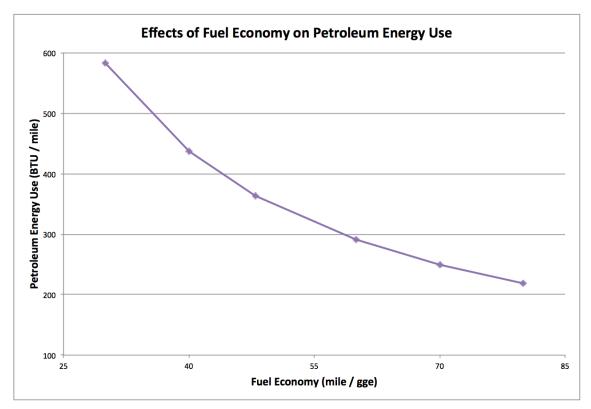


Figure 6.5.22. Petroleum use versus fuel economy for the central biomass—gaseous H₂ truck delivery pathway

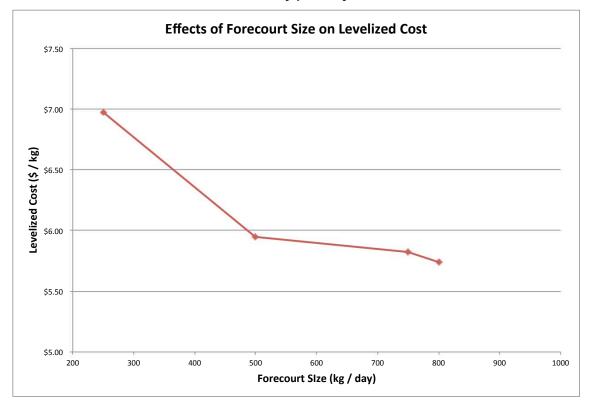


Figure 6.5.23. Levelized cost versus forecourt size for the central biomass—gaseous H₂ truck delivery pathway

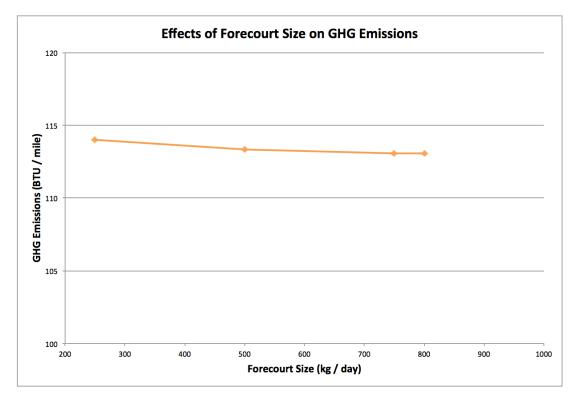


Figure 6.5.24. GHG emissions versus forecourt size for the central biomass—gaseous H₂ truck delivery pathway

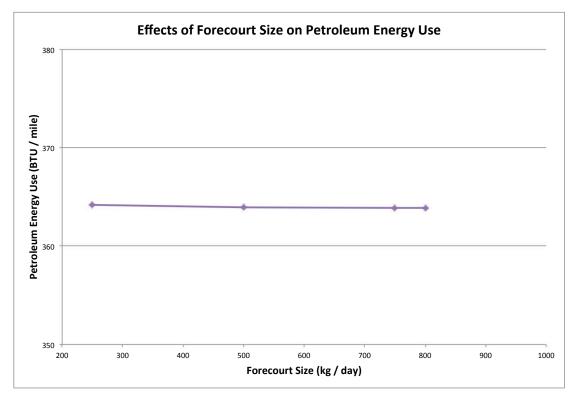


Figure 6.5.25. Petroleum energy use versus forecourt size for the central biomass—gaseous H₂ truck delivery pathway

6.6 Central Biomass—Liquid Truck Delivery and Gaseous Dispensing

Figure 6.6.1 shows the major inputs, assumptions, and outputs for each of the subsystems considered in the well-to-tank analysis, including feedstock supply and hydrogen dispensing. (See Appendix F for more details on this pathway.)

The WTP and WTW cost of hydrogen, energy use, and emissions for the central biomass—liquid truck delivery and gaseous dispensing pathway are summarized in Table 6.6.1.

Net GHG emissions include carbon dioxide uptake occurring during growth of the biomass. As noted above, the analysis assumes that 100% of the carbon in the biomass is provided by atmospheric carbon dioxide and that land use change is assumed to have neither positive nor negative effects on emissions.

6.6.1 Cost Breakdown

Figure 6.6.2 shows the feedstock and energy price inputs and the resulting hydrogen production, delivery, and distribution costs for the central biomass—liquid truck delivery and gaseous dispensing pathway. The financial assumptions used in this analysis are detailed in Section 5.0.

Ir	iputs			Outputs	
		Piemeee Broductie	n 9 Delivery	Biomass moisture content	25%
Energy Use for Farming Trees Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	235,000 Btu / dry ton 200 Btu / 116000Btu to Pump 600 Btu / 116000Btu to Pump 2,800 Btu / 116000Btu to Pump		='Params - Upstream'!D3 ='Params - U g / dry ton	Woody biomass LHV Biomass price at H2 production Biomass Share of Levelized Cost WTG CO2 Emissions WTG CH4 Emissions WTG N20 Emissions WTG GHG Emissions	-25,540 g CO2 eq./ 116000 Btu 13 g CO2 eq./ 116000 Btu 36 g CO2 eq./ 116000 Btu -25,490 g CO2 eq./ 116000 Btu
Biomass consumption Natural gas consumption	13.5 kg (dry) / kg H2 produced 0.0059 MMBtu / kg H2 produced	Hydrogen Pro	duction	Hydrogen Output Pressure Hydrogen Outlet Quality	300 psi 99.9%
Electricity consumption Process Water Consumption Cooling Water Consumption	0.98 kWh / kg H2 produced 1.32 gal / kg H2 produced 79.3 gal / kg H2 produced	Central plant design capacity Capacity factor Number of production facilities necessary Process energy efficiency	155,200 kg / day 90% 0.87 46.0%	Total capital investment Levelized Cost of Capital Fixed O&M Costs Variable O&M Costs	\$1,300 2007\$ / daily kg H2 (effective capacity) \$0.66 2007\$ / kg H2 dispensed \$0.23 2007\$ / kg H2 dispensed \$0.41 2007\$ / kg H2 dispensed
Total Capital Investment Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	\$181,080,000 2007\$ 5,300 Btu / 116000Btu to Pump 9,700 Btu / 116000Btu to Pump 3,300 Btu / 116000Btu to Pump	Electricity Mix After-tax IRR Assumed Plant Life	US Mix 10% 40	Total Levelized Cost Production CO2 Emissions Production CH4 Emissions Production N20 Emissions Production GHG Emissions	\$2.30 2007\$ / kg H2 dispensed 27,230 g CO2 eq./ 116000 Btu 140 g CO2 eq./ 116000 Btu 44 g CO2 eq./ 116000 Btu 27,410 g CO2 eq./ 116000 Btu
Liquefaction electricity consumption Terminal electricity consumption Total electricity consumption	8.5 kWh / kg H2 dispensed 0.03 kWh / kg H2 dispensed 8.57 kWh / kg H2 dispensed	Liquefaction and Tr	1.247.000 people	Total capital investment Levelized Electricity cost Levelized Diesel cost Levelized Labor cost	\$1,980 2007\$ / daily kg H2 (effective capacity) \$0.58 2007\$ / kg H2 dispensed \$0.03 2007\$ / kg H2 dispensed \$0.09 2007\$ / kg H2 dispensed
Diesel consumption Total Capital Investment	7.6 gal / 1000 kg H2 dispensed \$239,448,000 2007\$	Hydrogen Vehicle Penetration City hydrogen use One-way distance for delivery Terminal Design Capacity	15% 15% 121,100 kg / day 98 miles 1,103,000 kg H2 10,200	Levelized Other operating costs Levelized Cost of Delivery	\$0.24 2007\$ / kg H2 dispensed \$1.80 2007\$ / kg H2 delivered
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	51,700 Btu / 116000Btu to Pump 23,000 Btu / 116000Btu to Pump 3,000 Btu / 116000Btu to Pump	Number of truck-trips required per year Truck hydrogen capacity Liquefaction energy efficiency Hydrogen losses	4,400 kg / truckload 79.3% 2.8%	Delivery CO2 Emissions Delivery CH4 Emissions Delivery N2O Emissions Delivery GHG Emissions	7,220 g CO2 eq./ 116000 Btu 440 g CO2 eq./ 116000 Btu 30 g CO2 eq./ 116000 Btu 7,690 g CO2 eq./ 116000 Btu
Electricity consumption	0.51 kWh / kg H2 dispensed	Forecourt Dis	pensing	Onboard Storage Pressure Basis Hydrogen Quantity	12,700 psi 116,000 Btu (116,000 Btu/gal non-oxygenated
Total Capital Investment per Station Total Capital Investment	\$1,315,000 2007\$ / station \$160,485,000 2007\$ / all stations	Average Dispensing Rate per Station Number of Dispensing Stations Number of Cascade Pumps Liquid H2 storage capacity per Station Usable Cascade Storage per Station	1,000 kg / day 122 1 4,600 kg H2 70 kg H2	Total capital investment Levelized Cost of Capital Energy & Fuel Other O &M Costs Levelized Cost of Dispensing	conventional unleaded gasoline) \$1,330 2007\$ / daily kg H2 (effective capacity) \$0.49 2007\$ / kg H2 dispensed \$0.05 2007\$ / kg H2 dispensed \$0.48 2007\$ / kg H2 dispensed \$1.02 2007\$ / kg H2 dispensed
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	Included in Delivery Section Included in Delivery Section Included in Delivery Section	Site storage # of 2-hose Dispensers per Station Hydrogen Losses	400% % of design capacity 2 1.1%	CSD CO2 Emissions CSD CH4 Emissions CSD N2O Emissions CSD GHG Emissions	Included in Delivery Section Included in Delivery Section Included in Delivery Section Included in Delivery Section
Vehicle Mass	3,020 lb 70 kW	Vehicle		Cost Per Mile Fuel Share	\$0.67 2007\$ / mi \$0.11 2007\$ / mi \$0.07 2007\$ / mi
Fuel cell size Hybridization battery (peak power)	70 kW 30 kW	Fuel Economy Vehicle Miles Traveled Vehicle Lifetime Purchase Year Vehicle Purchase Cost	48.0 mi / gge 15,000 mi / yr 160,000 mi 2015 \$33,700 2007\$	Maintenance, Tires, Repairs Insurance & Registration Depreciation Financing	\$0.07 2007\$ / mi \$0.12 2007\$ / mi \$0.27 2007\$ / mi \$0.10 2007\$ / mi
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	2,300 Btu / gge fuel consumed 12,100 Btu / gge fuel consumed 6,900 Btu / gge fuel consumed	Fuel Cell System Cost Hydrogen Storage System Cost Tax Credit	\$33,700 2007\$ \$4,500 2007\$ \$2,400 2007\$ \$0 2007\$	Veh. Cycle CO2 Emissions Veh. Cycle CH4 Emissions Veh. Cycle N2O Emissions Veh. Cycle GHG Emissions	1,670 g CO2 eq/ gge fuel consumed 170 g CO2 eq/ gge fuel consumed 6 g CO2 eq/ gge fuel consumed 1,850 g CO2 eq/ gge fuel consumed

Figure 6.6.1. Summary of major inputs, assumptions, and outputs by subsystem for the central biomass—liquid truck delivery and gaseous dispensing pathway

	-	-		
	WTP		WTW	
Coal input (including upstream) ^a	57,200	Btu/116,000 Btu	1,190	Btu/mi
Natural gas input (including upstream) ^a	33,400	Btu/116,000 Btu	700	Btu/mi
Petroleum input (including upstream) ^a	9,100	Btu/116,000 Btu	190	Btu/mi
Fossil energy input (including upstream) ^a	367,400	Btu/116,000 Btu	2,080	Btu/mi
WTP CO ₂ emissions ^b	8,900	g/116,000 Btu	190	g/mi
WTP CH ₄ emissions	24	g/116,000 Btu	0	g/mi
WTP N ₂ O emissions	0	g/116,000 Btu	0	g/mi
WTP GHG emissions	9,600	g CO ₂ -eq./ 116,000 Btu	200	g/mi
	Cost per	kg	Cost p	er mile
Levelized cost of hydrogen	\$5.12	2007\$/kg	\$0.11	2007\$/mi

 Table 6.6.1. WTP and WTW Results for the Central Biomass—Liquid Truck Delivery and Gaseous

 Dispensing Pathway

^a Coal, natural gas, and petroleum inputs include those used directly in the hydrogen production and delivery pathway as feedstocks and fuels; those used to produce electricity and other materials used in the pathway; and those used upstream of the pathway to recover, refine, and deliver the feedstock.

^b Includes the carbon content of CO, CH_4 , and volatile organic compound emissions that decompose in the atmosphere to CO_2 .

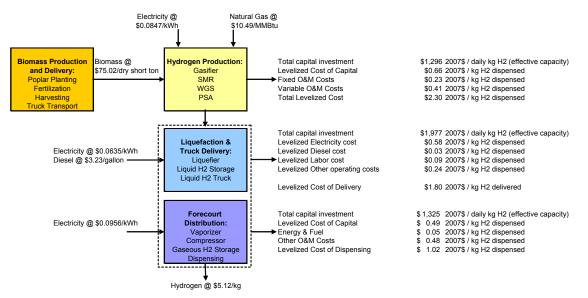
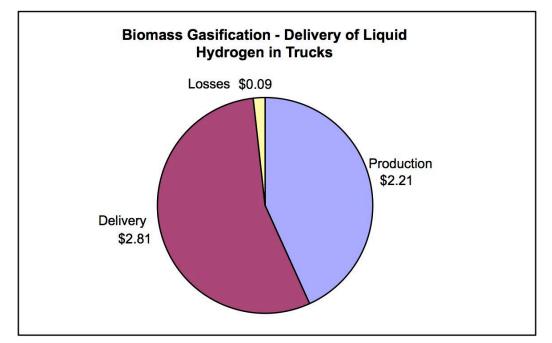



Figure 6.6.2. Cost analysis inputs and high-level results for the central biomass—liquid truck delivery and gaseous dispensing pathway

Figure 6.6.3 shows the contributions of hydrogen production, delivery, and losses to the levelized cost of hydrogen shown in Figure 6.6.2.

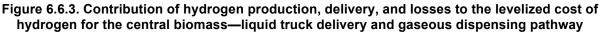


Figure 6.6.4 and Table 6.6.2 show the breakdown of levelized costs for the central biomass—liquid truck delivery and gaseous dispensing pathway.

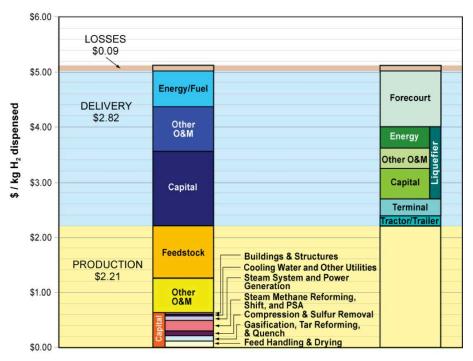


Figure 6.6.4. Breakdown of levelized costs for the central biomass—liquid truck delivery and gaseous dispensing pathway

		Other		Energy/	
Cost Component	Capital	O&M	Feedstock	Fuel	Total
Production	\$0.64	\$0.62	\$0.96		\$2.21
Feed handling and drying	\$0.11				
Gasification, tar reforming, and quench	\$0.10				
Compression and sulfur removal	\$0.09				
SMR, WGS, and PSA	\$0.18				
Steam system and power generation	\$0.09				
Cooling water and other utilities	\$0.02				
Buildings and structures	\$0.04				
Delivery	\$1.35	\$0.81		\$0.65	\$2.81
Tractor/trailer					\$0.18
Terminal					\$0.30
Liquefier	\$0.57	\$0.16		\$0.58	\$1.31
Forecourt	\$0.49	\$0.48		\$0.05	\$1.02
Losses					\$0.09
Total	\$1.99	\$1.43	\$0.96	\$0.65	\$5.12

 Table 6.6.2. Contribution of Production and Delivery Processes to Levelized Hydrogen Cost for the Central Biomass—Liquid Truck Delivery and Gaseous Dispensing Pathway

6.6.2 Energy Use and Emissions Breakdown

Figures 6.6.5 and 6.6.6 show the WTW energy inputs and losses for the central biomass—liquid truck delivery and gaseous dispensing pathway.

Figures 6.6.7 and 6.6.8 show the WTW emissions resulting from the delivery of 116,000 Btu hydrogen to a vehicle fuel tank using the central biomass—liquid truck delivery and gaseous dispensing pathway.

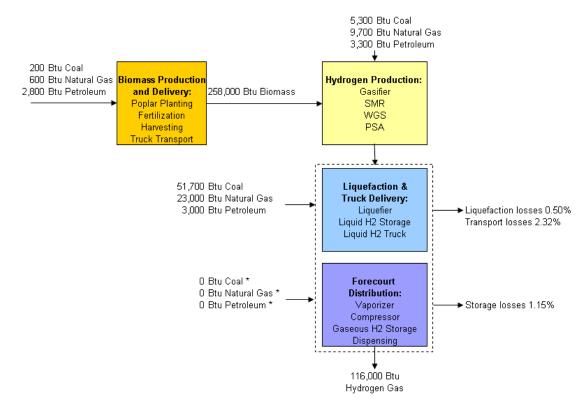


Figure 6.6.5. WTW energy inputs to deliver 116,000 Btu hydrogen to a vehicle using the central biomass—liquid truck delivery and gaseous dispensing pathway

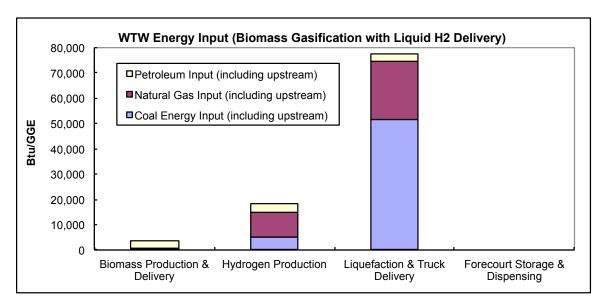


Figure 6.6.6. WTW petroleum, natural gas, and coal inputs to deliver 116,000 Btu hydrogen using the central biomass—liquid truck delivery and gaseous dispensing pathway

Figure 6.6.7. WTW emissions resulting from delivery of 116,000 Btu hydrogen using the central biomass—liquid truck delivery and gaseous dispensing pathway

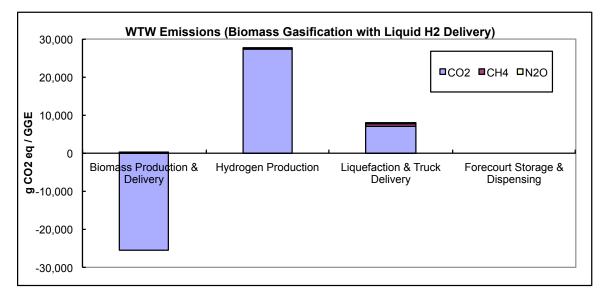


Figure 6.6.8. WTW CO₂, CH₄, and N₂O emissions resulting from delivery of 116,000 Btu hydrogen to a vehicle using the central biomass—liquid truck delivery and gaseous dispensing pathway

6.6.3 Sensitivities

6.6.3.1 Production Sensitivities

Several sensitivities were run on the production portion of the central biomass—liquid truck delivery and gaseous dispensing pathway. These sensitivities focused primarily on cost factors; however, several sensitivities also affect energy use and emissions. Figure 6.6.9 shows the effects of several production parameters on the pathway's levelized cost, and Table 6.6.3 shows the effects of varying production energy efficiency on WTW energy use and emissions.

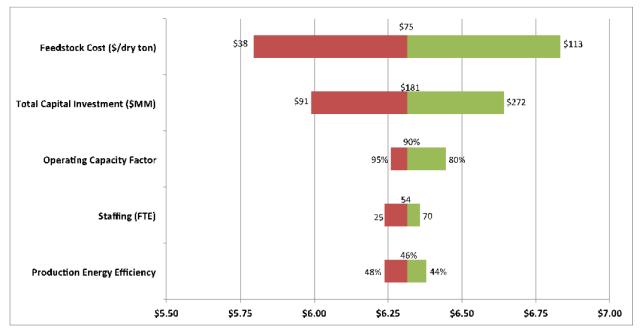


Figure 6.6.9. Production sensitivities for the central biomass—liquid truck delivery and gaseous dispensing pathway

Table 6.6.3. The Effects of Production Energy Efficiency on Primary Energy Use and Emissions
from the Central Biomass—Liquid Truck Delivery and Gaseous Dispensing Pathway

	44% Efficiency	46% Efficiency	48% Efficiency
WTW GHG emissions (g/mile)	200	200	200
WTW fossil energy (Btu/mile)	2,100	2,100	2,100
WTW petroleum energy (Btu/mile)	200	190	180
WTW total energy (Btu/mile)	8,000	7,700	7,400

The assumed electrical grid mix also affects the energy use and emissions. Table 6.6.4 shows the differences in energy use and GHG emissions between the U.S. average grid mix (which was used for all other sensitivities) and a hypothetical green grid mix that is 100% renewable energy (solar and wind).

	U.S. Average Grid Mix (48 mpgge)	U.S. Average Grid Mix (68 mpgge)	"Green" Grid Mix (48 mpgge)
WTW GHG emissions (g/mile)	200	150	30
WTW fossil energy (Btu/mile)	2,100	1,500	300
WTW petroleum energy (Btu/mile)	190	130	140
WTW total energy (Btu/mile)	7,700	5,500	6,500

 Table 6.6.4. The Effects of Fuel Economy and Grid Mix on Use of Primary Energy and Emissions

 from the Central Biomass—Liquid Truck Delivery and Gaseous Dispensing Pathway

6.6.3.2 Delivery Sensitivities

Delivery cost, energy use, and emissions are strongly dependent upon the daily consumption of hydrogen within a city and the delivery distance from the central facility to the city gate. Sensitivities were run to show some of those effects. Daily consumption was varied by keeping the city size constant and adjusting the penetration of hydrogen vehicles from the base case of 15%. The resulting consumption is shown in Figure 6.6.10.

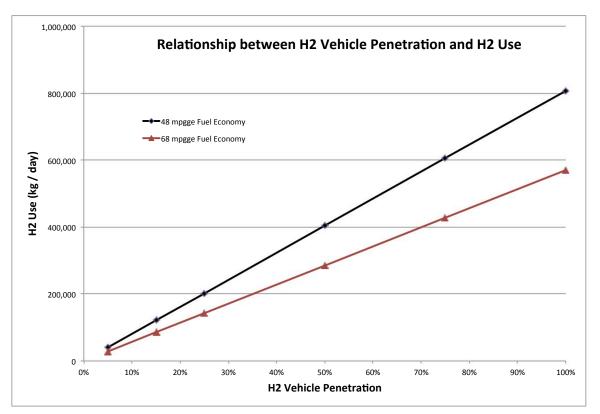


Figure 6.6.10. Daily hydrogen consumption versus hydrogen vehicle penetration for the central biomass—liquid truck delivery and gaseous dispensing pathway

As expected there are economies of scale for higher vehicle penetration/hydrogen consumption, and the levelized cost of delivery decreases as the distance from the production plant to the city gate is shortened. Figures 6.6.11 and 6.6.12 show those economic effects (the figures show identical data but are organized differently). In cases where the hydrogen vehicle penetration is 5% or 15%, only one liquefier is necessary. Two liquefiers are needed for the 25% penetration case because of size limitations, resulting in increased levelized cost due to increased levelized

liquefier capital costs. Levelized liquefier capital costs are higher because each of the two liquefiers is smaller than the one in the 15% penetration case.

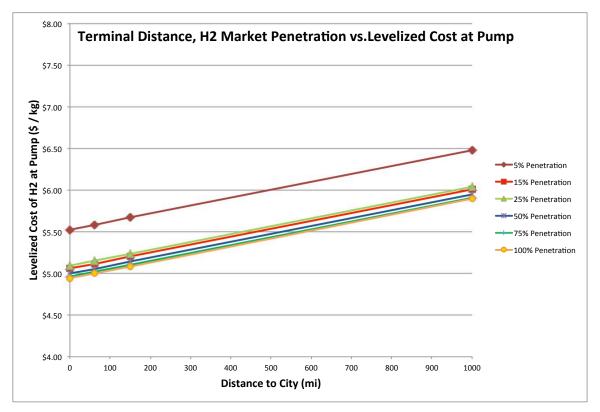


Figure 6.6.11. Levelized cost versus hydrogen vehicle penetration and distance between production facility and city gate for the central biomass—liquid truck delivery and gaseous dispensing pathway

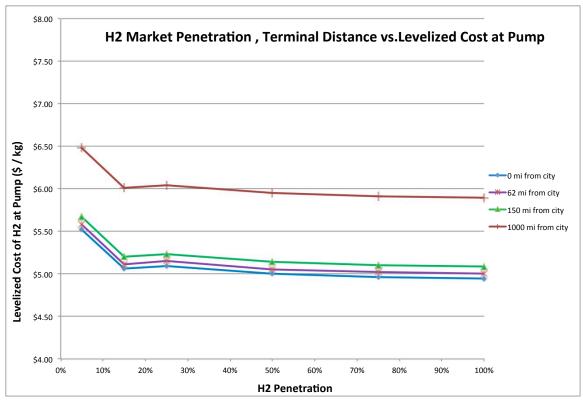


Figure 6.6.12. Levelized cost versus hydrogen vehicle penetration and distance between production facility and city gate for the central biomass—liquid truck delivery and gaseous dispensing pathway

As Figure 6.6.12 shows, there is a \$0.14 increase in levelized cost when the production facility is assumed to be 150 miles from the city gate as compared to being at the city gate. There is a much larger levelized-cost increase when the distance is assumed to be 1,000 miles because the levelized cost of trucking increases with added distance due to additional driver time, additional fuel requirements, and an increased number of trucks and trailers required. Figure 6.6.13 shows the liquid truck portion of the levelized cost; note that the base case distance is 62 miles and that the truck's levelized cost is \$0.18 for all penetration levels at that distance. Because the city size is constant and the assumed station size is sufficient to utilize a full truckload at each station, each delivery has the same travel distance and takes the same amount of time within the city regardless of penetration level; therefore, the levelized cost within the city gate is constant for all penetration levels.

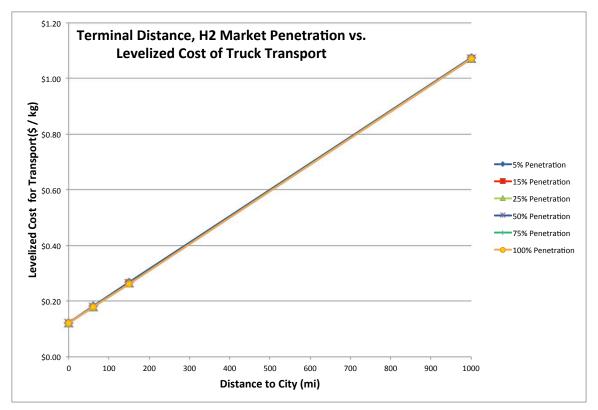


Figure 6.6.13. Truck levelized cost versus distance between production facility and city gate for the central biomass—liquid truck delivery and gaseous dispensing pathway

The most notable feature in Figure 6.6.13 is the insensitivity of transport levelized cost to changes in FCEV penetration. The significant drop in the levelized cost of hydrogen as FCEV penetration increases to 15% (shown in Figure 6.6.11) is due to the reduced cost of liquefaction, which is shown in Figure 6.6.14 (liquefier cost is constant when penetration levels are kept constant no matter how far the liquefiers are from the city). When the penetration is increased to 25% from 15%, two smaller liquefiers are needed due to scale limitations; thus, the capital cost per annual kilogram increases, resulting in increased levelized cost.

The majority of the liquefaction system's cost driver is capital (Table 6.6.2 shows that the capital accounts for $0.57/kg H_2$ of the $1.31/kg H_2$ total liquefaction cost). As shown in Figure 6.6.15, capital-cost reduction drives the cost decrease as penetration increases.

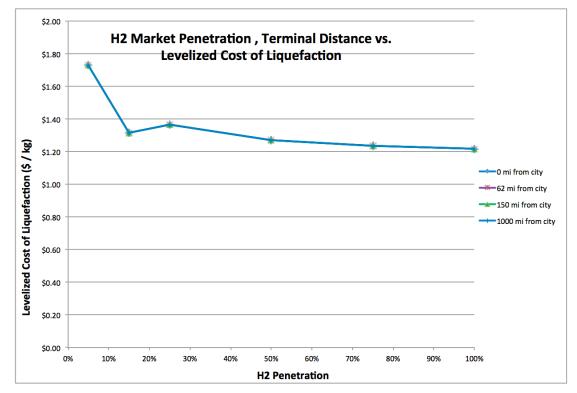
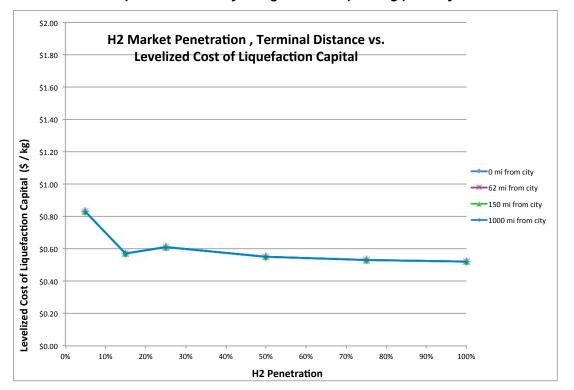
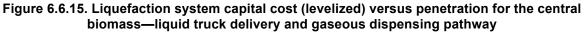




Figure 6.6.14. Liquefaction system levelized cost versus penetration for the central biomass liquid truck delivery and gaseous dispensing pathway

The additional cost variable for the levelized cost of the liquefaction system is the system efficiency, because increased efficiency reduces the energy required for liquefaction. Figure 6.6.16 shows the effect of penetration (directly affecting liquefaction system size) on efficiency. Note that one liquefier is needed for 5% and 15% penetration, two for 25%, three for 50%, four for 75%, and five for 100% penetration, and that larger liquefaction systems result in higher efficiencies. More efficient liquefaction systems result in lower GHG emissions and fossil energy use.

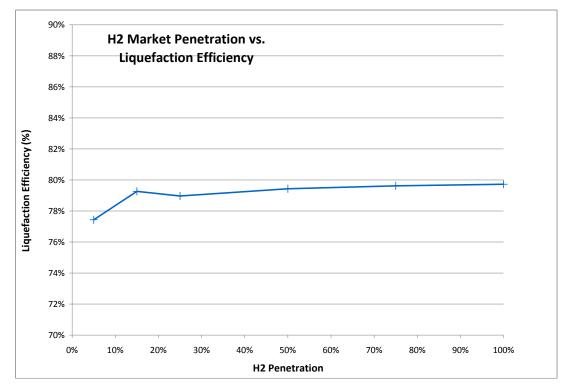


Figure 6.6.16. Liquefaction system efficiency versus penetration for the central biomass—liquid truck delivery and gaseous dispensing pathway

The effects of penetration and distance between the production facility and the city gate on WTW GHG emissions, WTW petroleum use, and WTW fossil energy use are shown in Figures 6.6.17, 6.6.18, and 6.6.19, respectively. In each case, the energy use and emissions decrease as liquefaction system efficiency increases with penetration and then plateaus as discussed above. Energy use and emissions are also reduced when the production facility is closer to the city gate because of reduced diesel use for trucking.

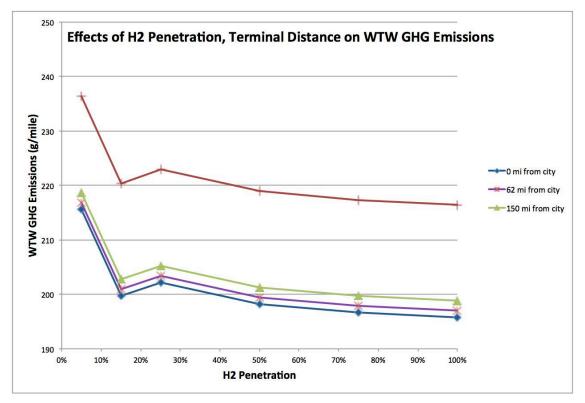


Figure 6.6.17. WTW GHG emissions versus penetration for the central biomass—liquid truck delivery and gaseous dispensing pathway

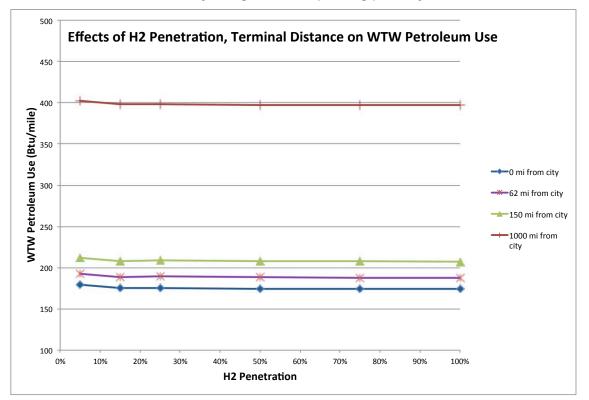


Figure 6.6.18. WTW petroleum use versus penetration for the central biomass—liquid truck delivery and gaseous dispensing pathway

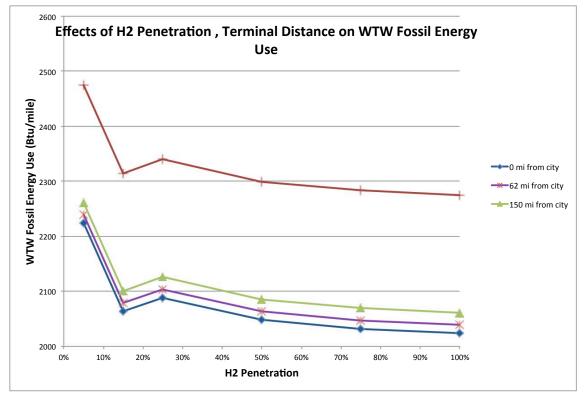


Figure 6.6.19. WTW fossil energy use versus penetration for the central biomass—liquid truck delivery and gaseous dispensing pathway

The effects of city population on levelized cost of hydrogen, GHG emissions, and petroleum energy use are shown in Figures 6.6.20, 6.6.21, and 6.6.22. Levelized hydrogen cost decreases slightly with increasing city population. GHG emissions also generally decrease with increasing city population, while petroleum energy use increases with increasing city population above a population of 500,000 due to increased city area with increased population.

Figure 6.6.23 shows the effect of fuel economy on the levelized cost of hydrogen. The cost of hydrogen increases with increasing fuel economy above 40 mpgge. The relationship between fuel economy and city hydrogen use is shown in Figure 6.6.24. As with FCEV penetration, the number and scale of the liquefiers affects the levelized cost. At 30 mpgge, two smaller liquefiers are necessary and result in higher costs than the single liquefier needed for the higher fuel economies does. Because the hydrogen demand is reduced as fuel economies increase, liquefaction of reduced amounts of hydrogen results in higher levelized costs.

Figures 6.6.25 and 6.6.26 show that GHG emissions and petroleum energy use decrease with increasing fuel economy, as one might expect.

Figures 6.6.27, 6.6.28, and 6.6.29 show the effects of forecourt size on levelized cost of hydrogen, GHG emissions, and petroleum energy use for the central biomass—liquid truck delivery and gaseous dispensing pathway.

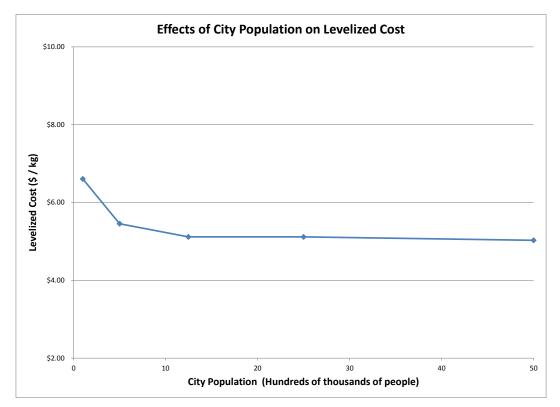


Figure 6.6.20. Levelized cost versus city population for the central biomass—liquid truck delivery and gaseous dispensing pathway

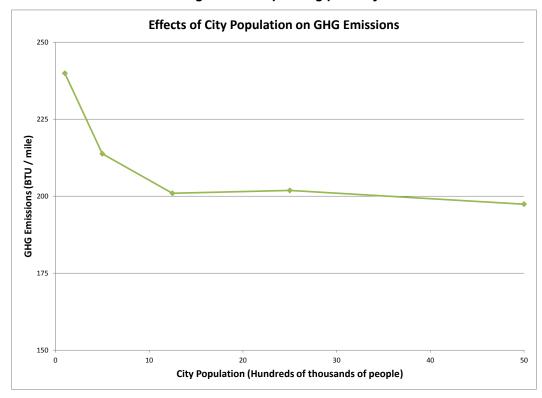


Figure 6.6.21. GHG emissions versus city population for the central biomass—liquid truck delivery and gaseous dispensing pathway

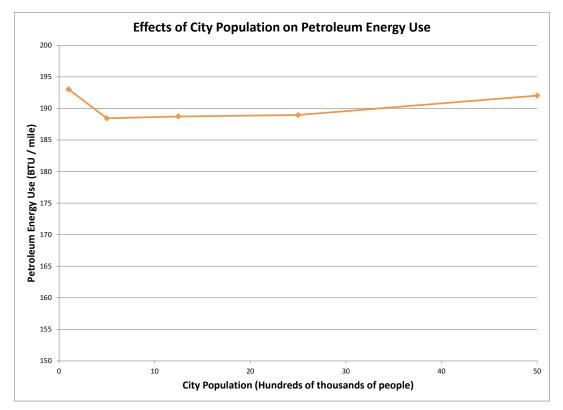


Figure 6.6.22. Petroleum energy versus city population for the central biomass—liquid truck delivery and gaseous dispensing pathway

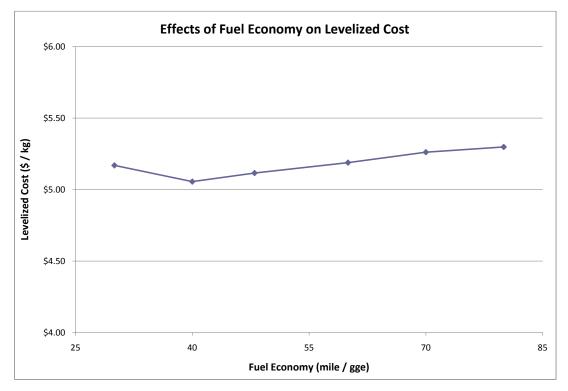


Figure 6.6.23. Levelized cost versus fuel economy for the central biomass—liquid truck delivery and gaseous dispensing pathway

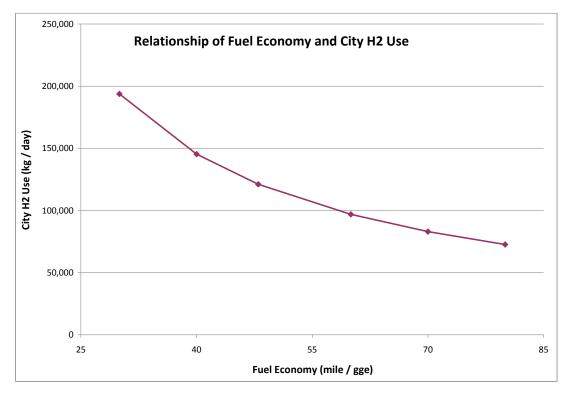


Figure 6.6.24. City hydrogen use versus fuel economy for the central biomass—liquid truck delivery and gaseous dispensing pathway

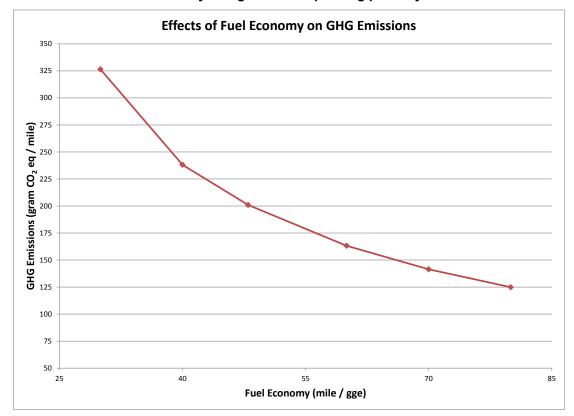


Figure 6.6.25. GHG emissions versus fuel economy for the central biomass—liquid truck delivery and gaseous dispensing pathway

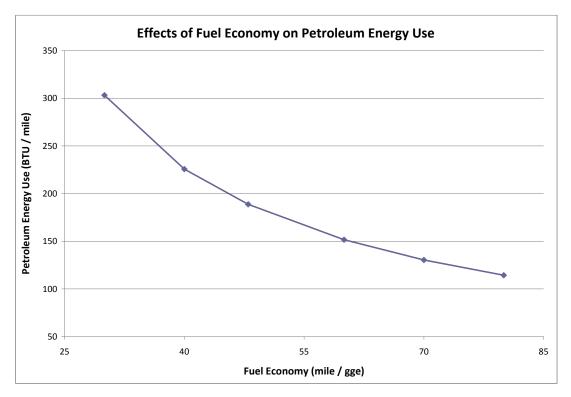


Figure 6.6.26. Petroleum energy use versus fuel economy for the central biomass—liquid truck delivery and gaseous dispensing pathway

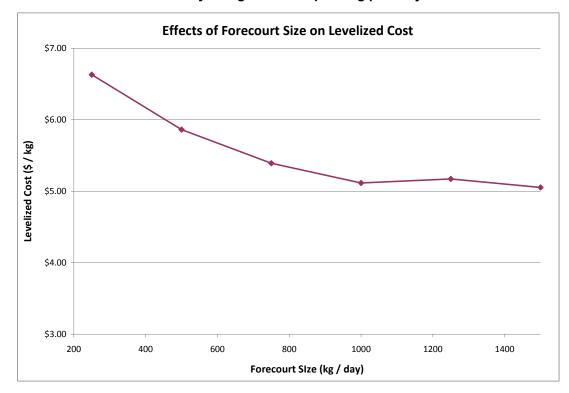


Figure 6.6.27. Levelized cost versus forecourt size for the central biomass—liquid truck delivery and gaseous dispensing pathway

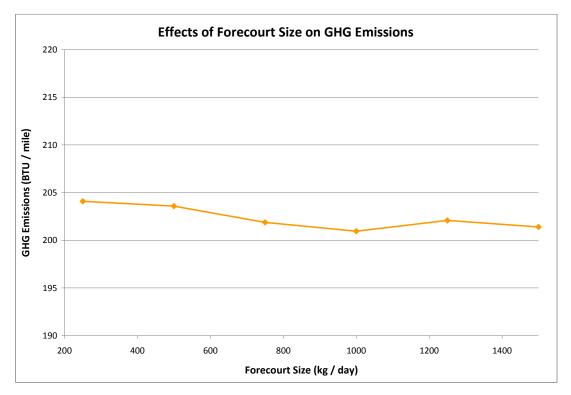


Figure 6.6.28. GHG emissions versus forecourt size for the central biomass—liquid truck delivery and gaseous dispensing pathway

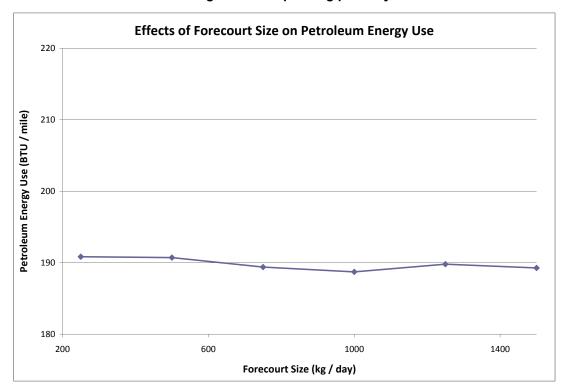


Figure 6.6.29. Petroleum energy use versus forecourt size for the central biomass—liquid truck delivery and gaseous dispensing pathway

6.7 Central Biomass—Liquid Truck Delivery and Cryo-Compressed Dispensing

Figure 6.7.1 shows the major inputs, assumptions, and outputs for each of the subsystems considered in the well-to-tank analysis, including feedstock supply and hydrogen dispensing. (See Appendix G for more details on this pathway.)

The WTP and WTW cost of hydrogen, energy use, and emissions for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway are summarized in Table 6.7.1.

Net GHG emissions include carbon dioxide uptake occurring during growth of the biomass. As noted above, the analysis assumes that 100% of the carbon in the biomass is provided by atmospheric carbon dioxide and that land use change is assumed to have neither positive nor negative effects on emissions.

6.7.1 Cost Breakdown

Figure 6.7.2 shows the feedstock and energy price inputs and the resulting hydrogen production, delivery, and distribution costs for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway. The financial assumptions used in this analysis are detailed in Section 5.

uts	Assumpt	ions		Outputs
	Riemene Due du effe			25%
005 000 Phy / day has	Biomass Productio	on & Delivery		16,013,000 Btu / dry ton
235,000 Blu / dry ton	Fraction of Woody Biomass	100%	Biomass Share of Levelized Cos	\$75 2007 \$ / dry ton \$1.02 2007\$ / kg H2 dispensed
200 Btu / 116000Btu to Pump 600 Btu / 116000Btu to Pump 2,800 Btu / 116000Btu to Pump	Average distance from farm to H2 prod.	40 miles	WTG CO2 Emissions WTG CH4 Emissions WTG N2O Emissions	-26,040 g CO2 eq./ 116000 Btu 13 g CO2 eq./ 116000 Btu 36 g CO2 eq./ 116000 Btu
				-25,990 g CO2 eq./ 116000 Btu 300 psi
13.5 kg (dry) / kg H2 produced	Hydrogen Production		Hydrogen Outlet Quality	99.9%
	Control plant design conceit.	155 200 kg / days	Total conital investment	\$1,300 2007\$ / daily kg H2 (effective capacity)
				\$1,300 2007\$7 daily kg H2 (ellective capacity) \$0.67 2007\$ / kg H2 dispensed
79.3 gal / kg H2 produced	Number of production facilities	0.87	Fixed O&M Costs	\$0.24 2007\$ / kg H2 dispensed
\$404 000 000 000 7 \$				\$0.42 2007\$ / kg H2 dispensed
\$181,080,000 2007\$	After-tax IRR	US MIX 10%	Iotal Levelized Cost	\$2.35 2007\$ / kg H2 dispensed
5,400 Btu / 116000Btu to Pump	Assumed Plant Life	40	Production CO2 Emissions	27,800 g CO2 eq./ 116000 Btu
				140 g CO2 eq./ 116000 Btu
3,300 Btu / 116000Btu to Pump				45 g CO2 eq./ 116000 Btu 28,000 g CO2 eq./ 116000 Btu
				20,000 g 002 04. 110000 Bta
8.5 kWh / kg H2	Liquefaction and T	ruck-Delivery	Total capital investment	\$2,000 2007\$ / daily kg delivered
0.02 kWh / kg H3			Levelized Electricity cost	\$0.59 2007\$ / kg H2 delivered
		1,247,000 people	Levelized Diesel cost	\$0.03 2007\$ / kg H2 delivered
7.7 gal / 1000 kg H2				\$0.09 2007\$ / kg H2 delivered
\$242 261 000 2007\$			Levelized Other operating costs	\$0.24 2007\$ / kg H2 delivered
\$242,301,000 2007\$	Terminal Design Capacity	1,124,000 kg H2	Levelized Cost of Delivery	\$1.82 2007\$ / kg H2 delivered
52 400 Rtu / 116000Rtu to Rump			Delivery CO2 Emissions	7,320 g CO2 eg./ 116000 Btu
				450 g CO2 eq./ 116000 Btu
3,000 Btu / 116000Btu to Pump	Hydrogen losses	2.8%	Delivery N2O Emissions	30 g CO2 eq./ 116000 Btu
				7,800 g CO2 eq./ 116000 Btu 12,700 psi
0.49 kW/b / ka H2	Cruo-Compressed	Disponsing		116,000 Btu (116,000 Btu/gal non-oxygenated
0.49 KWIT7 Kg H2	Cryo-compressed	Dispensing	Basis Hydrogen Quantity	conventional unleaded gasoline)
	Total Hydrogen Dispensed	1,000 kg / day	Total capital investment	\$2,120 2007\$ / daily kg
				\$0.90 2007\$ / kg H2 dispensed
\$256,147,000 2007\$ / all stations		•		\$0.05 2007\$ / kg H2 dispensed
	Liquid H2 storage capacity per Station Usable Cascade Storage per Station		Other O&M Costs Levelized Cost of Dispensing	\$0.61 2007\$ / kg H2 dispensed \$3.38 2007\$ / kg H2 dispensed
ncluded in Delivery Section	Site storage	390% % of design capacity	CSD CO2 Emissions	Included in Delivery Section
ncluded in Delivery Section	# of 2-hose Dispensers per Station	2	CSD CH4 Emissions	Included in Delivery Section
ncluded in Delivery Section	Hydrogen losses	3.1%		Included in Delivery Section
				Included in Delivery Section
2 020 lb	¥-1-1-1			\$0.69 2007\$ / mi
				\$0.12 2007\$ / mi
				\$0.07 2007\$ / mi \$0.12 2007\$ / mi
JU KVV				\$0.27 2007\$ / mi
	Purchase Year	2015		\$0.10 2007\$ / mi
	Vehicle Purchase Cost	\$33,700 2007\$		
2,300 Btu / gge fuel consumed	Fuel Cell System Cost	\$4,500 2007\$	Veh. Cycle CO2 Emissions	1,670 g / gge fuel consumed
12,100 Btu / gge fuel consumed	Storage System Cost (assume 700Bar	\$2,400 2007\$	Veh. Cycle CH4 Emissions	170 g / gge fuel consumed
6,900 Btu / gge fuel consumed	Tax Credit	\$0 2007\$	Veh. Cycle N2O Emissions	6 g / gge fuel consumed
	235,000 Btu / dry ton 200 Btu / 116000Btu to Pump 600 Btu / 116000Btu to Pump 2,800 Btu / 116000Btu to Pump 2,800 Btu / 116000Btu to Pump 1.3.5 kg (dry) / kg H2 produced 0.0659 MMBtu / kg H2 produced 79.3 gal / kg H2 produced 79.3 gal / kg H2 produced \$181,080,000 2007\$ 5,400 Btu / 116000Btu to Pump 9,900 Btu / 116000Btu to Pump 3,300 Btu / 116000Btu to Pump 3,300 Btu / 116000Btu to Pump 23,400 Btu / 116000Btu to Pump 23,400 Btu / 116000Btu to Pump 23,400 Btu / 116000Btu to Pump 3,000 Btu / 116000Btu to Pump 23,400 Btu / 116000Btu to Pump 0.49 kWh / kg H2 \$2100,000 2007\$ / station \$256,147,000 2007\$ / station \$256,147,000 2007\$ / station \$200 Btu / 1000 kg H2 3,020 Ib 70 kW 30 kW 2,300 Btu / gge fuel consumed	235,000 Btu / dry ton Biomass Production 235,000 Btu / 116000Btu to Pump Praction of Woody Biomass 200 Btu / 116000Btu to Pump Average distance from farm to H2 prod. 13.5 kg (dry) / kg H2 produced Outspace 0.0059 MMBtu / kg H2 produced UC GHG changes 1.3.5 kg (dry) / kg H2 produced Hydrogen Production facilities 1.3.5 kg (dry) / kg H2 produced Number of production facilities 7.3.3 gal / kg H2 produced Number of production facilities 5,400 Btu / 116000Btu to Pump Stationos 3,000 Btu / 116000Btu to Pump Assumed Plant Life 8.5 kWh / kg H2 City Population 1,3.2 gal / kg H2 City Population 8.5 kWh / kg H2 City Population 9,000 Btu / 116000Btu to Pump City Population 8.5 kWh / kg H2 City Population 9,200 Btu / 116000Btu to Pump One-way distance for delivery 52,400 Btu / 116000Btu to Pump City Population 12,400 Btu / 116000Btu to Pump City Population 12,400 Btu / 116000Btu to Pump City Population 14/drogen bispensed Number of Cascade Pumps 1,300 Btu / 116000Btu to Pump City Population	235.000 Btu / dry ton 200 Btu / 116000Btu to Pump 600 Btu / 116000Btu to Pump 2.800 Fraction of Woody Biomass LUC GHG changes 100% 0 g / dry ton 40 miles 13.5 kg (dry) / kg H2 produced 0.069 Hydrogen Production 0 g / dry ton 40 miles 13.5 kg (dry) / kg H2 produced 0.098 Hydrogen Production 0.87 13.2 gal / kg H2 produced 79.3 0.87 90% 5.400 Btu / 116000Btu to Pump 9.900 0.87 90% 5.400 Btu / 116000Btu to Pump 9.300 115000Btu / 116000Btu to Pump 9.300 0.87 8.5 KWh / kg H2 City Population 9.400 kg / factor 121,100 kg / day 121,100 kg / day 0.49 kWh / kg H2 2.400 Btu / 116000Btu to Pump 73,400 City Population 124,100 kg / factor 121,100 kg / day 0.64 kWh / kg H2 2.400 Btu / 116000Btu to Pump 73,400 1247,000 Poopole 121,100 kg / day 0.64 kWh / kg H2 2.400 Btu / 116000Btu to Pump 74,000 kg / factor 121,100 kg / factor 121,100 kg / factor 121,100 kg / factor 121,100 kg / kg H2 2.400 Btu / 116000Btu to Pump 74,000 kg / factor 121,100 kg / factor 122,100,00 kg / factor 124,000 kg / factor 125,000 mi / yr 52,000 Ste st	Biomass Production & Delivery Biomass Production & Delivery 235.000 Btu / 110000Btu to Pump 2.000 Btu / 110000Btu to Pump Fraction of Woody Biomass to 100% 4 verage distance from farm to H2 prod. 0 g / dry ton 40 miles Biomass Share of Levelaz Cos WTG CH2 Emissions 13.5 kg (dry) / kg H2 produced 0.0056 MMEtu / kg H2 produced 0.0056 MMEtu / kg H2 produced 0.33 kWh / kg H2 0.000 Btu / 116000Btu to Pump Hydrogen Production WTG CH2 Emissions WTG CH2 Emissions WTG CH2 Emissions WTG CH2 Emissions 13.5 kg (dry) / kg H2 produced 0.33 kWh / kg H2 0.000 Btu / 116000Btu to Pump 9.300 Btu / 11600Btu to Pump 9.300 Btu / 116000Btu to Pump 9.300 Btu / 116000Btu to Pump 9.300 Btu / 11600Btu to Pum

Figure 6.7.1. Summary of major inputs, assumptions, and outputs by subsystem for the central biomass—liquid truck delivery and cryocompressed dispensing pathway

	-			
	WTP		WTW	
Coal input (including upstream) ^a	58,000	Btu/116,000 Btu	1,210	Btu/mi
Natural gas input (including upstream) ^a	33,900	Btu/116,000 Btu	710	Btu/mi
Petroleum input (including upstream) ^a	9,200	Btu/116,000 Btu	190	Btu/mi
Fossil energy input (including upstream) ^a	374,100	Btu/116,000 Btu	2,110	Btu/mi
WTP CO_2 emissions ^b	9,000	g/116,000 Btu	190	g/mi
WTP CH ₄ emissions	24	g/116,000 Btu	1	g/mi
WTP N ₂ O emissions	0	g/116,000 Btu	0	g/mi
WTP GHG emissions	9,800	g CO ₂ -eq./ 116,000 Btu	200	g/mi
	Cost per	' kg	Cost p	er mile
Levelized cost of hydrogen	\$5.73	2007\$/kg	\$0.12	2007\$/mi

 Table 6.7.1. WTP and WTW Results for the Central Biomass—Liquid Truck Delivery and Cryo-Compressed Dispensing Pathway

^a Coal, natural gas, and petroleum inputs include those used directly in the hydrogen production and delivery pathway as feedstocks and fuels; those used to produce electricity and other materials used in the pathway; and those used upstream of the pathway to recover, refine, and deliver the feedstock.

^b Includes the carbon content of CO, CH₄, and volatile organic compound emissions that decompose in the atmosphere to CO₂.

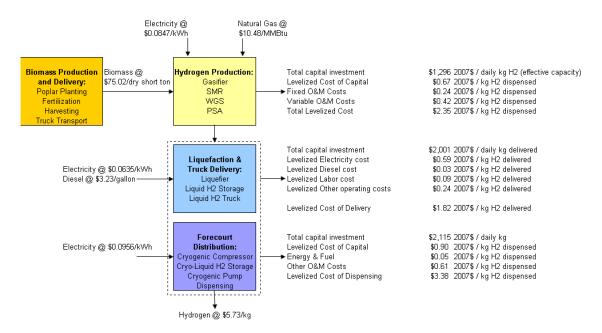


Figure 6.7.2. Cost analysis inputs and high-level results for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway

Figure 6.7.3 shows the contributions of hydrogen production, delivery, and losses to the levelized cost of hydrogen shown in Figure 6.7.2.

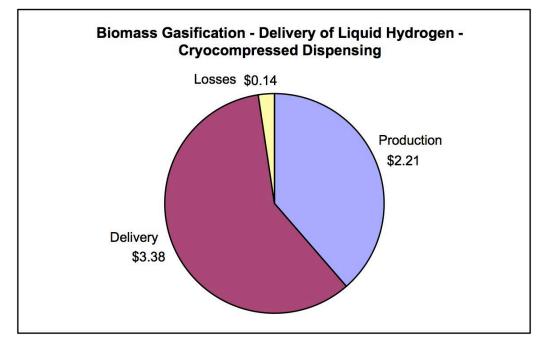


Figure 6.7.3. Contribution of hydrogen production, delivery, and losses to the levelized cost of hydrogen for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway

Figure 6.7.4 and Table 6.7.2 show the breakdown of levelized costs for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway.

Figure 6.7.4. Breakdown of levelized costs for the central biomass—liquid truck delivery and cryocompressed dispensing pathway

		Other		Energy/	
Cost Component	Capital	O&M	Feedstock	Fuel	Total
Production	\$0.64	\$0.62	\$0.96		\$2.21
Feed handling and drying	\$0.11				
Gasification, tar reforming, and quench	\$0.10				
Compression and sulfur removal	\$0.09				
SMR, WGS, and PSA	\$0.18				
Steam system and power generation	\$0.09				
Cooling water and other utilities	\$0.02				
Buildings and structures	\$0.04				
Delivery	\$1.77	\$0.94		\$0.66	\$3.38
Tractor/trailer					\$0.18
Terminal					\$0.31
Liquefier	\$0.58	\$0.17		\$0.59	\$1.33
Forecourt	\$0.90	\$0.61		\$0.05	\$1.56
Losses					\$0.14
Total	\$2.41	\$1.56	\$0.96	\$0.66	\$5.73

 Table 6.7.2. Contribution of Production and Delivery Processes to Levelized Hydrogen Cost for the

 Central Biomass—Liquid Truck Delivery and Cryo-Compressed Dispensing Pathway

6.7.2 Energy Use and Emissions Breakdown

Figures 6.7.5 and 6.7.6 show the WTW energy inputs and losses for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway.

Figures 6.7.7 and 6.7.8 show the WTW emissions resulting from the delivery of 116,000 Btu hydrogen to a vehicle fuel tank using the central biomass—liquid truck delivery and cryo-compressed dispensing pathway.

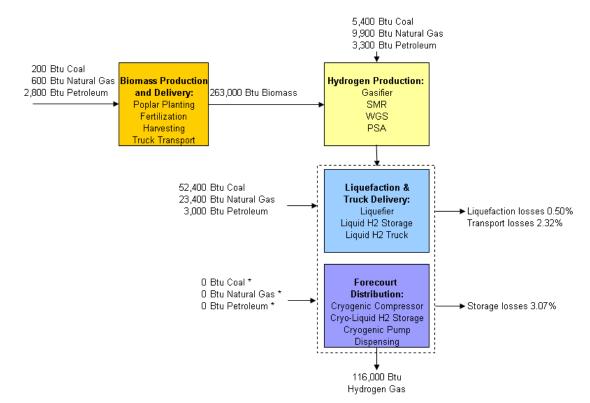


Figure 6.7.5. WTW energy inputs to deliver 116,000 Btu hydrogen to a vehicle using the central biomass—liquid truck delivery and cryo-compressed dispensing pathway

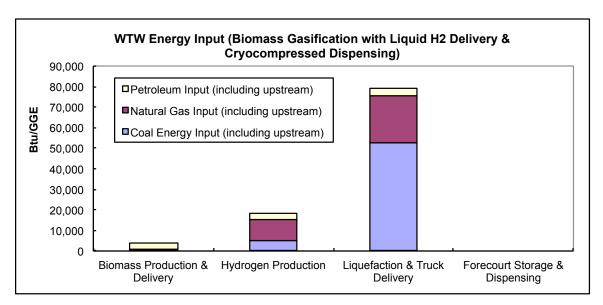


Figure 6.7.6. WTW petroleum, natural gas, and coal inputs to deliver 116,000 Btu hydrogen using the central biomass—liquid truck delivery and cryo-compressed dispensing pathway



Figure 6.7.7. WTW emissions resulting from delivery of 116,000 Btu hydrogen using the central biomass—liquid truck delivery and cryo-compressed dispensing pathway

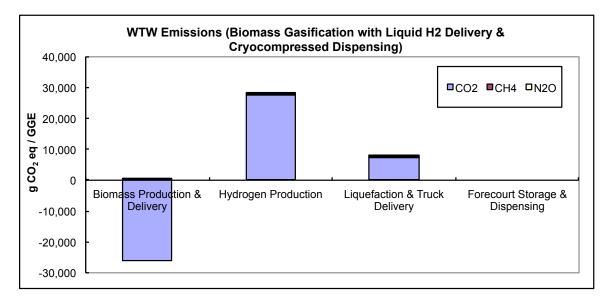


Figure 6.7.8. WTW CO₂, CH₄, and N₂O emissions resulting from delivery of 116,000 Btu hydrogen to a vehicle using the central biomass—liquid truck delivery and cryo-compressed dispensing pathway

6.7.3 Sensitivities

6.7.3.1 Production Sensitivities

Several sensitivities were run on the production portion of the central biomass—liquid truck delivery and cryo-compressed dispensing pathway. These sensitivities focused primarily on cost factors; however, several sensitivities also affect energy use and emissions. Figure 6.7.9 shows the effects of several production parameters on the pathway's levelized cost, and Table 6.7.3 shows the effects of varying production energy efficiency on WTW energy use and emissions.

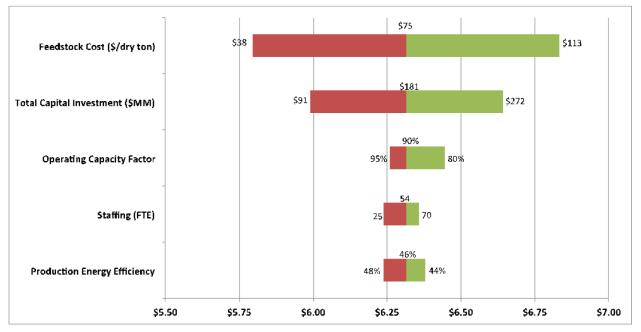


Figure 6.7.9. Production sensitivities for the central biomass—liquid truck delivery and cryocompressed dispensing pathway

 Table 6.7.3. The Effects of Production Energy Efficiency on Primary Energy Use and Emissions

 from the Central Biomass—Liquid Truck Delivery and Cryo-Compressed Dispensing Pathway

	44% Efficiency	46% Efficiency	48% Efficiency
WTW GHG emissions (g/mile)	200	200	200
WTW fossil energy (Btu/mile)	2,100	2,100	2,100
WTW petroleum energy (Btu/mile)	200	190	190
WTW total energy (Btu/mile)	8,100	7,800	7,600

The assumed electrical grid mix also affects the energy use and emissions. Table 6.7.4 shows the differences in energy use and GHG emissions between the U.S. average grid mix (which was used for all other sensitivities) and a hypothetical green grid mix that is 100% renewable energy (solar and wind).

	U.S. Average Grid Mix (48 mpgge)	U.S. Average Grid Mix (68 mpgge)	"Green" Grid Mix (48 mpgge)
WTW GHG emissions (g/mile)	200	150	30
WTW fossil energy (Btu/mile)	2,100	1,500	300
WTW petroleum energy (Btu/mile)	190	140	150
WTW total energy (Btu/mile)	7,800	5,600	6,600

 Table 6.7.4. The Effects of Fuel Economy and Grid Mix on Use of Primary Energy and Emissions

 from the Central Biomass—Liquid Truck Delivery and Cryo-Compressed Dispensing Pathway

6.7.3.2 Delivery Sensitivities

Delivery cost, energy use, and emissions are strongly dependent upon the daily consumption of hydrogen within a city and the delivery distance from the central facility to the city gate. Sensitivities were run to show some of those effects. Daily consumption was varied by keeping the city size constant and adjusting the penetration of hydrogen vehicles from the base case of 15%. The resulting consumption is shown in Figure 6.7.10.

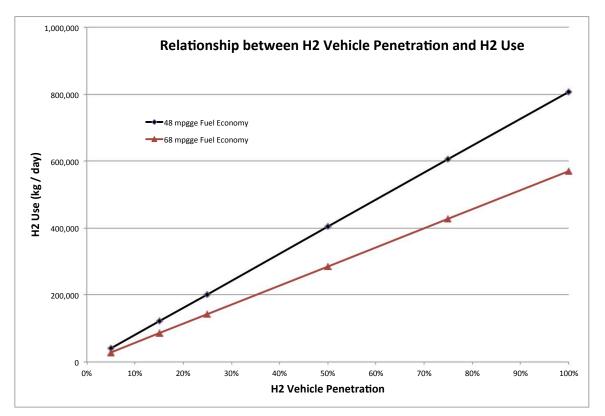


Figure 6.7.10. Daily hydrogen consumption versus hydrogen vehicle penetration for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway

As expected, there are economies of scale for higher vehicle penetration/hydrogen consumption, and the levelized cost of delivery decreases as the distance from the production plant to the city gate is shortened. Figures 6.7.11 and 6.7.12 show those economic effects (the figures show identical data but are organized differently).

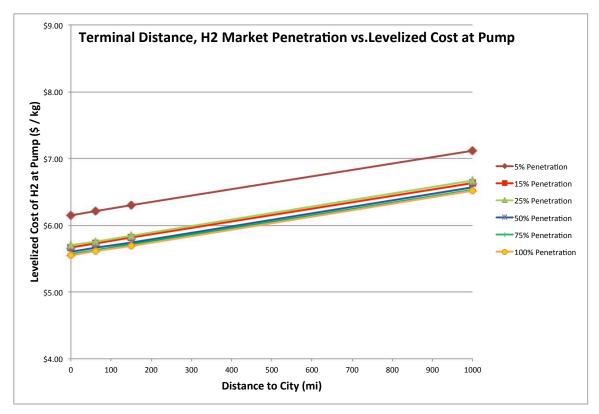


Figure 6.7.11. Levelized cost versus hydrogen vehicle penetration and distance between production facility and city gate for the central biomass—liquid truck delivery and cryocompressed dispensing pathway

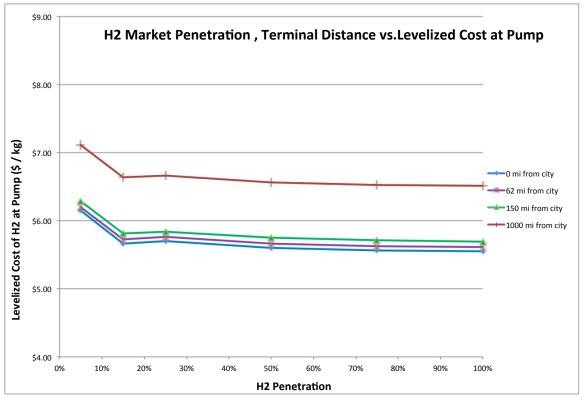


Figure 6.7.12. Levelized cost versus hydrogen vehicle penetration and distance between production facility and city gate for the central biomass—liquid truck delivery and cryocompressed dispensing pathway

As Figure 6.7.12 shows, there is a \$0.14 increase in levelized cost when the production facility is assumed to be 150 miles from the city gate as compared to being at the city gate. There is a much larger levelized-cost increase when the distance is assumed to be 1,000 miles because the levelized cost of trucking increases with added distance due to additional driver time, additional fuel requirements, and an increased number of trucks and trailers required. Figure 6.7.13 shows the liquid truck portion of the levelized cost; note that the base case distance is 62 miles and that the truck's levelized cost is \$0.18 for all penetration levels at that distance. Because the city size is constant and the assumed station size is sufficient to utilize a full truckload at each station, each delivery has the same travel distance and takes the same amount of time within the city regardless of penetration level; therefore, the levelized cost within the city gate is constant for all penetration levels.

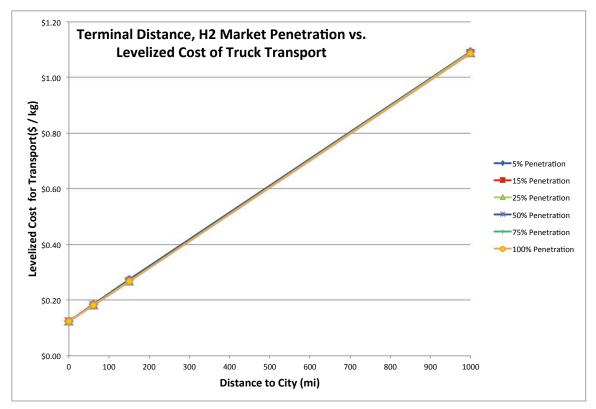


Figure 6.7.13. Truck levelized cost versus distance between production facility and city gate for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway

The most notable feature in Figure 6.7.13 is the insensitivity of transport levelized cost to changes in FCEV penetration. The significant drop in the levelized cost of hydrogen as FCEV penetration increases to 15% (shown in Figure 6.7.11) is due to the reduced cost of liquefaction, which is shown in Figure 6.7.14 (liquefier cost is constant for all distances from the city). Note that one liquefier is needed for 5% and 15% penetration, two for 25%, three for 50%, four for 75%, and five for 100% penetration. The two liquefiers at 25% penetration are smaller than the one at 15% penetration, thus their capital cost when normalized to annual throughput is higher. The higher capital cost results in higher levelized costs.

The majority of the liquefaction system's cost driver is capital (Table 6.7.2 shows that the capital accounts for $0.58/kg H_2$ of the $1.33/kg H_2$ total liquefaction cost). As shown in Figure 6.7.15, capital-cost reduction drives the cost decrease as penetration increases.

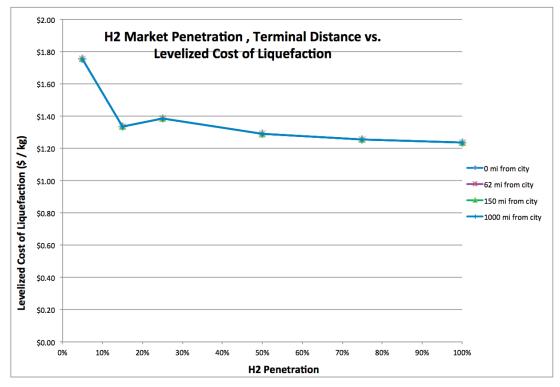
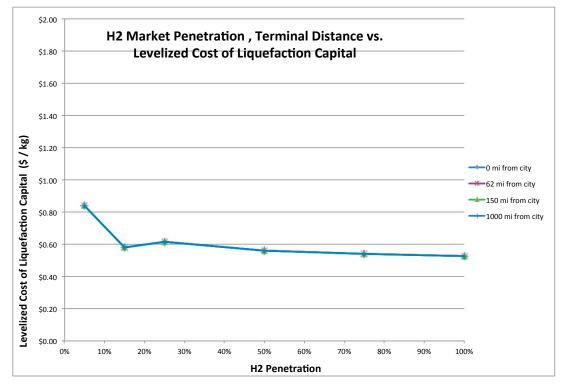
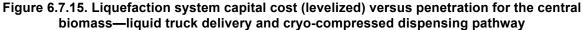




Figure 6.7.14. Liquefaction system levelized cost versus penetration for the central biomass liquid truck delivery and cryo-compressed dispensing pathway

The additional cost variable for the liquefaction system levelized cost is the system efficiency because increased efficiency reduces the energy required for liquefaction. Figure 6.7.16 shows the effect of penetration (directly affecting liquefaction system size) on efficiency. As in the previous figures, smaller liquefaction systems result in lower efficiencies.

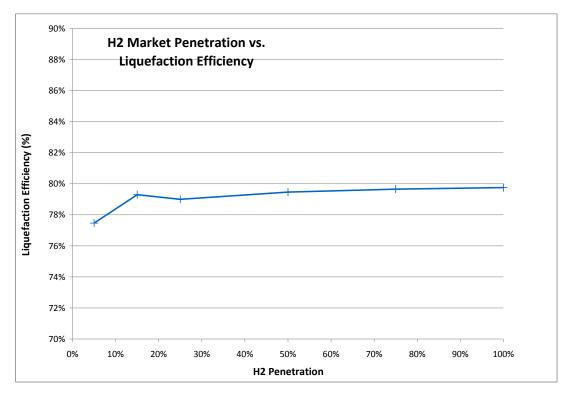


Figure 6.7.16. Liquefaction system efficiency versus penetration for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway

The effects of penetration and distance between the production facility and the city-gate on WTW GHG emissions, WTW petroleum use, and WTW fossil energy use are shown in Figures 6.7.17, 6.7.18, and 6.7.19, respectively. In each case, the energy use and emissions decrease as liquefaction system efficiency increases with penetration and then plateaus as discussed above. Energy use and emissions are also reduced when the production facility is closer to the city gate because of reduced diesel use for trucking.

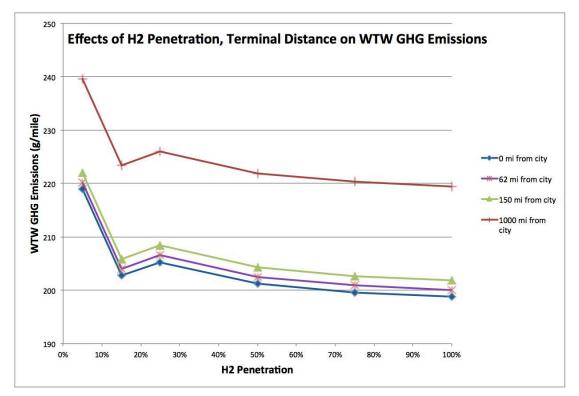


Figure 6.7.17. WTW greenhouse gas emissions versus penetration for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway

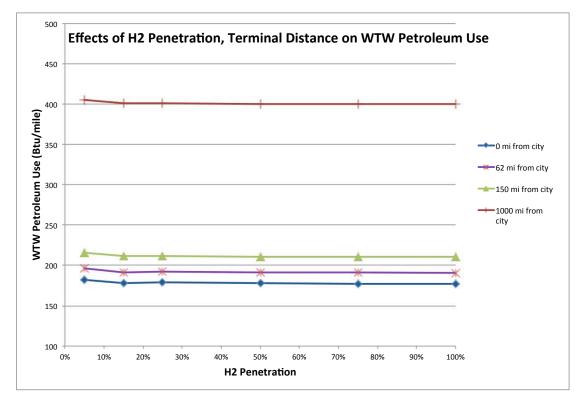


Figure 6.7.18. WTW petroleum use versus penetration for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway

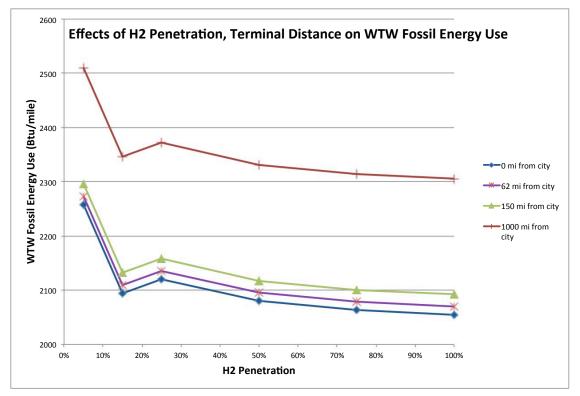


Figure 6.7.19. WTW fossil energy use versus penetration for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway

The effects of city population on levelized cost of hydrogen, GHG emissions, and petroleum energy use are shown in Figures 6.7.20, 6.7.21, and 6.7.22. Levelized hydrogen cost decreases slightly with increasing city population. GHG emissions also generally decrease with increasing city population, while petroleum energy use increases with increasing city population above a population of 5,000.

Figure 6.7.23 shows the effect of fuel economy on the levelized cost of hydrogen. As with FCEV penetration, the number and scale of the liquefiers affects the levelized cost. At 30 mpgge, two smaller liquefiers are necessary and result in higher costs than the single liquefier needed for the higher fuel economies does. Because the hydrogen demand is reduced as fuel economies increase, liquefaction of reduced amounts of hydrogen results in higher levelized costs. The relationship between fuel economy and city hydrogen use is shown in Figure 6.7.24.

Figures 6.7.25 and 6.7.26 show that GHG emissions and petroleum energy use decrease with increasing fuel economy, as one might expect.

Figures 6.7.27, 6.7.28, and 6.7.29 show the effects of forecourt size on levelized cost of hydrogen, GHG emissions, and petroleum energy use for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway.

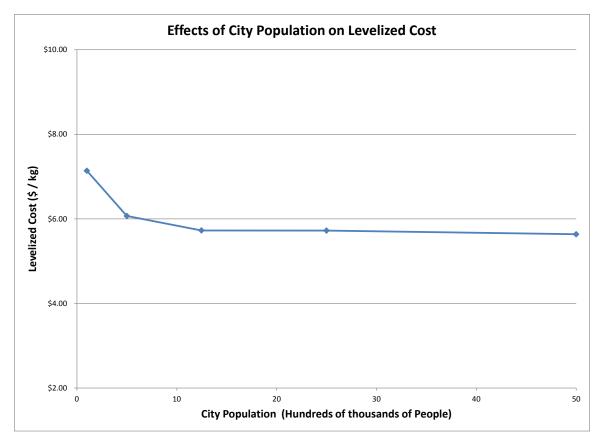


Figure 6.7.20. Levelized cost versus city population for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway

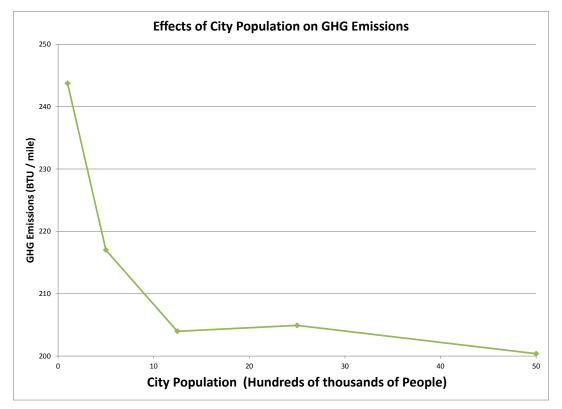


Figure 6.7.21. GHG emissions versus city population for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway

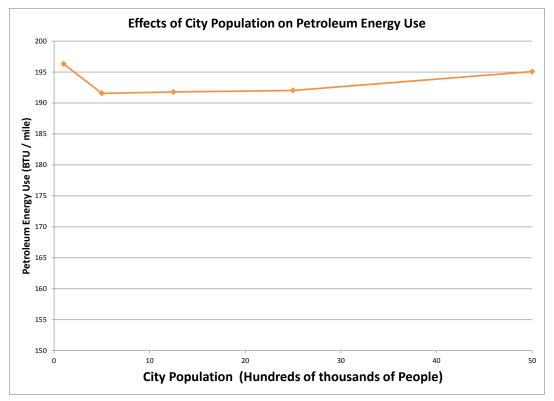


Figure 6.7.22. Petroleum use versus city population for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway

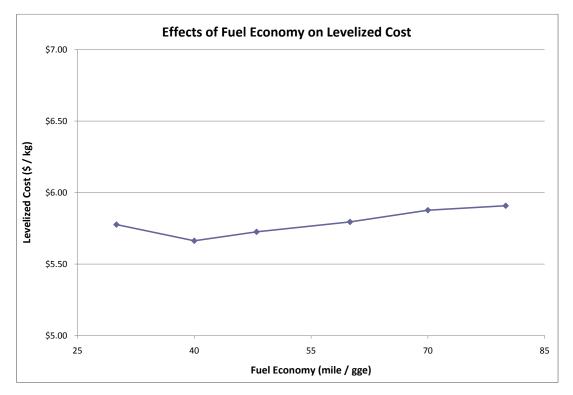


Figure 6.7.23. Levelized cost versus fuel economy for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway

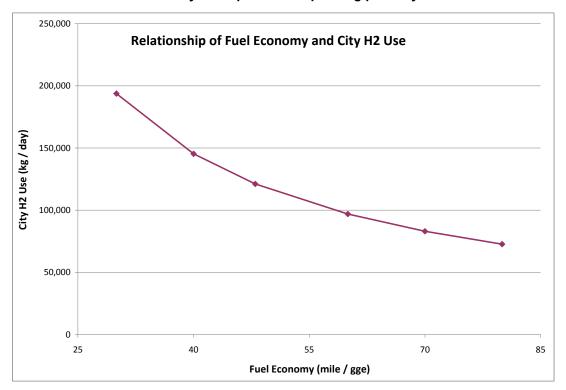


Figure 6.7.24. City hydrogen use versus fuel economy for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway

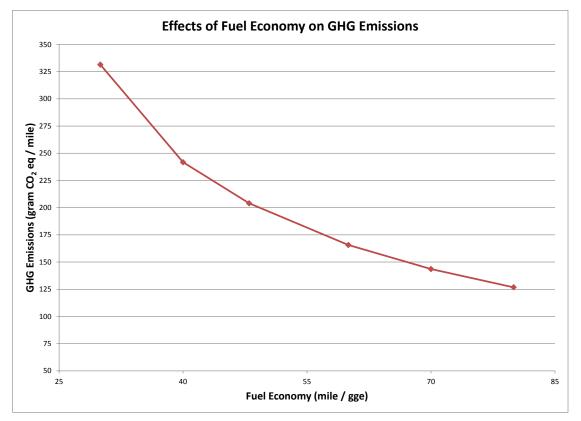


Figure 6.7.25. GHG emissions versus fuel economy for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway

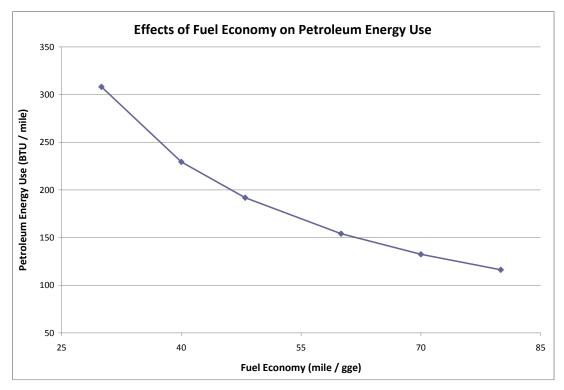


Figure 6.7.26. Petroleum use versus fuel economy for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway

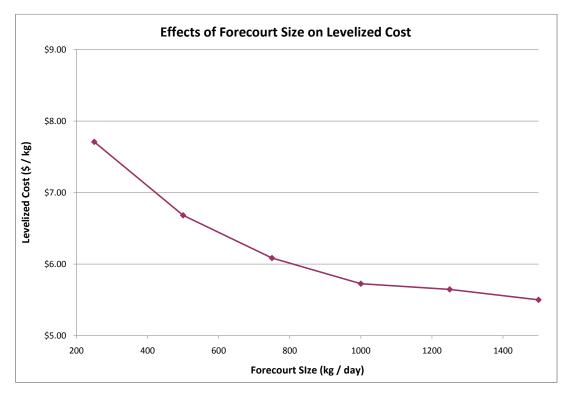


Figure 6.7.27. Levelized cost versus forecourt size for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway

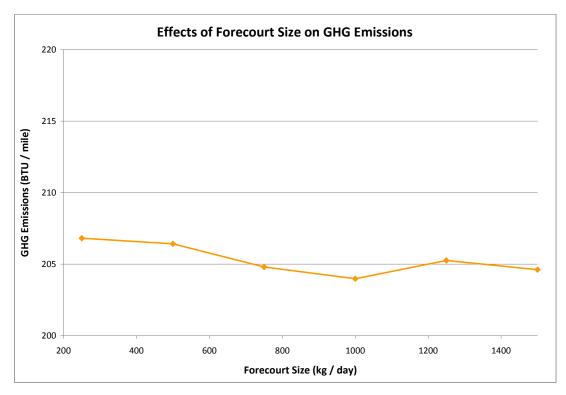


Figure 6.7.28. GHG emission versus forecourt size for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway

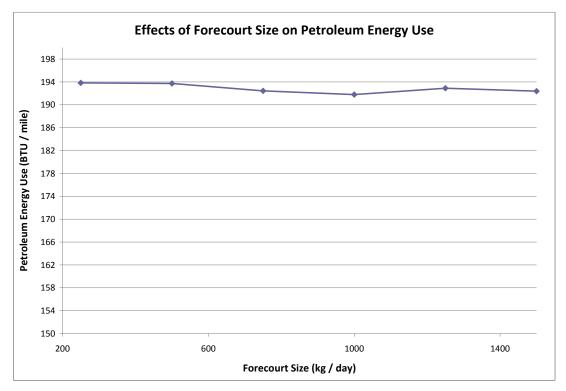


Figure 6.7.29. Petroleum use versus forecourt size for the central biomass—liquid truck delivery and cryo-compressed dispensing pathway

6.8 Central Natural Gas—Pipeline Delivery

Figure 6.8.1 shows the major inputs, assumptions, and outputs for each of the subsystems considered in the well-to-tank analysis, including feedstock supply and hydrogen dispensing. (See Appendix H for more details on this pathway.)

The WTP and WTW cost of hydrogen, energy use, and emissions for the central natural gas pipeline delivery pathway are summarized in Table 6.8.1.

6.8.1 Cost Breakdown

Figure 6.8.2 shows the feedstock and energy price inputs and the resulting hydrogen production, delivery, and distribution costs for the central natural gas—pipeline delivery pathway. The financial assumptions used in this analysis are detailed in Section 5.

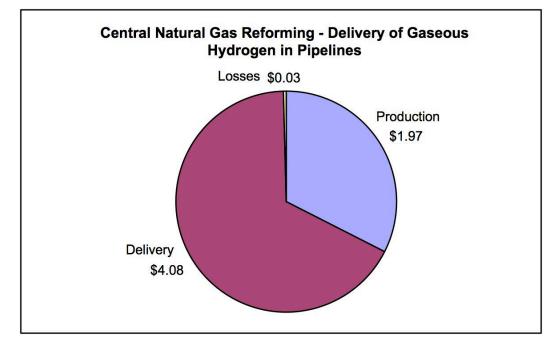
Figure 6.8.3 shows the contributions of hydrogen production, delivery, and losses to the levelized cost of hydrogen shown in Figure 6.8.2.

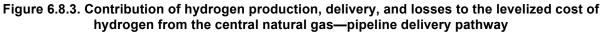
Figure 6.8.4 and Table 6.8.2 show the breakdown of levelized costs for the central natural gas—pipeline delivery pathway.

In	puts	Assumpti	ons		Outputs
	•			NG Delivery Pressure	Average of gas companies
		NG Recovery, Process	ing, & Transport	NG Quality at Delivery	Average of gas companies
		NG Recovery Efficiency NG emitted during recovery NG processing energy efficiency	95.7% 400 g / MMbtu NG 97.2%	NG Cost in 2015 NG Share of Levelized Cost	\$6.09 2007 \$ / mmBTU \$1.52 2007\$ / kg H2 dispensed
Coal Input (including upstream)	200 Btu / 116000Btu to Pump	NG emitted during processing	30 g / MMbtu NG	WTG CO2 Emissions	600 g CO2 eq./ 116000 Btu
Natural Gas Input (including upstream)	125,600 Btu / 116000Btu to Pump	NG emitted during transport	199,400 g / MMbtu NG	WTG CH4 Emissions	1,260 g CO2 eq./ 116000 Btu
Petroleum Input (including upstream)	500 Btu / 116000Btu to Pump	NG transport distance	500 miles	WTG N2O Emissions	3 g CO2 eq./ 116000 Btu
				WTG GHG Emissions	1,870 g CO2 eq./ 116000 Btu
				Hydrogen Output Pressure	300 psi
Natural gas consumption	0.1564 MMBtu/kg H2 produced	Hydrogen Pro	duction	Hydrogen Outlet Quality	99.9%
Electricity consumption	0.57 kWh / kg H2				
Process Water Consumption	3.36 gal / kg H2	Central plant design capacity	379,400 kg / day 90%	Total capital investment	\$632 2007\$ / daily kg H2 (effective capacity)
Cooling Water Consumption	1.50 gal / kg H2	Capacity factor necessary	90% 0.35	Levelized Cost of Capital Fixed O&M Costs	\$0.34 2007\$ / kg H2 dispensed \$0.06 2007\$ / kg H2 dispensed
Total Capital Investment	\$215,844,000 2007\$	Process energy efficiency	71.9%	Variable O&M Costs	\$0.08 2007\$ / kg H2 dispensed
	\$213,844,000 2007\$	Electricity Mix	US Mix	Total Levelized Cost	\$2.00 2007\$ / kg H2 dispensed
		After-tax IRR	10%		
Coal Input (including upstream)	2.900 Btu / 116000Btu to Pump	Assumed Plant Life	40	SMR CO2 Emissions	10,200 g CO2 eq./ 116000 Btu
Natural Gas Input (including upstream)	48,800 Btu / 116000Btu to Pump			SMR CH4 Emissions	500 g CO2 eg./ 116000 Btu
Petroleum Input (including upstream)	300 Btu / 116000Btu to Pump			SMR N2O Emissions	12 g CO2 eq./ 116000 Btu
	·			SMR GHG Emissions	10,700 g CO2 eq./ 116000 Btu
Electricity consumption for compressor	0.56 kWh / kg H2 produced	Pipelines for D	Delivery	Total capital investment	\$3,340 2007\$ / daily kg H2 (effective capacity)
Electricity consumption for geo storage	0.01 kWh / kg H2 produced				
Total electricity consumption	0.57 kWh / kg H2 produced	City Population	1,247,000 people	Levelized Cost of Capital	\$1.71 2007\$ / kg H2 dispensed
		Hydrogen Vehicle Penetration	15%	Energy & Fuel	\$0.04 2007\$ / kg H2 dispensed
	6 / 0 / / 0 00 000 7 0	City hydrogen use	121,100 kg / day	Other O&M Costs	\$0.40 2007\$ / kg H2 dispensed
Total Capital Investment	\$404,341,000 2007\$	Distance from City to Production Facility	62 miles	Levelized Cost of Delivery	\$2.15 2007\$ / kg H2 dispensed
		Geologic storage capacity Number of trunk pipelines	1,324,700 kg H2 3	Delivery CO2 Emissions	200 a CO2 aa / 110000 Btv
Coal Input (including upstream)	2,800 Btu / 116000Btu to Pump	Service-line length	1.5 miles / line	Delivery CH4 Emissions	390 g CO2 eq./ 116000 Btu 24 g CO2 eq./ 116000 Btu
Natural Gas Input (including upstream)	2,200 Btu / 116000Btu to Pump	Number of service lines	122	Delivery N2O Emissions	2 g CO2 eq./ 116000 Btu
Petroleum Input (including upstream)	100 Btu / 116000Btu to Pump	Hydrogen losses	0.80%	Delivery GHG Emissions	420 g CO2 eq./ 116000 Btu
			0.0070		120 g 002 04# 110000 Bta
				Hydrogen outlet pressure	12,700 psi
Electricity consumption	4.4 kWh / kg H2 produced	Forecourt Disp	bensing	Basis Hydrogen Quantity	116,000 Btu (116,000 Btu/gal non-oxygenated conventional unleaded gasoline)
Total Capital Investment per Station	\$2,629,000 2007\$ / station	Average Dispensing Rate per Station	1,000 kg / day	Total capital investment	\$2,650 2007\$ / daily kg H2 (effective capacity)
Total Capital Investment	\$320,679,000 2007\$ / all stations	Number of Dispensing Stations	122	Levelized Cost of Capital	\$1.08 2007\$ / kg H2 dispensed
	•••••••	Number of Compression Steps	5	Energy & Fuel	\$0.41 2007\$ / kg H2 dispensed
Inlet pressure of hydrogen at stations	300 psi	Usable Low Pressure Storage per Station	370 kg H2	Other O&M Costs	\$0.43 2007\$ / kg H2 dispensed
		Usable Cascade Storage per Station	130 kg H2	Levelized Cost of Dispensing	\$1.93 2007\$ / kg H2 dispensed
Coal Input (including upstream)	24,400 Btu / 116000Btu to Pump	Site storage	42% % of design capacity	CSD CO2 Emissions	3,370 g CO2 eq./ 116000 Btu
Natural Gas Input (including upstream)	10,800 Btu / 116000Btu to Pump	# 2-hose Dispensers per Station	2	CSD CH4 Emissions	210 g CO2 eq./ 116000 Btu
Petroleum Input (including upstream)	900 Btu / 116000Btu to Pump	Hydrogen Losses	0.50%	CSD N2O Emissions	14 g CO2 eq./ 116000 Btu
				CSD GHG Emissions	3,590 g CO2 eq./ 116000 Btu
		Vehicle		Cost Per Mile	\$0.69 2007\$ / mi
Vehicle Mass	3,020 lb 70 kW			Fuel Share	\$0.13 2007\$ / mi
Fuel cell size	30 kW	Fuel Economy Vehicle Miles Traveled	48.0 mi / gge 15,000 mi / yr	Maintenance, Tires, Repairs Insurance & Registration	\$0.07 2007\$ / mi \$0.12 2007\$ / mi
Hybridization battery (peak power)	JU KVV	Vehicle Lifetime	15,000 mi / yr 160,000 mi	Depreciation	\$0.12 2007\$7 mi \$0.27 2007\$7 mi
		Purchase Year	2015	Financing	\$0.27 2007\$7 mi
		Vehicle Purchase Cost	\$33,700 2007\$	T manong	\$3.10 £001¥7111
Coal Input (including upstream)	2,300 Btu / gge fuel consumed	Fuel Cell System Cost	\$4,500 2007\$	Veh. Cycle CO2 Emissions	1,670 g CO2 eq / gge fuel consumed
Natural Gas Input (including upstream)	12,100 Btu / gge fuel consumed	Hydrogen Storage System Cost	\$2,400 2007\$	Veh. Cycle CH4 Emissions	170 g CO2 eq / gge fuel consumed
Petroleum Input (including upstream)	6,900 Btu / gge fuel consumed	Tax Credit	\$0 2007\$	Veh. Cycle N2O Emissions	6 g CO2 eq / gge fuel consumed
				Veh. Cycle GHG Emissions	1,850 g CO2 eq / gge fuel consumed

Figure 6.8.1. Summary of major inputs, assumptions, and outputs by subsystem for the central natural gas—pipeline delivery pathway

	WTP		WTW	
Coal input (including upstream) ^a	30,400	Btu/116,000 Btu	630	Btu/mi
Natural gas input (including upstream) ^a	187,400	Btu/116,000 Btu	3,910	Btu/mi
Petroleum input (including upstream) ^a	1,800	Btu/116,000 Btu	40	Btu/mi
Fossil energy input (including upstream) ^a	219,600	Btu/116,000 Btu	4,580	Btu/mi
WTP CO ₂ emissions ^b	14,600	g/116,000 Btu	300	g/mi
WTP CH ₄ emissions	80	g/116,000 Btu	2	g/mi
WTP N ₂ O emissions	0	g/116,000 Btu	0	g/mi
WTP GHG emissions	16,600	g CO ₂ -eq./	350	g/mi
		116,000 Btu		-
	Cost per	kg	Cost p	er mile
Levelized cost of hydrogen	\$6.07	2007\$/kg	\$0.13	2007\$/mi


Table 6.8.1. WTP and WTW Results for the Central Natural Gas—Pipeline Delivery Pathway


^a Coal, natural gas, and petroleum inputs include those used directly in the hydrogen production and delivery pathway as feedstocks and fuels; those used to produce electricity and other materials used in the pathway; and those used upstream of the pathway to recover, refine, and deliver the feedstock.

^b Includes the carbon content of CO, CH₄, and volatile organic compound emissions that decompose in the atmosphere to CO₂.

Figure 6.8.2. Cost analysis inputs and high-level results for the central natural gas—pipeline delivery pathway

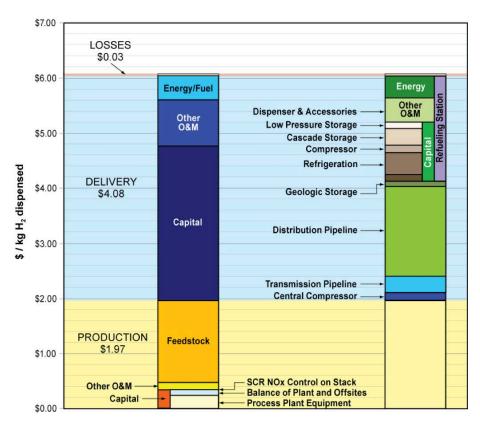


Figure 6.8.4. Breakdown of levelized costs for the central natural gas—pipeline delivery pathway

		Other		Energy/	
Cost Component	Capital	O&M	Feedstock	Fuel	Total
Production	\$0.33	\$0.14	\$1.50		\$1.97
Process plant equipment	\$0.24				
Balance of plant and offsites	\$0.09				
SCR NOx control on stack	\$0.00				
Delivery	\$2.80	\$0.83		\$0.45	\$4.08
Central compressor					\$0.12
Transmission pipeline					\$0.30
Distribution pipeline					\$1.64
Geologic storage					\$0.09
Gaseous refueling station	\$1.08	\$0.43		\$0.41	\$1.93
Refrigeration	\$0.12				
Compressor	\$0.41				
Cascade storage	\$0.12				
Low pressure storage	\$0.30				
Dispenser and accessories	\$0.13				
Losses					\$0.03
Total	\$3.13	\$0.97	\$1.50	\$0.45	\$6.08

 Table 6.8.2. Contribution of Production and Delivery Processes to Levelized Hydrogen Cost for the Central Natural Gas—Pipeline Delivery Pathway

6.8.2 Energy Use and Emissions Breakdown

Figures 6.8.5 and 6.8.6 show the WTW energy inputs and losses for the central natural gas—pipeline delivery pathway.

Figures 6.8.7 and 6.8.8 show the WTW emissions resulting from the delivery of 116,000 Btu hydrogen to a vehicle fuel tank using the central natural gas—pipeline delivery pathway.

Figure 6.8.5. WTW energy inputs to deliver 116,000 Btu hydrogen to a vehicle using the central natural gas—pipeline delivery pathway

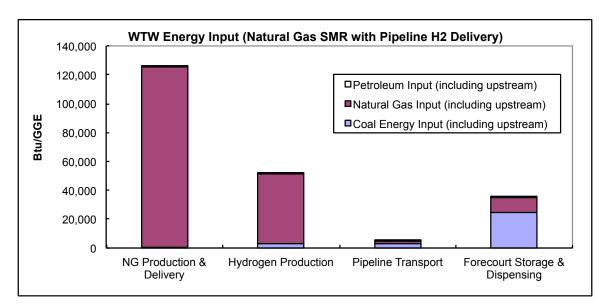


Figure 6.8.6. WTW petroleum, natural gas, and coal inputs to deliver 116,000 Btu hydrogen using the central natural gas—pipeline delivery pathway

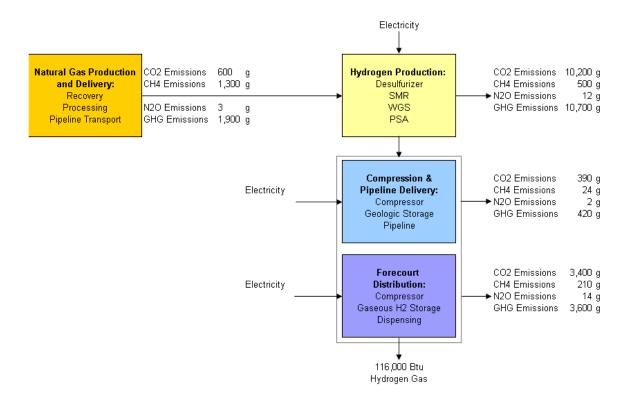


Figure 6.8.7. WTW emissions resulting from delivery of 116,000 Btu hydrogen using the central natural gas—pipeline delivery pathway

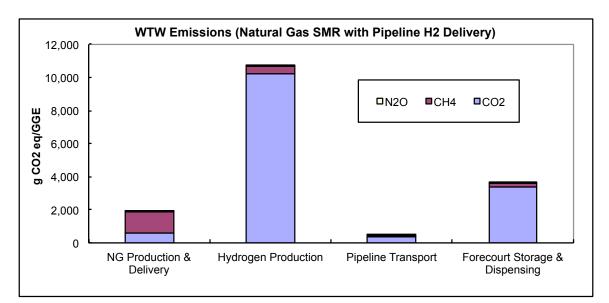


Figure 6.8.8. WTW CO₂, CH₄, and N₂O emissions resulting from delivery of 116,000 Btu hydrogen to a vehicle using the central natural gas—pipeline delivery pathway

6.8.3 Sensitivities

6.8.3.1 Production Sensitivities

Several sensitivities were run on the production portion of the central natural gas—pipeline delivery pathway. These sensitivities focused primarily on cost factors; however, several sensitivities also affect energy use and emissions. Figure 6.8.9 shows the effects of several production parameters on the pathway's levelized cost.

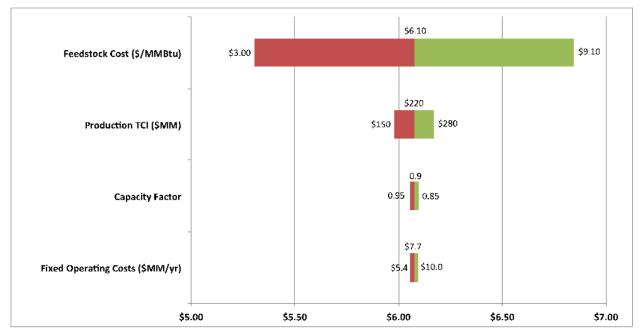


Figure 6.8.9. Production sensitivities for central natural gas-pipeline delivery pathway

The assumed electrical grid mix also affects the energy use and emissions. Table 6.8.3 shows the differences in energy use and GHG emissions between the U.S. average grid mix (which was used for all other sensitivities) and a hypothetical green grid mix that is 100% renewable energy (solar and wind).

Table 6.8.3. The Effects of Fuel Economy and Grid Mix on Use of Primary Energy and Emissions
from the Central Natural Gas—Pipeline Delivery Pathway

	U.S. Average Grid Mix (48 mpgge)	U.S. Average Grid Mix (68 mpgge)	"Green" Grid Mix (48 mpgge)
WTW GHG emissions (g/mile)	350	240	250
WTW fossil energy (Btu/mile)	4,600	3,200	3,600
WTW petroleum energy (Btu/mile)	40	30	10
WTW total energy (Btu/mile)	4,800	3,400	4,100

6.8.3.2 Delivery Sensitivities

Pipeline delivery sensitivities are reported for the biomass production scenario in Section 6.4.3. The effects of the sensitivities will be the same for all pipeline delivery scenarios.

6.9 Central Wind Electricity—Pipeline Delivery

Figure 6.9.1 shows the major inputs, assumptions, and outputs for each of the subsystems considered in the well-to-tank analysis, including feedstock supply and hydrogen dispensing. (See Appendix I for more details on this pathway.)

The WTP and WTW cost of hydrogen, energy use, and emissions for the central wind electricity—pipeline delivery pathway are summarized in Table 6.9.1.

6.9.1 Cost Breakdown

Figure 6.9.2 shows the feedstock and energy price inputs and the resulting hydrogen production, delivery, and distribution costs for the central wind electricity—pipeline delivery pathway. The financial assumptions used in this analysis are detailed in Section 5.

Figure 6.9.3 shows the contributions of hydrogen production, delivery, and losses to the levelized cost of hydrogen shown in Figure 6.9.2.

Figure 6.9.4 and Table 6.9.2 show the breakdown of levelized costs for the central wind electricity—pipeline delivery pathway.

In	puts	Assumpti	ons	Outputs	
				NG Delivery Pressure	Average of gas companies
		NG Recovery, Process	ing, & Transport	NG Quality at Delivery	Average of gas companies
		NG Recovery Efficiency NG emitted during recovery NG processing energy efficiency	95.7% 400 g / MMbtu NG 97.2%	NG Cost in 2015 NG Share of Levelized Cost	\$6.09 2007 \$ / mmBTU \$1.52 2007\$ / kg H2 dispensed
Coal Input (including upstream)	200 Btu / 116000Btu to Pump	NG emitted during processing	30 g / MMbtu NG	WTG CO2 Emissions	600 g CO2 eq./ 116000 Btu
Natural Gas Input (including upstream)	125,600 Btu / 116000Btu to Pump	NG emitted during transport	199,400 g / MMbtu NG	WTG CH4 Emissions	1,260 g CO2 eq./ 116000 Btu
Petroleum Input (including upstream)	500 Btu / 116000Btu to Pump	NG transport distance	500 miles	WTG N2O Emissions	3 g CO2 eq./ 116000 Btu
				WTG GHG Emissions	1,870 g CO2 eq./ 116000 Btu
				Hydrogen Output Pressure	300 psi
Natural gas consumption	0.1564 MMBtu/kg H2 produced	Hydrogen Pro	duction	Hydrogen Outlet Quality	99.9%
Electricity consumption	0.57 kWh / kg H2				
Process Water Consumption Cooling Water Consumption	3.36 gal / kg H2 1.50 gal / kg H2	Central plant design capacity Capacity fastor	379,400 kg / day 90%	Total capital investment Levelized Cost of Capital	\$632 2007\$ / daily kg H2 (effective capacity) \$0.34 2007\$ / kg H2 dispensed
Cooling water Consumption	1.50 gai/ kg Hz	necessary	90% 0.35	Fixed O&M Costs	\$0.06 2007\$ / kg H2 dispensed \$0.06 2007\$ / kg H2 dispensed
Total Capital Investment	\$215,844,000 2007\$	Process energy efficiency	71.9%	Variable O&M Costs	\$0.08 2007\$ / kg H2 dispensed
	\$213,044,000 2007\$	Electricity Mix	US Mix	Total Levelized Cost	\$2.00 2007\$ / kg H2 dispensed
		After-tax IRR	10%		\$2.00 2007 \$7 kg 12 disponood
Coal Input (including upstream)	2,900 Btu / 116000Btu to Pump	Assumed Plant Life	40	SMR CO2 Emissions	10,200 g CO2 eq./ 116000 Btu
Natural Gas Input (including upstream)	48,800 Btu / 116000Btu to Pump			SMR CH4 Emissions	500 g CO2 eq./ 116000 Btu
Petroleum Input (including upstream)	300 Btu / 116000Btu to Pump			SMR N2O Emissions	12 g CO2 eq./ 116000 Btu
				SMR GHG Emissions	10,700 g CO2 eq./ 116000 Btu
Electricity consumption for compressor	0.56 kWh / kg H2 produced	Pipelines for I	Delivery	Total capital investment	\$3,340 2007\$ / daily kg H2 (effective capacity)
Electricity consumption for geo storage	0.01 kWh / kg H2 produced				
Total electricity consumption	0.57 kWh / kg H2 produced	City Population	1,247,000 people	Levelized Cost of Capital	\$1.71 2007\$ / kg H2 dispensed
		Hydrogen Vehicle Penetration	15% 121,100 kg/day	Energy & Fuel Other O&M Costs	\$0.04 2007\$ / kg H2 dispensed
Total Capital Investment	\$404,341,000 2007\$	City hydrogen use Distance from City to Production Facility	62 miles	Levelized Cost of Delivery	\$0.40 2007\$ / kg H2 dispensed \$2.15 2007\$ / kg H2 dispensed
Total Capital Investment	\$404,341,000 2007\$	Geologic storage capacity	1,324,700 kg H2	Levenzed Cost of Delivery	φz. 15 z007φ7 kg Hz dispensed
		Number of trunk pipelines	3	Delivery CO2 Emissions	390 g CO2 eq./ 116000 Btu
Coal Input (including upstream)	2,800 Btu / 116000Btu to Pump	Service-line length	1.5 miles / line	Delivery CH4 Emissions	24 g CO2 eg./ 116000 Btu
Natural Gas Input (including upstream)	2,200 Btu / 116000Btu to Pump	Number of service lines	122	Delivery N2O Emissions	2 g CO2 eq./ 116000 Btu
Petroleum Input (including upstream)	100 Btu / 116000Btu to Pump	Hydrogen losses	0.80%	Delivery GHG Emissions	420 g CO2 eq./ 116000 Btu
				Hydrogen outlet pressure	12,700 psi
Electricity consumption	4.4 kWh / kg H2 produced	Forecourt Disp	pensing	Basis Hydrogen Quantity	116,000 Btu (116,000 Btu/gal non-oxygenated
					conventional unleaded gasoline)
Total Capital Investment per Station	\$2,629,000 2007\$ / station	Average Dispensing Rate per Station	1,000 kg / day	Total capital investment	\$2,650 2007\$ / daily kg H2 (effective capacity)
Total Capital Investment	\$320,679,000 2007\$ / all stations	Number of Dispensing Stations	122	Levelized Cost of Capital	\$1.08 2007\$ / kg H2 dispensed
		Number of Compression Steps	5	Energy & Fuel	\$0.41 2007\$ / kg H2 dispensed
Inlet pressure of hydrogen at stations	300 psi	Usable Low Pressure Storage per Station	370 kg H2	Other O&M Costs	\$0.43 2007\$ / kg H2 dispensed
		Usable Cascade Storage per Station	130 kg H2	Levelized Cost of Dispensing	\$1.93 2007\$ / kg H2 dispensed
Coal Input (including upstream)	24,400 Btu / 116000Btu to Pump	Site storage	42% % of design capacity	CSD CO2 Emissions	3,370 g CO2 eq./ 116000 Btu
Natural Gas Input (including upstream)	10,800 Btu / 116000Btu to Pump	# 2-hose Dispensers per Station	2	CSD CH4 Emissions CSD N2O Emissions	210 g CO2 eq./ 116000 Btu
Petroleum Input (including upstream)	900 Btu / 116000Btu to Pump	Hydrogen Losses	0.50%	CSD N2O Emissions CSD GHG Emissions	14 g CO2 eq./ 116000 Btu 3,590 g CO2 eg./ 116000 Btu
				Cost Per Mile	\$0.69 2007\$ / mi
Vehicle Mass	3.020 lb	Vehicle		Fuel Share	\$0.13 2007\$ / mi
Fuel cell size	70 kW	Fuel Economy	48.0 mi / gge	Maintenance, Tires, Repairs	
Hybridization battery (peak power)	30 kW	Vehicle Miles Traveled	15,000 mi / yr	Insurance & Registration	\$0.12 2007\$ / mi
		Vehicle Lifetime	160,000 mi	Depreciation	\$0.27 2007\$ / mi
		Purchase Year	2015	Financing	\$0.10 2007\$ / mi
		Vehicle Purchase Cost	\$33,700 2007\$		
Coal Input (including upstream)	2,300 Btu / gge fuel consumed	Fuel Cell System Cost	\$4,500 2007\$	Veh. Cycle CO2 Emissions	1,670 g CO2 eq / gge fuel consumed
Natural Gas Input (including upstream)	12,100 Btu / gge fuel consumed	Hydrogen Storage System Cost	\$2,400 2007\$	Veh. Cycle CH4 Emissions	170 g CO2 eq / gge fuel consumed
Petroleum Input (including upstream)	6,900 Btu / gge fuel consumed	Tax Credit	\$0 2007\$	Veh. Cycle N2O Emissions	6 g CO2 eq / gge fuel consumed
				Veh. Cycle GHG Emissions	1,850 g CO2 eq / gge fuel consumed

Figure 6.9.1. Summary of major inputs, assumptions, and outputs by subsystem for the central wind electricity—pipeline delivery pathway

	WTP		WTW	
Coal input (including upstream) ^a	27,300	Btu/116,000 Btu	570	Btu/mi
Natural gas input (including upstream) ^a	12,100	Btu/116,000 Btu	250	Btu/mi
Petroleum input (including upstream) ^a	1,000	Btu/116,000 Btu	20	Btu/mi
Fossil energy input (including upstream) ^a	40,400	Btu/116,000 Btu	840	Btu/mi
WTP CO_2 emissions ^b	3,800	g/116,000 Btu	80	g/mi
WTP CH₄ emissions	10	g/116,000 Btu	0	g/mi
WTP N ₂ O emissions	0	g/116,000 Btu	0	g/mi
WTP GHG emissions	4,000	g CO ₂ -eq./ 116,000 Btu	80	g/mi
	Cost pe	r kg	Cost pe	er mile
Levelized cost of hydrogen (\$/kg)	\$8.41	2007\$/kg	\$0.18	2007\$/mi

Table 6.9.1. WTP and WTW Results for the Central Wind Electricity—Pipeline Delivery Pathway

^a Coal, natural gas, and petroleum inputs include those used directly in the hydrogen production and delivery pathway as feedstocks and fuels; those used to produce electricity and other materials used in the pathway; and those used upstream of the pathway to recover, refine, and deliver the feedstock.

^b Includes the carbon content of CO, CH_4 , and volatile organic compound emissions that decompose in the atmosphere to CO_2 .

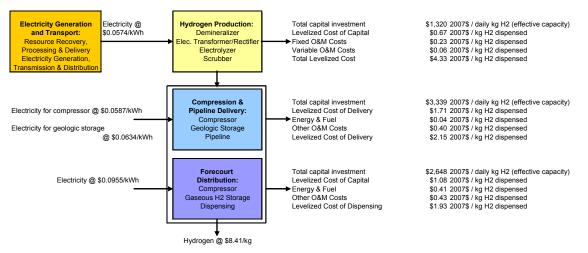


Figure 6.9.2. Cost analysis inputs and high-level results for the central wind electricity—pipeline delivery pathway

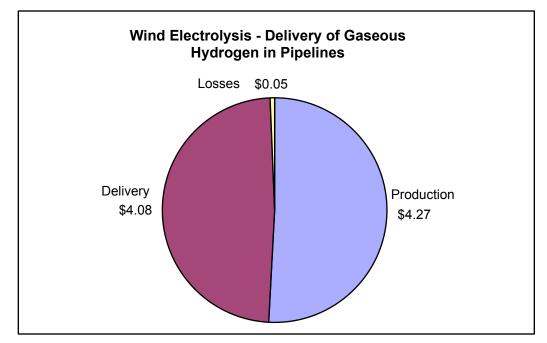


Figure 6.9.3. Contribution of hydrogen production, delivery, and losses to the levelized cost of hydrogen from the central wind electricity—pipeline delivery pathway

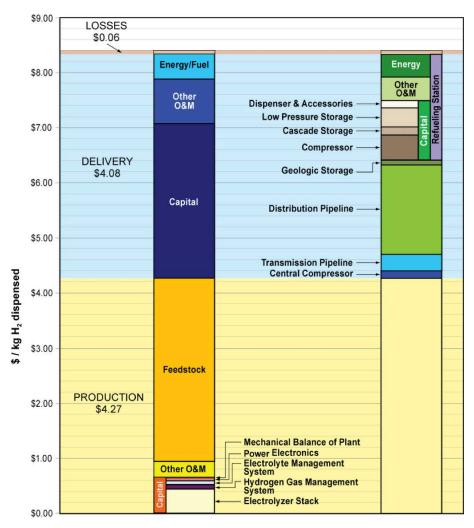
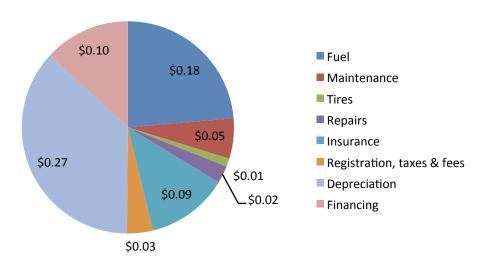


Figure 6.9.4. Breakdown of levelized costs for the central wind electricity—pipeline delivery pathway


Fuel costs are not the only costs of ownership of a vehicle. Vehicle ownership costs including fuel, maintenance, tires, repairs, insurance, registration, and vehicle depreciation and financing are shown in figure 6.9.5. Note that the costs in the figure are not discounted (i.e., a discount rate was not used to reduce future costs to their net present values). That methodology has the same effect as a discount rate of 0%.

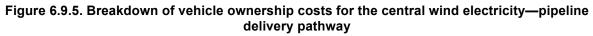

			-		
		Other		Energy/	
Cost Component	Capital	O&M	Feedstock	Fuel	Total
Production	\$0.66	\$0.29	\$3.33		\$4.27
Electrolyzer stack	\$0.43				
Hydrogen gas management system	\$0.10				
Electrolyte management system	\$0.06				
Power electronics	\$0.06				
Mechanical balance of plant	\$0.01				
Delivery	\$2.80	\$0.83		\$0.45	\$4.08
Central compressor					\$0.12
Transmission pipeline					\$0.30
Distribution pipeline					\$1.64
Geologic storage					\$0.09
Gaseous refueling station	\$1.08	\$0.43		\$0.41	\$1.93
Compressor	\$0.46				
Cascade storage	\$0.14				
Low Pressure storage	\$0.34				
Dispenser and accessories	\$0.14				
Losses					\$0.05
Total	\$3.46	\$1.12	\$3.33	\$0.45	\$8.41

 Table 6.9.2. Contribution of Production and Delivery Processes to Levelized Hydrogen Cost from the Central Wind Electricity—Pipeline Delivery Pathway

Total Vehicle Ownership Costs

(\$/mile, not discounted)

6.9.2 Energy Use and Emissions Breakdown

Figures 6.9.6 and 6.9.7 show the WTW energy inputs and losses for the central wind electricity—pipeline delivery pathway.

Figures 6.9.8 and 6.9.9 show the WTW emissions resulting from the delivery of 116,000 Btu hydrogen to a vehicle fuel tank using the central wind electricity—pipeline delivery pathway.

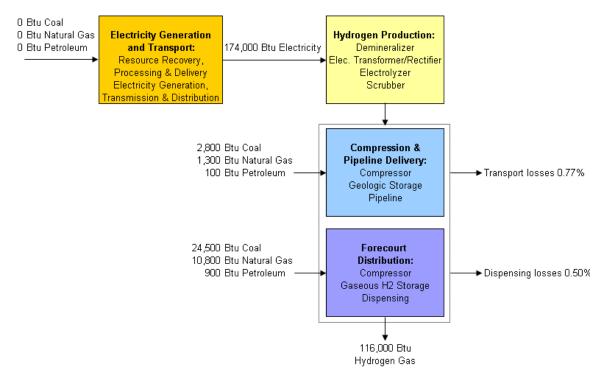


Figure 6.9.6. WTW energy inputs to deliver 116,000 Btu hydrogen to a vehicle using the central wind electricity—pipeline delivery pathway

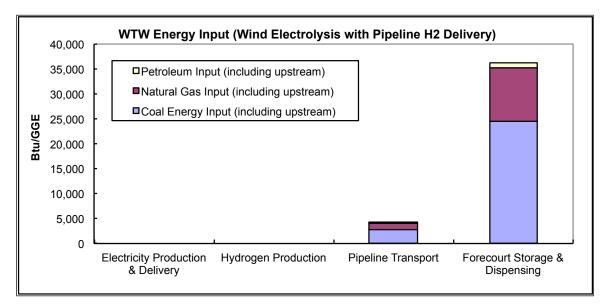


Figure 6.9.7. WTW petroleum, natural gas, and coal inputs to deliver 116,000 Btu hydrogen using the central wind electricity—pipeline delivery pathway

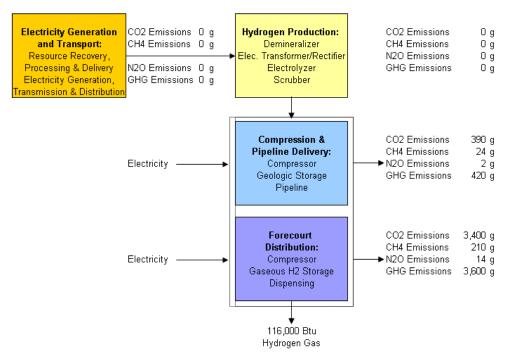


Figure 6.9.8. WTW emissions resulting from delivery of 116,000 Btu hydrogen using the central wind electricity—pipeline delivery pathway

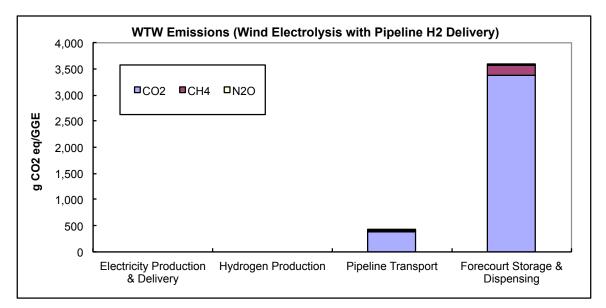


Figure 6.9.9. WTW CO₂, CH₄, and N₂O emissions resulting from delivery of 116,000 Btu hydrogen to a vehicle using the central wind electricity—pipeline delivery pathway

Figures 6.9.10 and 6.9.11 show the energy inputs and emissions, respectively, for the vehicle cycles in addition to those for the fuel production cycle. The fuel production cycle values are consistent with those reported in Figures 6.9.7 and 6.9.9.

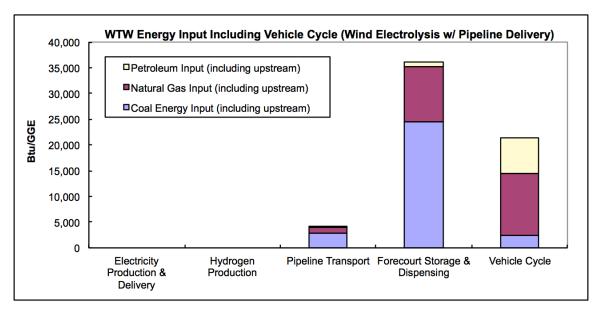


Figure 6.9.10. Life-cycle petroleum, natural gas, and coal inputs for both the central wind electricity—pipeline delivery pathway and the vehicle cycle

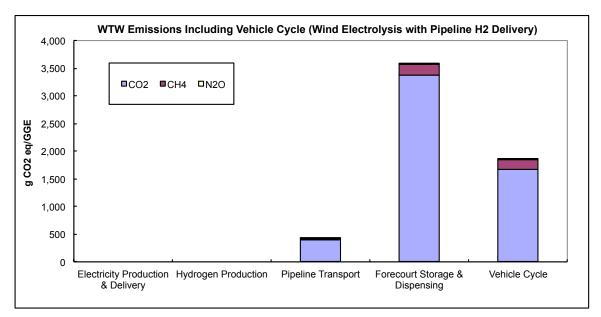


Figure 6.9.11. Life-cycle CO₂, CH₄, and N₂O emissions for both the central wind electricity pipeline delivery pathway and the vehicle cycle

6.9.3 Sensitivities

6.9.3.1 Production Sensitivities

Several sensitivities were run on the production portion of the central wind electricity—pipeline delivery pathway. These sensitivities focused primarily on cost factors. Figure 6.9.12 shows the effects of several production parameters on the pathway's levelized cost.

Note that the electricity cost is the sensitivity with the greatest potential effect on the levelized cost. The baseline electricity cost is the industrial electricity price and may be too low for wind electricity.

Effects of the sensitivities on WTW energy use and emissions are not shown because, due to the assumption that the electricity feedstock is wind-generated, the production fossil energy use and emissions are zero at all efficiencies.

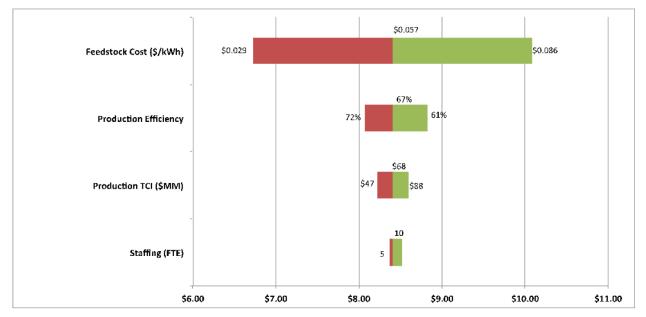


Figure 6.9.12. Production sensitivities for the central wind electricity—pipeline delivery pathway

6.9.3.2 Delivery Sensitivities

Pipeline delivery sensitivities are reported for the biomass production scenario in Section 6.4.3. The effects of the sensitivities will be the same for all pipeline delivery scenarios.

6.10 Central Coal with Carbon Capture and Storage—Pipeline Delivery

Figure 6.10.1 shows the major inputs, assumptions, and outputs for each of the subsystems considered in the well-to-tank analysis, including feedstock supply and hydrogen dispensing. (See Appendix J for more details on this pathway.)

The WTP and WTW cost of hydrogen, energy use, and emissions for the central coal with CCS—pipeline delivery pathway are summarized in Table 6.10.1.

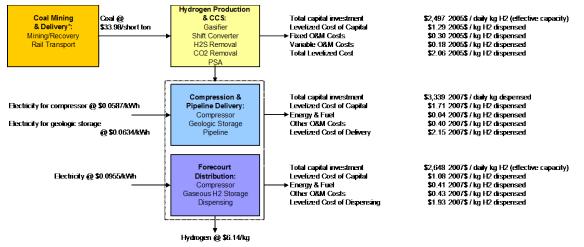
6.10.1 Cost Breakdown

Figure 6.10.2 shows the feedstock and energy price inputs and the resulting hydrogen production, delivery, and distribution costs for the central coal with CCS—pipeline delivery pathway. The financial assumptions used in this analysis are detailed in Section 5.

Figure 6.10.3 shows the contributions of hydrogen production, delivery, and losses to the levelized cost of hydrogen shown in Figure 6.10.2.

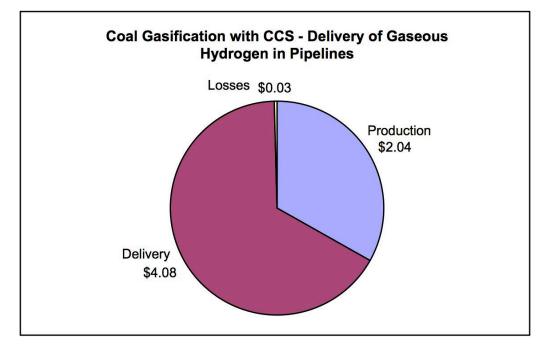
Figure 6.10.4 and Table 6.10.2 show the breakdown of levelized costs for the central coal with CCS—pipeline delivery pathway.

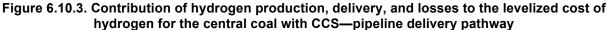
Inputs		Assumption	ns	Outputs		
		Coal Production &	Delivery	Coal price at H2 production Coal Share of Levelized Cost	\$34 2007 \$ / ton \$0.30 2007\$ / kg H2 dispensed	
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	116,400 Btu / 116000Btu to Pump 200 Btu / 116000Btu to Pump 700 Btu / 116000Btu to Pump	Energy Recovery Average distance from coal mine to H2 prod.	99.3% 65 miles	WTG CO2 Emissions WTG CH4 Emissions WTG N2O Emissions WTG GHG Emissions	110 g CO2 eq./ 116000 Btu 430 g CO2 eq./ 116000 Btu 1 g CO2 eq./ 116000 Btu 540 g CO2 eq./ 116000 Btu	
Coal consumption Natural gas consumption	7.8 kg (dry) / kg H2 produced 0.0 MMBtu/kg H2 produced	Hydrogen Production & Carbon Captu	re and Sequestration (CCS)	Hydrogen Output Pressure Hydrogen Outlet Quality	300 psi 99.9%	
Electricity consumption Process Water Consumption Cooling Water Consumption Total Capital Investment Coal Input (including upstream)	1.72 kWh / kg H2 2.91 gal / kg H2 produced 0.00 gal / kg H2 produced \$691,378,000 2005\$ 99,400 Btu / 116000Btu to Pump	Central plant design capacity Capacity factor Number of production facilities necessary Process energy efficiency Electricity Mix After-tax IRR Assumed Plant Life	307,700 kg / day 90% 0,44 56.8% US Mix 10% 40	Total capital investment Levelized Cost of Capital Fixed O&M Costs Variable O&M Costs Total Levelized Cost Production CO2 Emissions	\$2,500 2005\$ / daily kg H2 (effective capacity) \$1.29 2005\$ / kg H2 dispensed \$0.30 2005\$ / kg H2 dispensed \$0.18 2005\$ / kg H2 dispensed \$2.06 2005\$ / kg H2 dispensed 4,510 g CO2 eq./ 116000 Btu	
Natural Gas Input (including upstream) Petroleum Input (including upstream)	7,200 Btu / 116000Btu to Pump 1,100 Btu / 116000Btu to Pump	CO2 Captured for Sequestration CO2 Captured for Sequestration	90% 4,925,000 kg CO2 / day	Production CH4 Emissions ProductionN2O Emissions Production GHG Emissions	440 g CO2 eq./ 116000 Btu 9 g CO2 eq./ 116000 Btu 4,960 g CO2 eq./ 116000 Btu	
		Pipelines for De	livery	Total capital investment	\$3,340 2007\$ / daily kg dispensed	
Electricity consumption for compressor Electricity consumption for geo storage Total electricity consumption Total Capital Investment Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	0.56 kWh / kg H2 dispensed 0.01 kWh / kg H2 dispensed 0.57 kWh / kg H2 dispensed \$404,341,000 2007\$ 3,700 Btu / 116000Btu to Pump 1,300 Btu / 116000Btu to Pump 100 Btu / 116000Btu to Pump	City Population Hydrogen Vehicle Penetration City hydrogen use Distance from City to Production Facility Geologic storage capacity Number of trunk pipelines Service-line length Number of service lines Hydrogen losses	1,247,000 people 15% 121,100 kg / day 62 miles 1,325,000 kg H2 3 1.5 miles / line 122 0.76%	Levelized Cost of Capital Energy & Fuel Other O&M Costs Levelized Cost of Delivery Delivery CO2 Emissions Delivery CH4 Emissions Delivery N2O Emissions Delivery GHG Emissions	\$1.71 2007\$ / kg H2 dispensed \$0.04 2007\$ / kg H2 dispensed \$0.40 2007\$ / kg H2 dispensed \$2.15 2007\$ / kg H2 dispensed 390 g CO2 eq./ 116000 Btu 24 g CO2 eq./ 116000 Btu 2 g CO2 eq./ 116000 Btu 420 g CO2 eq./ 116000 Btu	
Electricity consumption	4.4 kWh / kg H2	Forecourt Dispe	nsing	Hydrogen outlet pressure Basis Hydrogen Quantity	12,700 psi 116,000 Btu (116,000 Btu/gal non-oxygenated	
Total Capital Investment per Station Total Capital Investment Inlet pressure of hydrogen at stations	\$2,629,000 2007\$ / station \$320,679,000 2007\$ / all stations 300 psi	Average Dispensing Rate per Station Number of Dispensing Stations Number of Compression Steps Usable Low Pressure Storage per Station Usable Cascade Storage per Station	1,000 kg/day 122 5 370 kg H2 130 kg H2	Total capital investment Levelized Cost of Capital Energy & Fuel Other O&M Costs Levelized Cost of Dispensing	conventional unleaded gasoline) \$2,650 2007\$ / daily kg H2 (effective capacity) \$1.08 2007\$ / kg H2 dispensed \$0.41 2007\$ / kg H2 dispensed \$0.43 2007\$ / kg H2 dispensed \$1.93 2007\$ / kg H2 dispensed	
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	24,400 Btu / 116000Btu to Pump 10,800 Btu / 116000Btu to Pump 900 Btu / 116000Btu to Pump	Site storage # of 2-hose Dispensers per Station Hydrogen Losses	42% % of design capacity 2 0.50%	CSD CO2 Emissions CSD CH4 Emissions CSD N2O Emissions CSD GHG Emissions	3,370 g CO2 eq./ 116000 Btu 210 g CO2 eq./ 116000 Btu 14 g CO2 eq./ 116000 Btu 3,590 g CO2 eq./ 116000 Btu	
Vehicle Mass Fuel cell size Size of hybridization battery Coal Input (including upstream)	3,020 lb 70 kW 30 kW 2,300 Btu / gge fuel consumed	Vehicle Fuel Economy Vehicle Miles Traveled Vehicle Lifetime Purchase Year Vehicle Purchase Cost Fuel Cell System Cost	48.0 mi / gge 15,000 mi / yr 160,000 mi 2015 \$33,700 2007\$ \$4,500 2007\$	Cost Per Mile Fuel Share Maintenance, Tires, Repairs Insurance & Registration Depreciation Financing Vehicle Cycle CO2 Emissions	\$0.69 2007\$ / mi \$0.13 2007\$ / mi \$0.07 2007\$ / mi \$0.12 2007\$ / mi \$0.27 2007\$ / mi \$0.10 2007\$ / mi 1,670 g CO2 eq / gge fuel consumed	
Natural Gas Input (including upstream) Petroleum Input (including upstream)	12,100 Btu / gge fuel consumed 6,900 Btu / gge fuel consumed	Hydrogen Storage System Cost Tax Credit	\$2,400 2007\$ \$0 2007\$	Vehicle Cycle CH4 Emissions Vehicle Cycle CH4 Emissions Vehicle Cycle N2O Emissions Vehicle Cycle GHG Emissions	170 g CO2 eq / gge fuel consumed 6 g CO2 eq / gge fuel consumed 1,850 g CO2 eq / gge fuel consumed	


Figure 6.10.1. Summary of major inputs, assumptions, and outputs by subsystem for the central coal with CCS—pipeline delivery pathway

	WTP		WTW	
Coal input (including upstream) ^a	128,000	Btu/116,000 Btu	5,100	Btu/mi
Natural gas input (including upstream) ^a	19,500	Btu/116,000 Btu	410	Btu/mi
Petroleum input (including upstream) ^a	2,800	Btu/116,000 Btu	60	Btu/mi
Fossil energy input (including upstream) ^a	150,300	Btu/116,000 Btu	5,560	Btu/mi
WTP CO_2 emissions ^b	8,400	g/116,000 Btu	180	g/mi
WTP CH ₄ emissions	40	g/116,000 Btu	1	g/mi
WTP N ₂ O emissions	0	g/116,000 Btu	0	g/mi
WTP GHG emissions	9,500	g CO ₂ -eq./	200	g/mi
		116,000 Btu		_
	Cost per	kg	Cost p	er mile
Levelized cost of hydrogen	\$6.14	2007 \$/kg	\$0.13	2007 \$/mi

Table 6.10.1. WTP and WTW Results for the Central Coal with CCS—Pipeline Delivery Pathway


^a Coal, natural gas, and petroleum inputs include those used directly in the hydrogen production and delivery pathway as feedstocks and fuels; those used to produce electricity and other materials used in the pathway; and those used upstream of the pathway to recover, refine, and deliver the feedstock.


^b Includes the carbon content of CO, CH₄, and volatile organic compound emissions that decompose in the atmosphere to CO₂.

* This box represents the coal that is converted to hydrogen or otherwise consumed/lost as a process feedstock It does not include coal used as a heating fuel or to produce electricity.

Figure 6.10.2. Cost analysis inputs and high-level results for the central coal with CCS—pipeline delivery pathway

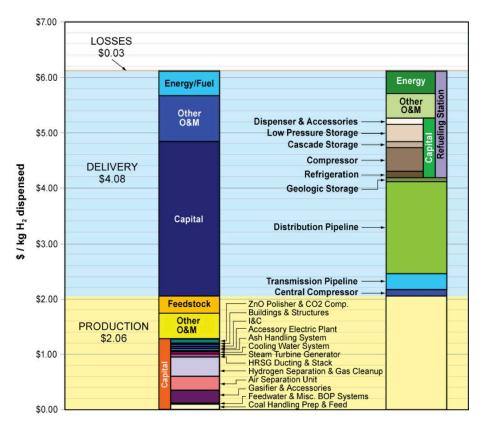


Figure 6.10.4. Breakdown of levelized costs for the central coal with CCS—pipeline delivery pathway

		Other		Energy/	
Cost Component	Capital	O&M	Feedstock	Fuel	Total
Production	\$1.27	\$0.48	\$0.29		\$2.04
Coal handling prep and feed	\$0.10				
Feedwater and misc. BOP systems	\$0.02				
Gasifier and accessories	\$0.23				
Air separation unit	\$0.25				
Hydrogen separation and gas cleanup Heat-recovery steam generator ducting	\$0.34				
and stack	\$0.06				
Steam turbine generator	\$0.04				
Cooling water system	\$0.02				
Ash handling system	\$0.03				
Accessory electric plant	\$0.04				
Instrumentation and control	\$0.03				
Buildings and structures	\$0.02				
ZnO polisher and CO_2 comp.	\$0.08				
Delivery	\$2.80	\$0.83		\$0.45	\$4.08
Central compressor					\$0.12
Transmission pipeline					\$0.30
Distribution pipeline					\$1.64
Geologic storage					\$0.09
Gaseous refueling station	\$1.08	\$0.43		\$0.41	\$1.93
Refrigeration	\$0.12				
Compressor	\$0.41				
Cascade storage	\$0.12				
Low pressure storage	\$0.30				
Dispenser and accessories	\$0.13				
Losses					\$0.03
Total	\$4.07	\$1.31	\$0.29	\$0.45	\$6.14

 Table 6.10.2. Contribution of Production and Delivery Processes to Levelized Hydrogen Cost from the Central Coal with CCS—Pipeline Delivery Pathway

6.10.2 Energy Use and Emissions Breakdown

Figures 6.10.5 and 6.10.6 show the WTW energy inputs and losses for the central coal with CCS—pipeline delivery pathway. The WTW energy inputs to coal mining and delivery include those necessary to produce 116,000 Btu of coal for gasification. Additional WTW energy inputs for coal needed for heating, electricity, and process inefficiency are reported as inputs to hydrogen production.

Figures 6.10.7 and 6.10.8 show the WTW emissions resulting from the delivery of 116,000 Btu hydrogen to a vehicle fuel tank using the central coal with CCS—pipeline delivery pathway.

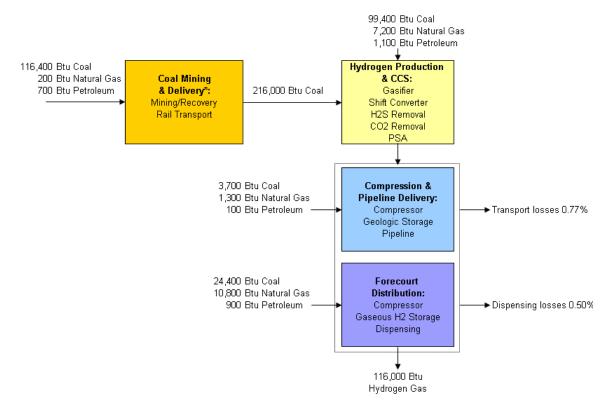


Figure 6.10.5. WTW energy inputs to deliver 116,000 Btu hydrogen to a vehicle using the central coal with CCS—pipeline delivery pathway

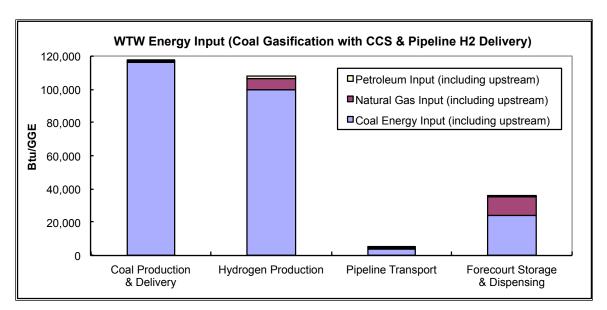


Figure 6.10.6. WTW petroleum, natural gas, and coal inputs to deliver 116,000 Btu hydrogen using the central coal with CCS—pipeline delivery pathway

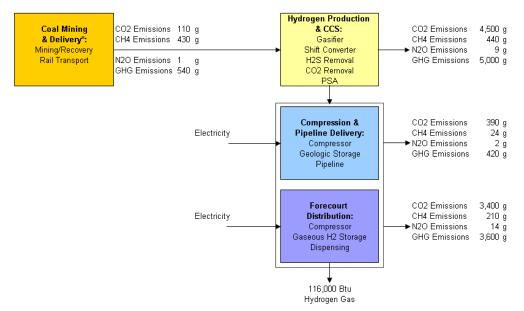


Figure 6.10.7. WTW emissions resulting from delivery of 116,000 Btu hydrogen using the central coal with CCS—pipeline delivery pathway

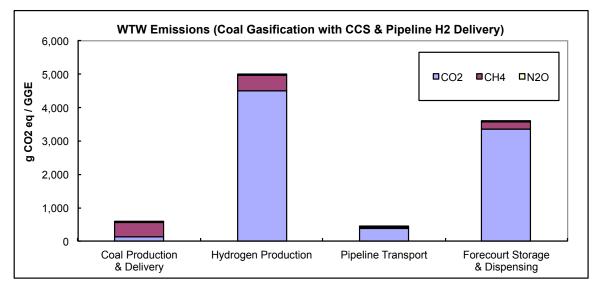


Figure 6.10.8. WTW CO₂, CH₄, and N₂O emissions resulting from delivery of 116,000 Btu hydrogen to a vehicle using the central coal with CCS—pipeline delivery pathway

6.10.3 Sensitivities

6.10.3.1 Production Sensitivities

Several sensitivities were run on the production portion of the central coal with CCS—pipeline delivery pathway. These sensitivities focused primarily on cost factors; however, several sensitivities also affect energy use and emissions. Figure 6.10.9 shows the effects of several production parameters on the pathway's levelized cost, and Table 6.10.3 shows the effect of varying production efficiency on the WTW results.

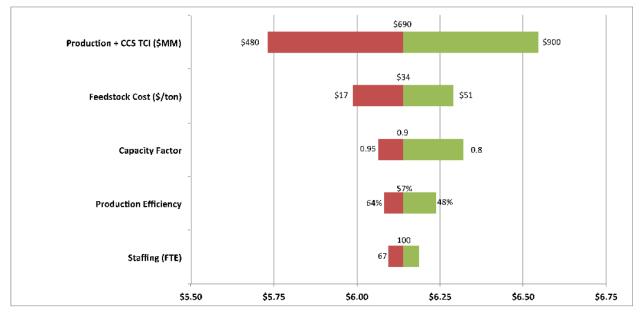


Figure 6.10.9. Production sensitivities for the central coal with CCS—pipeline delivery pathway

Table 6.10.3. The Effects of Production Energy Efficiency on Primary Energy Use and Emissions
from the Central Coal with CCS—Pipeline Delivery Pathway

	48% Efficiency	57% Efficiency	64% Efficiency
WTW GHG emissions (g/mile)	220	200	190
WTW fossil energy (Btu/mile)	6,500	5,600	5,100
WTW petroleum energy (Btu/mile)	70	60	60
WTW total energy (Btu/mile)	6,700	5,800	5,300

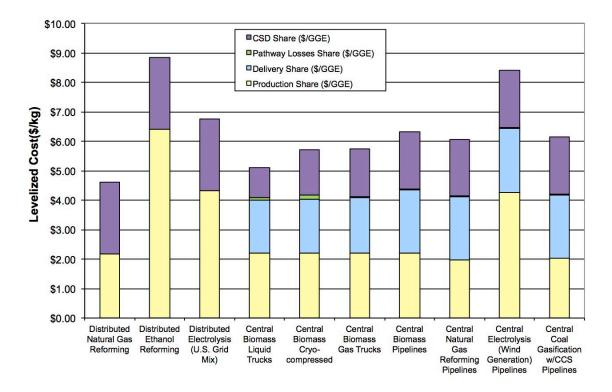
The assumed electrical grid mix also affects the energy use and emissions because grid electricity is needed for delivery and distribution. Electricity for the production facility is generated internally and can be considered a parasitic loss. Table 6.10.4 shows the differences in energy use and GHG emissions between the U.S. average grid mix (which was used for all other sensitivities) and a hypothetical green grid mix that is 100% renewable energy (solar and wind).

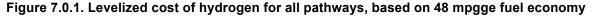
Table 6.10.4. The Effects of Grid Mix on Use of Primary Energy and Emissions from the Central
Coal with CCS—Pipeline Delivery Pathway

	U.S. Average Grid Mix (48 mpgge)	U.S. Average Grid Mix (68 mpgge)	"Green" Grid Mix (48 mpgge)
WTW GHG emissions (g/mile)	200	140	70
WTW fossil energy (Btu/mile)	5,600	3,900	4,200
WTW petroleum energy (Btu/mile)	60	40	20
WTW total energy (Btu/mile)	5,800	4,100	4,900

6.10.3.2 Delivery Sensitivities

Pipeline delivery sensitivities are reported for the biomass production scenario in Section 6.4.3. The effects of the sensitivities will be the same for all pipeline delivery scenarios.


7 Pathway Results Comparison


In this section, results from the individual pathways are compared. Each pathway's current estimated levelized hydrogen cost, WTW petroleum use, and WTW GHG emissions are shown in comparison to the other pathways. Key parameters are shown in Table 7.0.1.

Parameter	Value and Section with Description
Technology status	Current technology (Section 1.2). Technology is described in Sections 2.0 and 3.0, and parameters are shown in the appendices.
City size	553 mi ² and 1,247,000 people (equivalent to Indianapolis, IN) (Section 1.2)
Market penetration	15% of hydrogen vehicles (Section 1.2)
Fuel cell vehicle fuel economy	Base case of 48 mpgge analyzed, with a sensitivity case of 68 mpgge
Analysis boundaries	Includes feedstock recovery, transportation, and storage; fuel production, transportation, storage, and distribution; and vehicle operation (Section 1.3)
Monetary value	2007 dollars—except coal with CCS production option, which is in 2005 dollars (Section 5.0)
Equity financing	100% (Section 5.0)
After tax internal rate of return	10% (Section 5.0)
Effective total tax rate	38.9%
Carbon capture efficiency in coal with CCS case	90% (Section 6.10)

Table 7.0.1. Key Ana	alysis Parameters
----------------------	-------------------

Figure 7.0.1 shows the levelized cost of hydrogen for all 10 hydrogen pathways with the parameters described in Section 6.0, based on an assumed FCEV fuel economy of 48 mpgge. (More details on the 10 hydrogen pathways analyzed can be found in Appendices A–J.) Some of the most important pathway parameters are shown in Table 7.0.1, and additional parameters are in Sections 1–6. Sensitivities on parameters in each hydrogen pathway are reported in Section 6. The base case analysis of the hydrogen pathways assumes a 48 mpgge fuel economy. A sensitivity analysis using a fuel economy of 68 mpgge was also conducted. Figure 7.0.2 shows the levelized hydrogen cost results for all 10 pathways for both the 48 mpgge and 68 mpgge fuel economies.

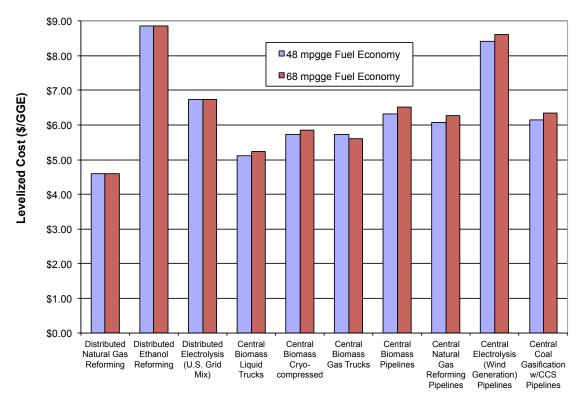


Figure 7.0.2. Levelized cost of hydrogen for all pathways for both 48 and 68 mpgge fuel economy

The levelized cost of hydrogen is calculated directly in the H2A model for the distributed hydrogen production cases and includes both production and CSD costs. For central production cases, the levelized cost of hydrogen is the sum of levelized production cost, levelized delivery cost, the cost of excess production due to losses during delivery, and the cost of CSD.

DOE's Fuel Cells Technologies Office has set a hydrogen threshold cost of \$2.00–\$4.00/gge delivered at the pump (Ruth and Joseck 2011). The comparison in Figure 7.0.1 shows that the hydrogen cost target is close to being met by distributed natural gas reforming. Niche opportunities with low-cost feed or capital costs, different financing options, or higher capacities may help other technologies meet the target. Likewise, delivery costs may be reduced for pipeline delivery if the fuel cell vehicle penetration were greater than 15%, giving those technologies a greater opportunity to meet the target. Otherwise, additional research is necessary to meet targets. Other analysts have used different parameters and reached slightly different levelized costs of hydrogen in their studies. Fletcher and Callaghan (2006) is one example of an analysis that showed that the previous \$2.00–\$3.00/gge levelized cost target (Hydrogen, Fuel Cells and Infrastructure Technology Program 2007) had been met for the distributed natural gas reforming pathway. The primary differences between their analysis and this one are the cost-year dollars (they worked in 2005\$ and this analysis is in 2007\$) and a lower cost for CSD (they estimated \$0.88/kg, and the estimate in this study is \$2.43/kg).

Production costs range from 32% to 73% of the pathway levelized costs. Figure 7.0.3 shows a breakdown of those production costs into capital, feedstock, and other O&M costs. Most technologies are feedstock driven (i.e., feedstock costs make up the majority of the levelized cost); however, the biomass and coal technologies have relatively low feedstock costs and are evenly balanced and capital driven, respectively.

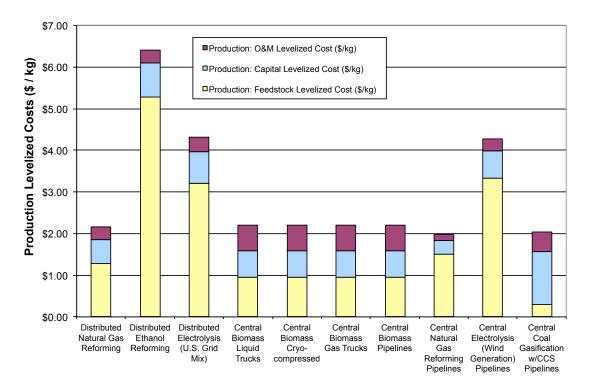


Figure 7.0.3. Production levelized costs for 10 pathways

Levelized cost is not the only cost of concern. Capital costs are also important because a capital investment with the expectation of a payback and profit is necessary for the technologies to be developed. Figure 7.0.4 shows the capital costs for each pathway normalized to a daily dispensing basis. They are also broken into production, delivery, and dispensing shares. The non-pipeline technologies (distributed production and other delivery technologies) require less capital per daily kg of hydrogen than the pipeline technologies do. That status indicates the benefit of distributed and flexible infrastructure at lower penetrations, such as the 15% penetration considered in this report. At higher penetrations, one can expect that the normalized delivery capital cost will drop for pipeline pathways due to economies of scale.

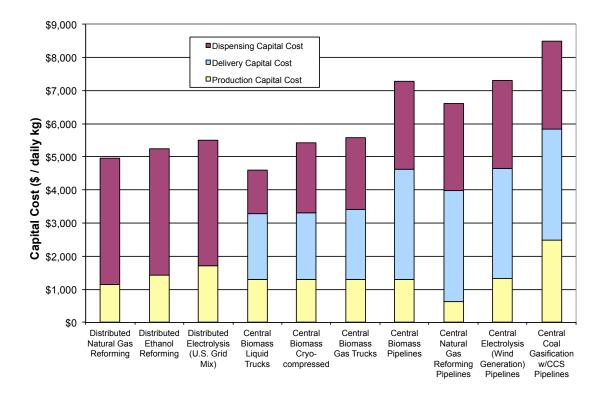


Figure 7.0.4. Normalized capital costs for 10 pathways

Figure 7.0.5 shows a comparison of direct energy use between pathways. Direct energy includes only the energy used directly by the pathway (i.e., feedstock, electricity, and fuel used to run the equipment). It differs from the WTW energy in that WTW energy includes upstream energy requirements as well as energy used directly by the pathway. For example, while electricity is reported as a pathway energy source, the primary energy sources used to generate the electricity (e.g., coal, natural gas) are included in the WTW calculations. As expected, the dominant pathway energy source is the one named in the title of each pathway.

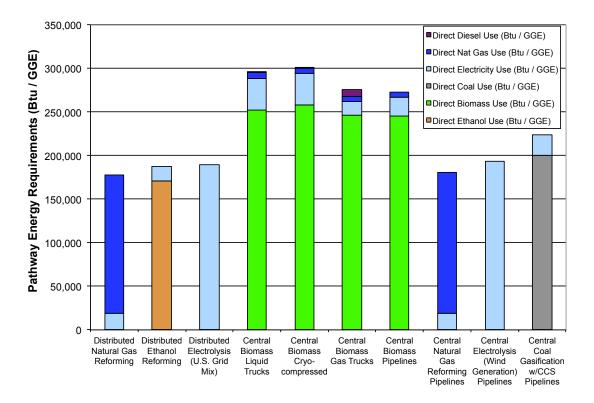


Figure 7.0.5. Pathway energy use for 10 pathways

The pathway efficiency can be considered the inverse of the energy use; Figure 7.0.6 shows those efficiencies. The yellow bars show the production efficiencies that are calculated as the lower heating value (LHV) of the hydrogen produced divided by the LHV of all the production inputs reported in Section 6.0. The blue bars show the pathway efficiencies that are calculated as the LHV of the hydrogen delivered divided by the LHV of all the pathway inputs, which are shown in Figure 7.0.5. The red bars show the WTP efficiencies that are calculated as the LHV of the hydrogen delivered divided by the LHV of all the pathway inputs, which are shown in Figure 7.0.5. The red bars show the WTP efficiencies that are calculated as the LHV of the hydrogen delivered divided by the LHV of all the primary energy inputs (coal, natural gas, crude oil, and biomass) that are used directly or indirectly by the pathway.

As an example, Figure 7.0.6 shows that the production efficiency of the distributed natural gas reforming pathway is 71% (i.e., 71% of all of the energy delivered to the hydrogen production plant is contained in the hydrogen product). Because the pathway includes both the production plant and CSD, the pathway efficiency must account for hydrogen lost and energy required for compression; thus, the pathway efficiency is somewhat lower at 65% for the distributed natural gas reforming pathway. Some additional energy is required to produce and deliver the natural gas and electricity to the facility, so the WTP efficiency is lower yet at 52% for the distributed natural gas reforming pathway.

The pathways with the highest efficiency are the natural gas and ethanol pathways, followed by electrolysis and coal, and those with the lowest efficiency are the biomass pathways. One of the primary reasons the pathway efficiency is lower than reported in 2009 is that the onboard storage pressure is 700 bar instead of 350 bar (as was used in 2009). The increased pressure requires additional electricity for compression and the WTP efficiency of electricity production is low.

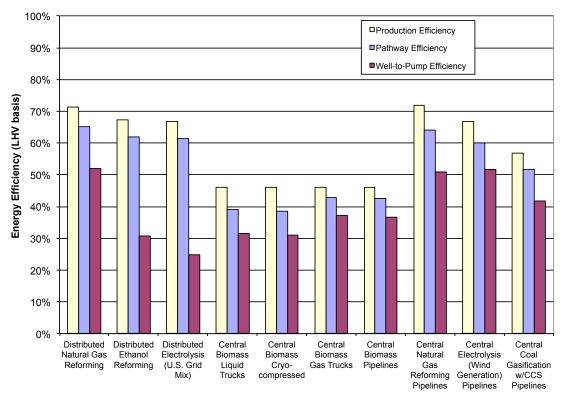


Figure 7.0.6. WTW, pathway, and production efficiencies for 10 hydrogen pathways

Figure 7.0.7 shows the WTW petroleum use for the 10 hydrogen pathways. As vehicle fuel economy has a direct impact on per-mile WTW energy use and emissions, petroleum use for both the 48 mpgge fuel economy base case and the 68 mpgge sensitivity case are shown. In the pathways with truck delivery (biomass—liquid trucks, biomass—cryo-compressed, and biomass—gas trucks), most of the petroleum is used for hydrogen delivery. In technologies where biomass is used as a feedstock (central biomass gasification and distributed ethanol reforming), petroleum is used for farming and for biomass delivery to either the hydrogen or ethanol facility. Petroleum is also required for grid electricity production (0.9% of the grid mix is electricity generated from residual oil), so technologies requiring large amounts of electricity also utilize large amounts of petroleum.

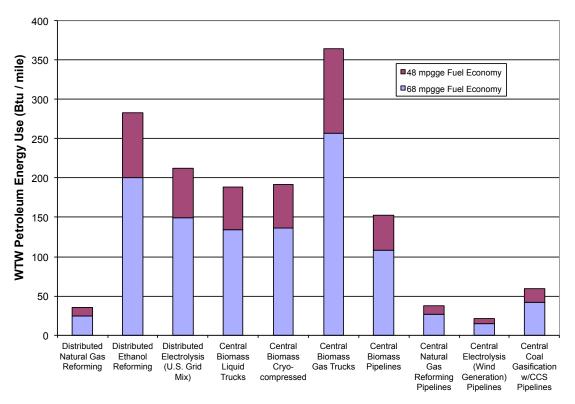


Figure 7.0.7. WTW petroleum energy use for 10 hydrogen pathways

Figure 7.0.8 shows the WTW natural gas use for the 10 hydrogen pathways, again showing the results for both the 48 mpgge and 68 mpgge cases. As expected, the pathways where natural gas is the primary energy source require the most natural gas. Natural gas is required for grid electricity production (21.5% of the grid mix is electricity generated from natural gas). Because distributed electrolysis and liquid truck delivery technologies require large amounts of grid electricity, they also utilize large amounts of natural gas. Finally, natural gas is also utilized in petroleum refining, so technologies with truck delivery require more natural gas than those without (e.g., delivery of hydrogen in a truck requires more natural gas on a WTW basis than delivery via pipeline).

Figure 7.0.9 shows the comparative WTW GHG emissions for the 10 hydrogen pathways, shown for both 48 mpgge and 68 mpgge cases. Hydrogen FCEVs have no tailpipe GHG emissions because reacting hydrogen forms water, so the WTP emissions are the same as the WTW emissions.

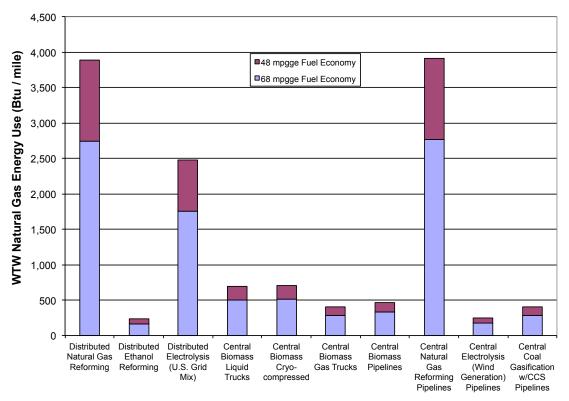


Figure 7.0.8. WTW natural gas energy use for 10 hydrogen pathways

The primary source (66%) of GHG emissions for the distributed natural gas reforming pathway is generation of hydrogen with some additional GHGs generated to produce electricity for CSD and in natural gas recovery and delivery. Distributed ethanol reforming is based on ethanol produced from corn stover, so the GHGs removed from the atmosphere to grow biomass are nearly equivalent to those generated producing ethanol and hydrogen. Additional emissions are generated producing power necessary for CSD. Distributed electrolysis requires 50 kWh electricity per kg H₂ produced, and additional electricity for CSD. The current grid mix produces 660 g CO₂-eq./kWh, so electricity generation is the primary emitter of its 820 g CO₂-eq./mile traveled. In all of the biomass production pathways, the GHGs removed from the atmosphere to grow biomass are essentially equivalent to the GHGs generated in producing hydrogen (see Sections 6.4–6.7 for details). The two biomass pathways utilizing delivery of liquid hydrogen have higher emissions for delivery and dispensing because of the amount of electricity required to liquefy hydrogen. All the GHGs emitted from the central electrolysis of wind electricity pathway are from electricity generation for CSD, which is assumed to be purchased from the grid without wind energy credits. Fifty percent of the GHGs emitted from the central coal with CCS and pipeline delivery pathway are GHGs that were not sequestered in the hydrogen production process, with the most of the remainder emitted during electricity production for CSD and some for coal mining and hydrogen transport.

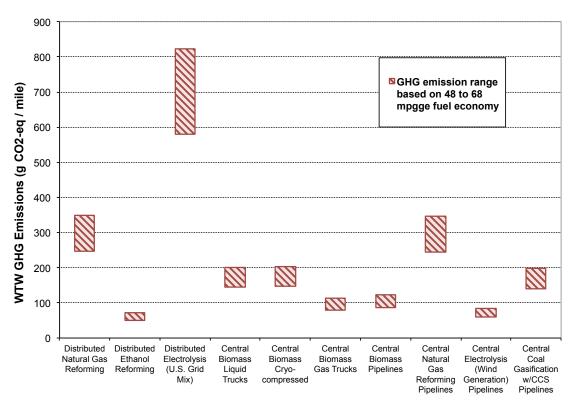


Figure 7.0.9. WTW GHG emissions for 10 hydrogen pathways

As shown in Figure 7.0.9, all of the pathways except distributed electrolysis result in GHG emissions (on a g/mile basis) lower than 400 g/mile based on a fuel economy of 48 mpgge, and below 250 g/mile when a fuel economy of 68 mpgge is considered. Distributed electrolysis has high GHG emissions when compared to the other hydrogen pathways because of the assumed U.S. average electricity grid mix. The pathways that use natural gas as a feedstock use little petroleum but have high GHG emissions compared to most of the other pathways due to the GHGs released in producing hydrogen from natural gas. The coal pathway has slightly lower GHG emissions because of the efficient sequestration system that is assumed. The biomass and ethanol cases have higher petroleum use than all but the distributed electrolysis pathway because the biomass and ethanol are delivered using trucks.

Of the four delivery options from central production, pipeline delivery has the lowest GHG emissions and lowest petroleum use. The two liquid truck delivery options have higher GHG emissions due to emissions from generating electricity for liquefaction. The GHG emissions for liquid hydrogen dispensed as a cryo-compressed liquid are slightly lower than those dispensed as a gas because the liquid pump requires less electricity than the necessary compressor does. Hydrogen delivered in a gas truck has low GHG emissions but high petroleum use because each truckload only carries 520 kg of hydrogen.

Because using hydrogen as a transportation fuel has an effect on both WTW GHG emissions and WTW petroleum use, and because that effect varies depending upon the hydrogen production/delivery pathway, Figure 7.0.10 shows GHG emissions relative to petroleum use for the 10 hydrogen pathways, based on a 48 mpgge fuel economy.

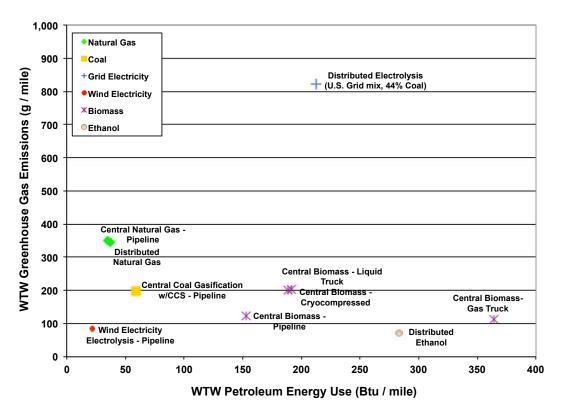


Figure 7.0.10. Comparison of pathways' petroleum use and GHG emissions (48 mpgge)

Figures 7.0.11a and 7.0.11b show the levelized fuel cost per mile and the WTW GHG emissions for the 10 hydrogen pathways analyzed for 48 mpgge and 68 mpgge fuel economies, respectively. Ideally, one technology would be the obvious one to focus on because it has both the lowest cost and the lowest GHG emissions. In this case, there is an obvious tradeoff between GHG emissions and levelized cost. The natural gas technologies have the lowest cost but the highest emissions, and the biomass technologies, ethanol, and wind electrolysis have lower emissions but higher costs.

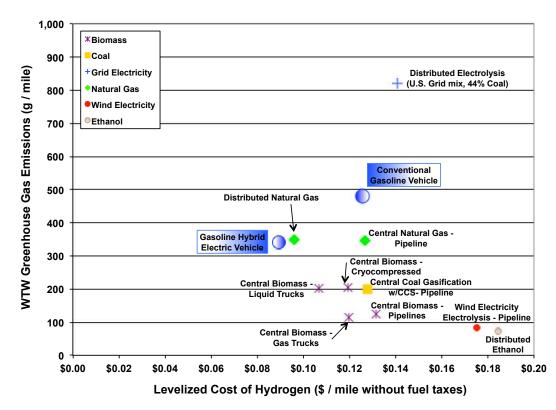


Figure 7.0.11a. Comparison of pathways' levelized costs per mile and GHG emissions (based on 48 mpgge fuel economy)

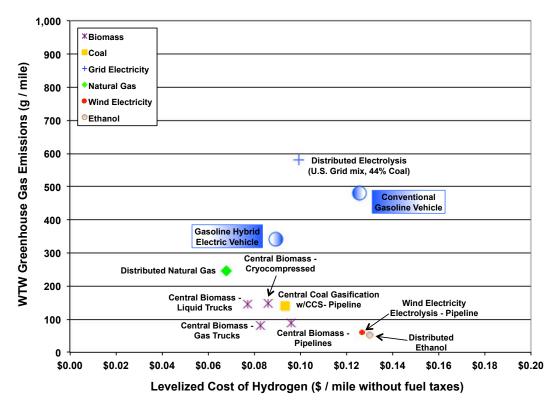


Figure 7.0.11b. Comparison of pathways' levelized costs per mile and GHG emissions (based on 68 mpgge fuel economy)

Figure 7.0.12 shows the levelized cost of hydrogen on a per-mile-traveled basis, calculated for both 48 mpgge and 68 mpgge fuel economies. Figure 7.0.13 shows the levelized cost of hydrogen on a per-mile-traveled basis (assuming 48 mpgge fuel economy) with three possible costs of carbon. The tops of the blue bars match what has been shown previously—levelized cost per mile with no cost of carbon. The tops of the red bars indicate the wholesale, levelized costs including a \$50/ton CO₂-equivalent cost, and the tops of the yellow bars indicate the wholesale, levelized costs of CO₂-equivalent cost. The carbon cost calculation is based on WTW GHG emissions, so it includes increased costs due to upstream emissions as well as those generated while producing the hydrogen.

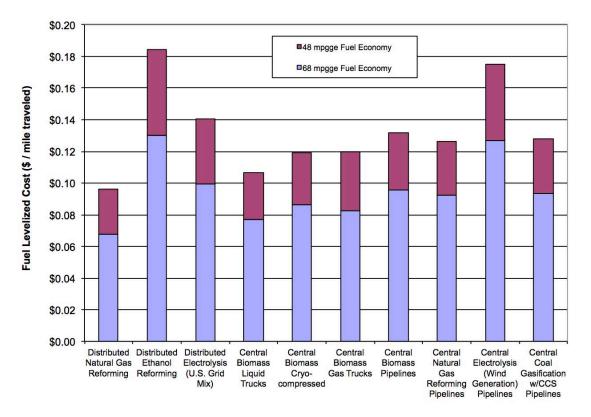


Figure 7.0.12. Per-mile levelized hydrogen costs for 10 hydrogen pathways

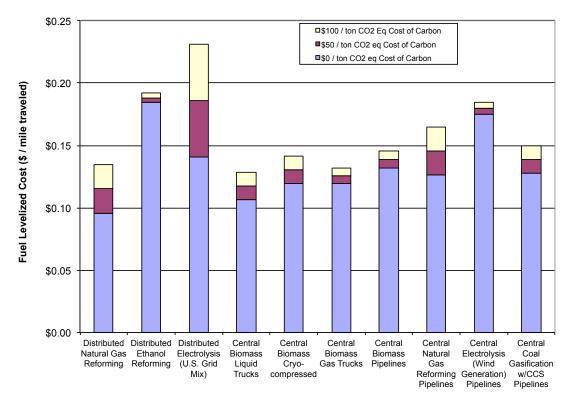


Figure 7.0.13. Levelized hydrogen costs with possible cost of carbon for 10 hydrogen pathways (based on 48 mpgge fuel economy)

8 Analysis Gaps

Though key input parameters have been adjusted in this study, many underlying assumptions used in the analysis rest on the default assumptions of the sub-models incorporated into the MSM (i.e., the default assumptions of the H2A Production, HDSAM, and GREET models). Below is a discussion of some of the analysis and modeling gaps identified during this analysis. Gaps were identified by the authors as well as through a review of the analysis by the Fuel Pathways Integration Technical Team of the U.S. DRIVE partnership, which includes representatives of four energy companies (Phillips 66, ExxonMobil, Chevron, and Shell), NREL, and the Hydrogen Systems Analyst of the U.S. Department of Energy. Some of the gaps and issues that were identified early in the scoping of the evaluation have been incorporated into the assessment and are reflected in the results described in the report. However, some gaps and issues have not yet been addressed or are beyond the scope of this effort; these gaps are noted below.

8.1 Production

- General
 - Limiting the analysis lifetime for distributed production to 20 years handicaps distributed production cases relative to central production cases (that are evaluated over a 40-year lifetime).
- Central biomass gasification
 - Only woody biomass has been included in the analysis. The H2A Production models do not currently include data to model herbaceous biomass feedstocks. The theoretical yields of hydrogen from herbaceous biomass should be compared with those from woody biomass. Empirical kinetic models on biomass gasification exist and may be used.
 - The biomass gasification case has a high enough electricity demand to use industrial rates, yet commercial rates are assumed in the H2A analysis.
- Central natural gas reforming
 - Waste heat is not considered to have any value in this analysis. An option where heat is used would be valuable because most of the reforming facilities built recently have customers for their waste heat.
 - Equipment costs for central natural gas reforming should be further disaggregated to aid in transparency.
 - Additional information on water use for natural gas reforming should be provided.
 - Natural gas reforming should have some planned replacement costs over the 40year lifetime; however, none are included in the H2A calculation. H2A only has 0.5% per year for unplanned replacement costs.
- Central electrolysis using wind-generated electricity
 - The analysis assumes that the average price of wind electricity matches AEO projections for grid-electricity prices. More detailed analysis of hour-by-hour

wind electricity prices is needed for a more accurate cost accounting of this pathway.

- The central electrolysis analysis is based on a central electrolysis facility with an operating capacity factor of 97%. A facility may be co-sited with the wind turbines and have a lower operating capacity factor. The optimal location and capacity factor are not included in this analysis.
- Central coal gasification with CCS
 - The H2A model for this technology needs to be updated to 2007\$ to be consistent with the other H2A cases.
 - The availability of carbon sequestration sites and the cost of monitoring at and upkeep of those sites are not included in this analysis. A single cost for sequestration is included.
 - Cooling water requirements and costs are not included. More explanation is necessary regarding how the process is cooled.
- Distributed natural gas reforming
 - Cooling water requirements and costs are not included. More explanation is necessary regarding how the process is cooled.
- Distributed electrolysis
 - The hydrogen storage in the distributed electrolysis pathway is not optimized for peak power requirements. To optimize the pathway, the tradeoffs between the effects of full-time operation on the grid (transmission and distribution congestion and peaking power dispatch) and the costs of running the electrolyzers at less-than-full-time need to be understood, and a study over 8,760 hours/year is needed.
 - The CSD electricity cost for distributed electrolysis should be using "industrial rates" due to high electricity usage for production.
 - The efficiency of distributed electrolysis is the same as for central electrolysis; however, distributed electrolysis is likely to have a lower efficiency due to a higher relative parasitic demand.

8.2 Delivery and Dispensing

- Geologic storage is modeled currently with variable pressure; however, constant pressure is required in salt caverns. The pressure requirements for non-salt geologic structures are not well understood and require study.
- Geologic storage costs and requirements should be compared to those for natural gas to provide a cost baseline.
- The need for hydrogen gas clean-up after the hydrogen is extracted from caverns or other geologic storage is not well understood and requires study. Gas clean-up requirements and costs are a gap in the analysis for all of the pathways employing hydrogen delivery by pipeline.

- HDSAM uses a formula to calculate transmission and trunk pipeline costs based on an optimization of pipeline diameters, based on a curve fitting of available data. It appears that there is a problem with this formula; the HDSAM team should investigate and revise HDSAM as necessary.
- Average right-of-way costs are used in this analysis. Improved understanding of those costs and their effects on levelized costs would be helpful.
- There are concerns about the design of the gas truck case:
 - The production facility, geologic storage, and terminal appear to be co-located because there is no equipment for transport between them.
 - The gas-truck delivery case considered in this report requires 76 truck bays, which represents a very large terminal and would likely involve considerable logistics issues.
 - Terminal operators are unlikely to leave a trailer unattached from a tractor at the loading bay; however, the design does not allow for enough tractors to keep all of the trailers hooked up.
 - The number of compressor stages is unchanged between the other cases that have a lower inlet pressure and this one. It is likely that fewer stages are necessary.
 - The terminal has only a single storage compressor. A backup is likely to be necessary.
 - Using two compressors to serve 76 truck bays is likely to cause operational issues. More, smaller compressors are probably necessary.
 - Scenarios with higher minimum on-trailer pressures should be considered because they may allow for less compression at the stations; however, the logistics regarding the number of truck fills need to be kept in mind.
- Additional analysis is needed to determine the ideal size and siting of hydrogen distribution stations.
- Low-pressure storage requirements at stations should be revisited to identify the potential risks regarding downtime due to unplanned outages to determine if the current storage amount is sufficient.
- Cascade storage volumes should be compared to those used for dispensing from natural gas from gas pipelines.
- The on-board storage pressure for all of the analyses in this report is 10,000 psi, which requires a maximum dispensing pressure of 12,688 psi. Tradeoffs should be analyzed.
- The tradeoffs between hydrogen quality and fuel cell performance (i.e., durability, reliability, and efficiency) are not well understood.
- Control and safety equipment costs for liquid delivery are more than 5 times higher than those for gaseous delivery and on-site production. Intuitively, they should be more similar.

- The dispenser cost for liquid delivery (both gaseous and cryo-compressed dispensing) is less than 50% of that for gaseous delivery and on-site production. Intuitively, they should be more similar.
- There are slight errors in the electricity cost calculations for geologic storage and refueling station electricity use that need to be corrected.

8.3 Vehicle Costing

- The tool needs to be adjusted to allow for cryo-compressed storage costs when appropriate instead of just compressed gas onboard storage.
- The vehicle CPM Tool only allows 10,000 and 15,000 miles per year. Adding 12,000 miles per year (as a standard distance driven) would improve the analysis.
- The CPM Tool assumes a 100 kW-sized fuel cell stack for costing purposes, compared to a 70-kW stack assumed in GREET 2.
- Additional information on the tradeoffs between vehicle fuel economy and vehicle costs could be added if those data can be found.

8.4 Pathway Analysis

- Station sizes should be kept more consistent than in this analysis, where distributed production stations have an average daily dispensing rate of 1,330 kg/day; stations for pipelines and liquid truck delivery have an average daily dispensing rate of 1,000 kg/day; and stations for gas truck delivery have an average daily dispensing rate of 800 kg/day.
- The effects of different types of biomass (i.e., corn stover or forest residue instead of just short rotation woody crops) on cost, energy use, and emissions should be considered.
- Other impact parameters such as water withdrawal, water consumption, and land use should be added to the analysis.
- The analysis should balance analysis periods. One such need is to compare two back-toback distributed production stations (with a 20-year lifetime each) against a single central production unit with a 40-year lifetime.

9 References

Argonne National Laboratory (September 2010). *How Does GREET Work?* Argonne, IL: Argonne National Laboratory. Retrieved from <u>http://greet.es.anl.gov/main</u>.

Argonne National Laboratory (December 2012) *GREET Life-Cycle Model User Guide*. Argonne Center for Transportation Research. Argonne, IL: Argonne National Laboratory.

Elgowainy, A.; Mintz, M.; Gillette, J. (2010). Hydrogen Delivery Scenario Analysis Model (HDSAM) V2.0. Argonne, IL: Argonne National Laboratory.

Fletcher, J.; Callaghan, V. (October 2006). *Distributed Hydrogen Production from Natural Gas: Independent Review Panel Report*. NREL/BK-150-40382. Golden, CO: National Renewable Energy Laboratory.

Greene, D.L.; Leiby, P.N.; James, B.; Perez, J.; Melendez, M.; Milbrandt, A.; Unnasch, S.; Hooks, M. (March 2008). *Analysis of the Transition to Hydrogen Fuel Cell Vehicles & the Potential Hydrogen Energy Infrastructure Requirements*. ORNL/TM-2008/30. Oak Ridge, TN: Oak Ridge National Laboratory.

Hydrogen, Fuel Cells and Infrastructure Technology Program (October 2007). *Hydrogen, Fuel Cells & Infrastructure Technologies Program Multi-Year Research, Development, and Demonstration Plan.* DOE-GO-102007-2430. Washington, DC: U.S. Department of Energy.

James, B.D. (March 2012). Current (2010) Steam Methane Reformer (SMR) at Forecourt 1,500 kg/day, Version 3.0. Arlington, VA: Strategic Analysis, Inc.

James, B.D. (March 2012). Current (2010) Ethanol Steam Reformer (SR) at Forecourt 1,500 kg/day, Version 3.0. Arlington, VA: Strategic Analysis, Inc.

James, B.D. (May 2012). "Hydrogen Storage Cost Analysis." Presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program Annual Merit Review, Arlington, VA.

Mann, M.; Steward, D. (January 2012). *Current (2010) Hydrogen from Biomass via Gasification and Catalytic Steam Reforming, Version 3.0.* Golden, CO: National Renewable Energy Laboratory.

Mintz, M.; Elgowainy, A.; Gillette, J. (September 2008). *H2A Delivery Scenario Analysis Model Version 2.0* (HDSAM 2.0) User's Manual*. Argonne, IL: Argonne National Laboratory.

National Renewable Energy Laboratory (April 2006). *H2A Components Model Version 1.1: Users Guide*. Golden, CO: National Renewable Energy Laboratory.

Nexant, Inc. (May 2008). *H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results*. Interim Report. DE-FG36-05GO15032. San Francisco, CA: Nexant, Inc.

Pacific Northwest National Laboratory (March 2004). *An Approach to Handling Internal Rate of Return for the H2A Analysis*. Internal memo. Richland, WA: Pacific Northwest National Laboratory.

Plotkin, S.; Singh, M.; Patterson, P.; Ward, J.; Wood, F.; Kydes, N.; Holte, J.; Moore, J.; Miller, G.; Das, S.; Greene, D. (2009). *Multi-Path Transportation Futures Study: Vehicle Characterization and Scenario Analysis*. ANL/ESD/09-5. Argonne, IL: Argonne National Laboratory.

Ramsden, T.; Ruth, M. (December 2011). *Current (2010) Hydrogen Production from Central Grid Electrolysis, Version 3.0.* Golden, CO: National Renewable Energy Laboratory.

Rousseau, A. (April 2012). *What Can Autonomie Do for You?* Argonne, IL: Argonne National Laboratory.

Ruth, M.; Ramsden, T. (February 2012). *Current (2010) Hydrogen Production from Distributed Grid Alkaline Electrolysis, Version 3.0.* Golden, CO: National Renewable Energy Laboratory

Ruth, M.; Joseck, F. (March 2011). *Hydrogen Threshold Cost Calculation*. Program Record (Fuel Cell Technologies Office) #11007. Washington, DC: U.S. Department of Energy.

Ruth, M.; Diakov, V.; Goldsby, M.; Sa, T.; Yuzugullu, E.; Hoesly, R.; Zalewski, P. (September 2011). *Macro System Model (MSM) User Guide, Version 1.3*. NREL/TP-6A10-51618. Golden, CO: National Renewable Energy Laboratory.

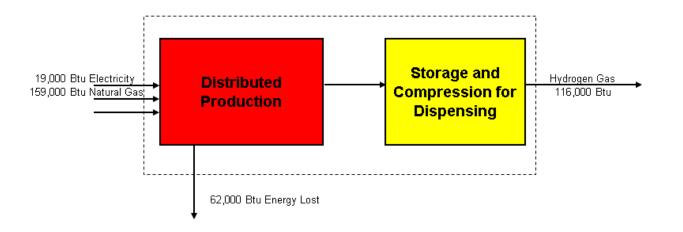
Ruth, M.; Laffen, M.; Timbario, T.A. (September 2009). *Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios*. NREL/TP-6A1-46612. Golden, CO: National Renewable Energy Laboratory.

Rutkowski, M. (May 2008). *Current (2005) Hydrogen from Coal with CO2 Capture and Sequestration, Version 2.1.1.* Golden, CO: National Renewable Energy Laboratory.

Rutkowski, M. (January 2012). *Current (2010, January 31) Hydrogen from Natural Gas without CO2 Capture and Sequestration, Version 3.0.* Golden, CO: National Renewable Energy Laboratory.

Steward, D.; Ramsden, T.; Zuboy, J. (April 2012). *H2A Central Hydrogen Production Model, Version 3 User Guide (DRAFT)*. Golden, CO: National Renewable Energy Laboratory.

Timbario, T.A.; Timbario, T.J.; Laffen, M.J.; Ruth, M. (2011). *Methodology for Calculating Cost-per-Mile for Current and Future Vehicle Powertrain Technologies, with Projections to 2024*. SAE Paper #2011-01-1345. Warrendale, PA: Society of Automotive Engineers.

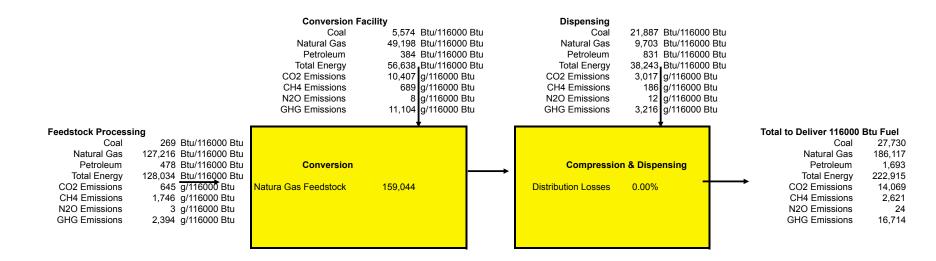

Wang, M.Q. (August 1999). *GREET 1.5 - Transportation Fuel-Cycle Model Volume 1: Methodology, Development, Use and Results*. Argonne, IL: Argonne National Laboratory.

Wipke, K.; Anton, D.; Sprik, S. (August 2009). *Evaluation of Range Estimates for Toyota FCHV-adv Under Open Road Driving Conditions*. SRNS-STI-2009-00446. Aiken, SC: Savannah River National Laboratory.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G. (July 2012). *National Fuel Cell Electric Vehicle Learning Demonstration Final Report*. NREL/TP-5600-54860. Golden, CO: National Renewable Energy Laboratory. Retrieved from http://www.nrel.gov/hydrogen/pdfs/54860.pdf.

Appendix A: Distributed Natural Gas Supporting Tables and Figures

Distributed Hydrogen Production

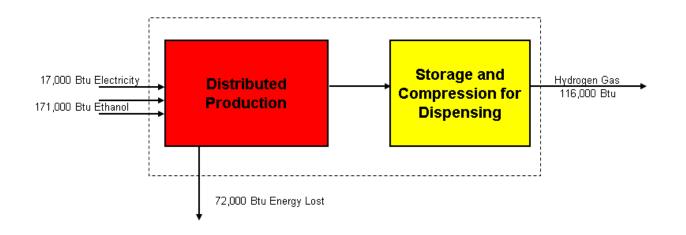


Well-to-Wheels Total Energy Use (Btu/mile)	4,652
Well-to-Wheels Petroleum	35
Energy Use (Btu/mile)	55
Well-to-Wheels	
Greenhouse Gas	349
Emissions (g/mile)	
Levelized Cost of H2 at	4.60
Pump (\$/kg)	4.00

Production Process Energy Efficiency	71%
Pathway Efficiency	65%
WTP Efficiency	52%
WTP Emissions (lb CO2 Equivalent / GGE fuel available):	37

Year: 2015 Hydrogen as Gas Forecourt Production NATURAL GAS Feedstock Sequestration: NO Transport for Delivery: None Vehicle Efficiency: 48 mile / GGE City Hydrogen Use: 121096 kg/day

Inputs		Assumptior	IS	Outputs	
				NG Delivery Pressure	Average of gas companies
		NG Recovery, Processing	, & Transport	NG Quality at Delivery	Average of gas companies
		NG Recovery Efficiency	95.7%		
		NG emitted & combusted during recovery	399 g/MMbtu	NG Cost	\$6.09 2007 \$ / mmBTU
		NG processing energy efficiency	97.2%	NG Share of H2 Levelized Cost	\$1.28 2007\$ / kg H2 dispensed
		NG emitted & combusted during processing	33 g/MMbtu		• .
		NG emitted & combusted during transport	199,400 g/MMbtu	WTG CO2 Emissions	650 g CO2 eq./ 116000 Btu
Coal Input (including upstream)	300 Btu / 116000Btu to Pump	NG transport distance	500 miles	WTG CH4 Emissions	1,750 g CO2 eq./ 116000 Btu
Natural Gas Input (including upstream)	127,200 Btu / 116000Btu to Pump	Compression Regits. (stages & efficiency)	Average of gas companies	WTG N2O Emissions	3 g CO2 eq./ 116000 Btu
Petroleum Input (including upstream)	500 Btu / 116000Btu to Pump		3 3 3	WTG GHG Emissions	2,390 g CO2 eg./ 116000 Btu
					_, 3
		Hydrogen Produ	ation	Hydrogen Output Pressure	300 psi
	0.450 MMPhu/lip U2 produced	Hydrogen Frodu	clion	, ,	99.9%
Natural gas consumption	0.156 MMBtu/kg H2 produced			Hydrogen Outlet Quality	99.9%
Electricity consumption	1.11 kWh / kg H2 produced	Distribute dialogical designs as a site	1.500 los (des	Total and the line of the sector	
Process Water Consumption	5.77 gal / kg H2 produced	Distributed plant design capacity	1,500 kg / day	Total capital investment	\$1,150 2007\$ / daily kg H2 (effective capacity)
Cooling Water Consumption	0.00 gal / kg H2 produced	Capacity factor	89%	Levelized Cost of Capital	\$0.59 2007\$ / kg H2 dispensed
		# of Plants Needed to Meet City Demand	92	Fixed O&M Costs	\$0.19 2007\$ / kg H2 dispensed
Total Capital Investment per station	\$1,530,000 2007\$	Process energy efficiency	71.4%	Variable O&M Costs	\$0.12 2007\$ / kg H2 dispensed
		Electricity Mix	US Mix	Total Levelized Cost	\$2.17 2007\$ / kg H2 dispensed
		After-tax IRR	10%		
Coal Input (including upstream)	5,600 Btu / 116000Btu to Pump	Assumed Plant Life	20	Production CO2 Emissions	10,410 g CO2 eq./ 116000 Btu
Natural Gas Input (including upstream)	49,200 Btu / 116000Btu to Pump			Production CH4 Emissions	690 g CO2 eq./ 116000 Btu
Petroleum Input (including upstream)	400 Btu / 116000Btu to Pump			Production N2O Emissions	8 g CO2 eq./ 116000 Btu
				Production GHG Emissions	11,100 g CO2 eq./ 116000 Btu
Electricity consumption	4.4 kWh / kg H2 produced	Forecourt Dispensing		Hydrogen outlet pressure	12.700 psi
	······································			Basis Hydrogen Quantity	116,000 Btu (116,000 Btu/gal non-oxygenated
		City Population	1,247,000 people	Eddlo Thydrogon ddanady	conventional unleaded gasoline)
Total Capital Investment (per station)	\$5,059,000 2007\$ / station	Hydrogen Vehicle Penetration	15%		conventional anicaded gasonine)
Total Capital Investment	\$465.391.000 2007\$ / all stations	City hydrogen use	121,100 kg / day	Total capital investment	\$3,810 2007\$ / daily kg H2 (effective capacity)
Total Capital Investment	\$405,531,000 2007\$7 all stations	Average Dispensing Rate per Station	1,330 kg / day	Levelized Cost of Capital	\$1.49 2007\$ / kg H2 dispensed
		Number of Dispensing Stations	92	Energy & Fuel	\$0.40 2007\$ / kg H2 dispensed
			92 5	0,	
		Number of Compression Steps Usable Low Pressure Storage per Station	5 1,450 kg H2	Other O&M Costs Levelized Cost of Dispensing	\$0.54 2007\$ / kg H2 dispensed \$2.43 2007\$ / kg H2 dispensed
				Levenzed Cost of Dispensing	φ2.45 2007φ/ kg Π2 uispenseu
	04 000 Phy / 44 000 Phy 4 Physics	Usable Cascade Storage per Station	200 kg H2		2 020 a CO2 as / 110000 Phy
Coal Input (including upstream)	21,900 Btu / 116000Btu to Pump	Site storage	100% % of design capacity	CSD CO2 Emissions	3,020 g CO2 eq./ 116000 Btu
Natural Gas Input (including upstream)	9,700 Btu / 116000Btu to Pump	# of 2-hose Dispensers per Station	3	CSD CH4 Emissions	190 g CO2 eq./ 116000 Btu
Petroleum Input (including upstream)	800 Btu / 116000Btu to Pump	Hydrogen losses	0.50%	CSD N2O Emissions	12 g CO2 eq./ 116000 Btu
				CSD GHG Emissions	3,220 g CO2 eq./ 116000 Btu
Vehicle Mass	3,020 lb	Vehicle		Cost Per Mile	\$0.66 2007\$ / mi
Fuel cell size	70 kW	Fuel Economy	48.0 mi / GGE	Fuel Share	\$0.10 2007\$ / mi
Size of hybridization battery	30 kW	Vehicle Miles Traveled	15,000 mi / yr	Maintenance, Tires, Repairs	\$0.07 2007\$ / mi
,,		Vehicle Lifetime	160,000 mi	Insurance & Registration	\$0.12 2007\$ / mi
		Purchase Year	2015	Depreciation	\$0.27 2007\$ / mi
		Vehicle Purchase Cost	\$33.700 2007\$	Financing	\$0.10 2007\$ / mi
		Fuel Cell System Cost	\$4,500 2007\$		····· 2001 • / ····
Coal Input (including upstream)	2,300 Btu / gge fuel consumed	Hydrogen Storage System Cost	\$2,400 2007\$	Vehicle Cycle CO2 Emissions	1,670 g CO2 eg / gge fuel consumed
Natural Gas Input (including upstream)	12,100 Btu / gge fuel consumed	Tax Credit	\$0 2007\$	Vehicle Cycle CH4 Emissions	170 g CO2 eq / gge fuel consumed
Petroleum Input (including upstream)	6,900 Btu / gge fuel consumed		φυ 2007φ	Vehicle Cycle N2O Emissions	6 g CO2 eq / gge fuel consumed
renoieum input (including upstream)	o,aou biu / gge iuei consumed			Vehicle Cycle GHG Emissions	1,850 g CO2 eq / gge fuel consumed
				VEHICLE CYCLE GITG ETHISSIONS	1,000 g COZ eq / gge luei consumed

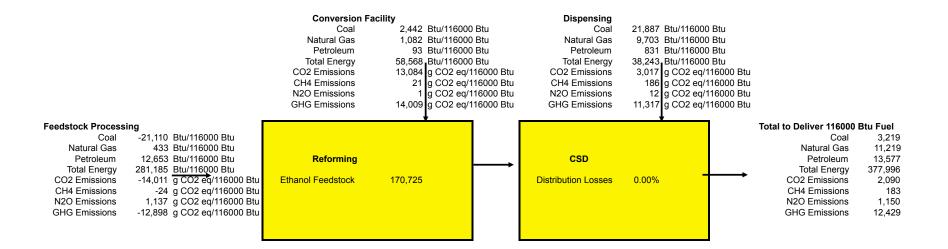

Parameter	Value	Units	Reference	Comments
Case Definition				
Startup Year	2015	;	Input	Default for this study's current cases
Reference Year Dollars	2007		Input	Default for this study's current cases
Production Technology	NATURAL GAS		Input	Case definition
Form of H2 During Delivery	Gas		Input	Case definition
Delivery Mode	None		Input	Case definition
Dispensing Mode	CASCADE 700 BAR		Input	Case definition
Forecourt Station Size		kg/day	Input	Case definition
Vehicle Type	passenger cars		Input	Case definition
Vehicle materials (conventional or lightweight)	Conventional		Input	Case definition; lightweight materials not currently an MSM option
Vehicles' Fuel Economy	48.0	mile / gge	Input	Default assumption for this study's current cases
Market Definition				
City Population	1,247,364		Input	Case Definition: Indianapolis, IN
Market penetration		(% vehicles in city)	Input	Case definition: Basis for Program Plan
Number of H2 vehicles in city		H2 vehicles / city	HDSAM Result	
Miles driven per vehicle		mile / vehicle year	Input	CPM only allows for 10K, 15K, and 20K/yr.
Miles driven per vehicle		miles in vehicle life	Input - GREET2 default	
City hydrogen use	121,096		HDSAM Result	
Number of H2 refueling stations in city	92		HDSAM Result	
Number of H2 stations/Number of gasoline stations	14%		HDSAM Result	
Average distance between stations (mi)	2.50	miles	HDSAM Result	
Other Assumptions for WTW Calculations				
Share of RFG in Total Gasoline Use	100%		Input: GREET default	Case definition: Basis for Program Plan
Type of Oxygenate in RFG	None		Input: GREET default	Case definition: Basis for Program Plan
O2 Content in RFG		wt %	Input: GREET default	Case definition: Basis for Program Plan
Ratio of FCEV VOCs (emissions) to GVs fueled with CG & RFG	0%	,	Input: GREET default	
Ratio of FCEV VOCs (evaporative) to GVs fueled with CG & RFG	0%	•	Input: GREET default	
Ratio of FCEV CO emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV NOx emissions to GVs fueled with CG & RFG	0%)	Input: GREET default	
Ratio of FCEV Exhaust PM10 emissions to GVs fueled with CG & RFG	0%)	Input: GREET default	
Ratio of FCEV Brake & Tire Wear PM10 emissions to GVs fueled with CG & RFG	100%		Input: GREET default	
Ratio of FCEV Exhaust PM2.5 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV Brake & Tire Wear PM2.5 emissions to GVs fueled with CG & RFG	100%	,	Input: GREET default	
Ratio of FCEV CH4 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV N2O emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Marginal Electricity Generation Mix for Transportation Use	US Mix		Input	Case definition: Basis for Program Plan

Parameter		Value	Units	Reference	Comments
Natural Gas					
Percen	nt of NG that is Shale Gas (remainder is conventional NG)	32.1%		GREET default input	
NG rec	covery efficiency	95.7%		GREET default input	
NG lost	st during recovery	399	g/MMBtu	GREET default input	Previously reported at percent of total NG not on a MMBtu basis
	ntage of energy use/loss for recovery that is combusted natural gas	49.0%		GREET default input	
	gas recovery efficiency	96.5%		GREET default input	
	gas lost during recovery		g/MMBtu	GREET default input	
Percen	ntage of energy use/loss for recovery that is combusted shale gas	57.4%		GREET default input	
	ocessing energy efficiency	97.2%		Wang, M.Q. (1999, August). GREET 1.5 - Transportation Fuel-Cycle Model Volume 1: Methodology, development, Use and Results. Argonne, IL: Argonne National Laboratory.	GREET uses 97.5% which is comparable to several other models (Table 4.11)
	st during processing		g/MMBtu	GREET default input	
	ntage of energy use for processing that is combusted natural gas	90.7%		GREET default input	
	ed & lost during transport and distribution		g / MMBtu	GREET default input	
	insport distance	500	miles	GREET default input	
Electricity					
Grid mi	nix for production	US Mix		GREET input	Default
	Biomass Fraction	0.5%		Definition of US Mix	
	Coal Fraction	44.2%		Definition of US Mix	Energy Information Administration. (2007, February). Ann Energy Outlook 2007 with Projections to 2030. DOE/EIA- 2002/02/10/2016/19/19/19/19/19/19/19/19/19/19/19/19/19/
	Natural Gas Fraction	21.5%		Definition of US Mix	 0383(2007). Washington, D.C. Retreived from www.eia.doe.gov/oiaf/archive/aeo07/index.html Nationa electricity generation data from tables D-7 & D-8 using t 2005 timeframe. Percentages calculated from total generation values reported with all renewables except biomass aggregated into the "Others (Carbon Neutral)" category
	Nuclear Fraction	21.0%		Definition of US Mix	
	Residual Oil Fraction	0.9%		Definition of US Mix	
	Others (Carbon Neutral - Hydroelectric, Wind, Geothermal, Solar PV, etc)	11.8%		Definition of US Mix	
Biomas	ss Electricity Shares and Efficiency				
	IGCC Share of Biomass Power Plants	1.0%		GREET default input	
	Combustion Share of Biomass Power Plants	99.0%		GREET default input	By difference from IGCC plants
	Biomass IGCC Efficiency	43.0%		GREET default input	
	Biomass Combustion Plant Efficiency	32.1%		GREET default input	
	Effective Efficiency of Biopower Plants	32.2%		GREET default input	
Coal El	lectricity Shares and Efficiency				
	IGCC Share of Coal Power Plants	1.0%		GREET default input	
	Combustion Share of Coal Power Plants	99.0%		GREET default input	
	Coal IGCC Efficiency	47.0%		GREET default input	
	Coal Combustion Plant Efficiency	34.1%		GREET default input	
	Effective Efficiency of Coal-Electricity Plants	34.2%		GREET default input	
Natural	al Gas Electricity Shares and Efficiency				
	Simple Cycle Gas Turbine Share of Natural Gas Power Plants	37.0%		GREET default input	
	Combined Cycle Gas Turbine Share of Natural Gas Power Plants	46.0%		GREET default input	
	Combustion Boiler Share of Natural Gas Power Plants	17.0%		GREET default input	
	Natural Gas Simple Cycle Gas Turbine Plant Efficiency	33.1%		GREET default input	
	Natural Gas Combined Cycle Efficiency	55.0%		GREET default input	
	Natural Gas Combustion Boiler Plant Efficiency	34.8%		GREET default input	
	Effective Efficiency of Natural Gas-Electricity Plants	40.9%		GREET default input	
Residu	ual Oil Electricity Efficiency				
	Residual Oil Electricity Plant Efficiency	34.8%		GREET default input	
Electici	ity Transmission and Distribution Losses	8.0%		GREET default input	

Parameter		Value	Units	Reference	Comments
Parameters for	GREET2				
Vehicle	otal mass	3,020	lb	GREET2 Default Input	
Battery	Type for Hybridization	NiMH		GREET2 Default Input	
	ation Battery Size in Peak Hybridization Battery Power	30	kW	GREET2 Default Input	
Hybridiz	ation Battery Specific Power	272	W / Ib	GREET2 Default Input	
	ation Battery Mass	110	lb	GREET2 Default Input	
Number	of replacements of hybridization battery over lifetime	2		GREET2 Default Input	
Starter E	Battery (Lead Acid) Mass	22		GREET2 Default Input	
Mass of	fluids on-board vehicle	56	lb	GREET2 Default Input	
Compor	ent mass (vehicles without batteries or fluids)	2,832	lb	GREET2 Calculation	
	Powertrain system percentage of component mass	8.0%		GREET2 Default Input	
	Transmission system percentage of component mass	2.6%		GREET2 Default Input	
	Chassis (without battery) percentage of component mass	23.0%		GREET2 Default Input	
	Traction motor percentage of component mass	3.8%		GREET2 Default Input	
	Generator percentage of component mass	0.0%		GREET2 Default Input	
	Electronic controller percentage of component mass	3.4%		GREET2 Default Input	
	Fuel Cell Auxiliary System percentage of component mass	19.3%		GREET2 Default Input	
	Body: including BIW, interior, exterior, and glass	39.9%		GREET2 Default Input	
	I Stack Size		kW	GREET2 Default Input	
Mass of	Fuel Cell Stack - Powertrain System	226		GREET2 Calculation	
Mass of	Fuel Cell Stack - Auxiliary Systems	546	lb	GREET2 Calculation	
Miles dri	ven per vehicle over lifetime	160,000	miles in vehicle life	GREET2 Default Input	Current analysis assumes 5-year life 10-year analysis is available

Appendix B: Distributed Ethanol Supporting Tables and Figures

Distributed Hydrogen Production

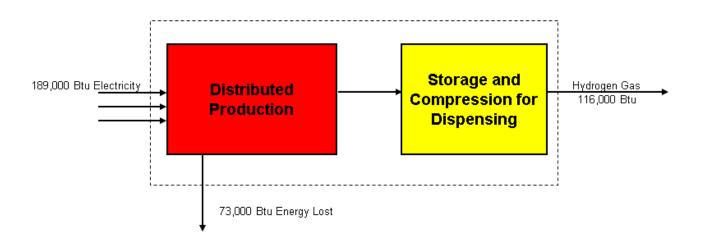

Well-to-Wheels Total Energy Use (Btu/mile)	7,888
Well-to-Wheels Petroleum Energy Use (Btu/mile)	283
Well-to-Wheels Greenhouse Gas Emissions (g/mile)	72
Levelized Cost of H2 at Pump (\$/kg)	8.85

Production Process Energy Efficiency	67%
Pathway Efficiency	62%
WTP Efficiency	31%
WTP Emissions (lb CO2 Equivalent / GGE fuel available):	8

Case Definition

Year: 2015 Hydrogen as Gas Forecourt Production ETHANOL Feedstock Sequestration: NO Transport for Delivery: None Vehicle Efficiency: 48 mile / GGE City Hydrogen Use: 121096 kg/day

Inj	outs	Assumption	ns	Outputs		
		Ethanol Produc	tion			
		Percent from Corn Stover	100%	Ethanol Cost	\$3.04 2007 \$ / gal	
		Corn Stover Production	2.21 dry ton / acre	Ethanol Share of H2 Cost	\$5.29 2007\$ / kg H2 dispensed	
Coal Input (including upstream)	-21,100 Btu / 116000Btu to Pump	Ethanol Yield from Corn Stover	90.0 gal / dry ton			
Natural Gas Input (including upstream)	400 Btu / 116000Btu to Pump	Elec. Co-Prod. from Corn Stover Conversion	2.28 kWh / gal ethanol	WTG CO2 Emissions	-14,010 g CO2 eq./ 116000 Btu	
Petroleum Input (including upstream)	12,700 Btu / 116000Btu to Pump			WTG CH4 Emissions	-20 g CO2 eq./ 116000 Btu	
		Displacement method used fo		WTG N2O Emissions	1,140 g CO2 eq./ 116000 Btu	
Energy use and emissions calcs include	electricity displaced by ethanol production	of co-produced electricity on LCA results		WTG GHG Emissions	-12,900 g CO2 eq./ 116000 Btu	
				Hydrogen Output Pressure	300 psi	
Ethanol Consumption	2.19 gal / kg H2 produced	Hydrogen Produ	iction	Hydrogen Outlet Quality	99.9%	
Electricity consumption	0.49 kWh / kg H2 produced			, <u>.</u>		
Process Water Consumption	8.18 gal / kg H2 produced	Distributed plant design capacity	1,500 kg / day	Total capital investment	\$1,430 2007\$ / daily kg H2 (effective capacity)	
Cooling Water Consumption	0.00 gal / kg H2 produced	Capacity factor	89%	Levelized Cost of Capital	\$0.83 2007\$ / kg H2 dispensed	
3 • • • • •	5 5 5 1	# of Plants Needed to Meet City Demand	92	Fixed O&M Costs	\$0.24 2007\$ / kg H2 dispensed	
Total Capital Investment per station	\$1,907,000 2007\$	Process energy efficiency	67.4%	Variable O&M Costs	\$0.07 2007\$ / kg H2 dispensed	
		Electricity Mix	US Mix	Total Levelized Cost	\$6.42 2007\$ / kg H2 dispensed	
		After-tax IRR	10%			
Coal Input (including upstream)	2,400 Btu / 116000Btu to Pump	Assumed Plant Life	20	SMR CO2 Emissions	13,080 g CO2 eq./ 116000 Btu	
Natural Gas Input (including upstream)	1,100 Btu / 116000Btu to Pump			SMR CH4 Emissions	20 g CO2 eq./ 116000 Btu	
Petroleum Input (including upstream)	100 Btu / 116000Btu to Pump			SMR N2O Emissions	1 g CO2 eq./ 116000 Btu	
				SMR GHG Emissions	14,010 g CO2 eq./ 116000 Btu	
Electricity consumption	4.4 kWh / kg H2	Forecourt Dispe	nsing	Hydrogen outlet pressure	12,700 psi	
				Basis Hydrogen Quantity	116,000 Btu (116,000 Btu/gal non-oxygenated	
		City Population	1,247,000 people		conventional unleaded gasoline)	
Total Capital Investment (per station)	\$5,059,000 2007\$ / station	Hydrogen Vehicle Penetration	15%	Total capital investment	\$3,810 2007\$ / daily kg H2 (effective capacity)	
Total Capital Investment	\$465,390,000 2007\$ / all stations	City hydrogen use	121,100 kg / day	Levelized Cost of Capital	\$1.49 2007\$ / kg H2 dispensed	
		Average Dispensing Rate per Station	1,329 kg / day	Energy & Fuel	\$0.40 2007\$ / kg H2 dispensed	
		Number of Dispensing Stations	92	Other O&M Costs	\$0.54 2007\$ / kg H2 dispensed	
		Number of Compression Steps	5	Levelized Cost of Dispensing	\$2.43 2007\$ / kg H2 dispensed	
		Usable Low Pressure Storage per Station	1450 kg H2			
		Usable Cascade Storage per Station	200 kg H2	CSD CO2 Emissions	3,020 g CO2 eq./ 116000 Btu	
Coal Input (including upstream)	21,900 Btu / 116000Btu to Pump	Site storage	100% % of design capacity	CSD CH4 Emissions	190 g CO2 eq./ 116000 Btu	
Natural Gas Input (including upstream)	9,700 Btu / 116000Btu to Pump	# of 2-hose Dispensers per Station	3	CSD N2O Emissions	12 g CO2 eq./ 116000 Btu	
Petroleum Input (including upstream)	800 Btu / 116000Btu to Pump	Hydrogen losses	0.50%	CSD GHG Emissions	11,320 g CO2 eq./ 116000 Btu	
Vehicle Mass	3.020 lb	Vehicle		Cost Per Mile	\$0.75 2007\$ / mi	
Fuel cell size	70 kW	Fuel Economy	48.0 mi / GGE	Fuel Share	\$0.18 2007\$ / mi	
Size of hybridization battery	30 kW	Vehicle Miles Traveled	15,000 mi / yr	Maintenance, Tires, Repairs	\$0.07 2007\$ / mi	
		Vehicle Lifetime	160,000 mi	Insurance & Registration	\$0.12 2007\$ / mi	
		Purchase Year	2015	Depreciation	\$0.27 2007\$ / mi	
		Vehicle Purchase Cost	\$33,700 2007\$	Financing	\$0.10 2007\$ / mi	
		Fuel Cell System Cost	\$4,500 2007\$	-		
Coal Input (including upstream)	2,300 Btu / gge fuel consumed	Hydrogen Storage System Cost	\$2,400 2007\$	Veh. Cycle CO2 Emissions	1,670 g CO2 eq / gge fuel consumed	
Natural Gas Input (including upstream)	12,100 Btu / gge fuel consumed	Tax Credit	\$0 2007\$	Veh. Cycle CH4 Emissions	170 g CO2 eq / gge fuel consumed	
Petroleum Input (including upstream)	6,900 Btu / gge fuel consumed			Veh. Cycle N2O Emissions	6 g CO2 eq / gge fuel consumed	
				Veh. Cycle GHG Emissions	1,850 g CO2 eq / gge fuel consumed	

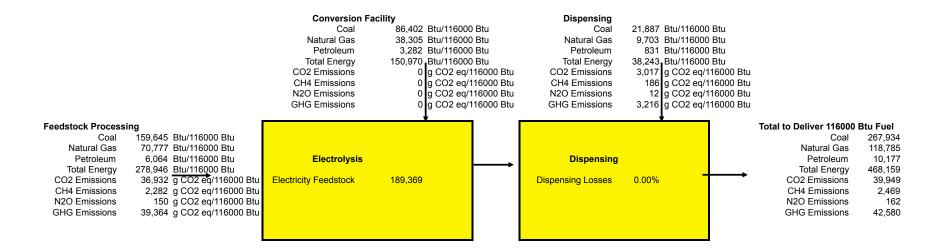

Parameter	Value	Units	Reference	Comments
Case Definition				
Startup Year	2015	;	Input	Default for this study's current cases
Reference Year Dollars	2007		Input	Default for this study's current cases
Production Technology	ETHANOL		Input	Case definition
Form of H2 During Delivery	Gas		Input	Case definition
Delivery Mode	None		Input	Case definition
Dispensing Mode	CASCADE 700 BAR		Input	Case definition
Forecourt Station Size		kg/day	Input	Case definition
Vehicle Type	passenger cars	J (1)	Input	Case definition
Vehicle materials (conventional or lightweight)	Conventional		Input	Case definition; lightweight materials not current an MSM option
Vehicles' Fuel Economy	48.0	mile / gge	Input	Default assumption for this study's current cases
Market Definition				
City Population	1,247,364		Input	Case Definition: Indianapolis, IN
Market penetration		(% vehicles in city)	Input	Case definition: Basis for Program Plan
Number of H2 vehicles in city		H2 vehicles / city	HDSAM Result	
Miles driven per vehicle		mile / vehicle year	Input	CPM only allows for 10K, 15K, and 20K/yr.
Miles driven per vehicle		miles in vehicle life	Input - GREET2 default	
City hydrogen use	121,096		HDSAM Result	
Number of H2 refueling stations in city	92		HDSAM Result	
Number of H2 stations/Number of gasoline stations	14%		HDSAM Result	
Average distance between stations (mi)	2.50	miles	HDSAM Result	
Other Assumptions for WTW Calculations				
Share of RFG in Total Gasoline Use	100%)	Input: GREET default	Case definition: Basis for Program Plan
Type of Oxygenate in RFG	None		Input: GREET default	Case definition: Basis for Program Plan
O2 Content in RFG	0%	wt %	Input: GREET default	Case definition: Basis for Program Plan
Ratio of FCEV VOCs (emissions) to GVs fueled with CG & RFG	0%	•	Input: GREET default	
Ratio of FCEV VOCs (evaporative) to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV CO emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV NOx emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV Exhaust PM10 emissions to GVs fueled with CG & RFG	0%)	Input: GREET default	
Ratio of FCEV Brake & Tire Wear PM10 emissions to GVs fueled with CG & RFG	100%)	Input: GREET default	
Ratio of FCEV Exhaust PM2.5 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV Brake & Tire Wear PM2.5 emissions to GVs fueled with CG & RFG	100%	,	Input: GREET default	
Ratio of FCEV CH4 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV N2O emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Marginal Electricity Generation Mix for Transportation Use	US Mix		Input	Case definition: Basis for Program Plan

Parame	eter		Value	Units	Reference	Comments
Electricity						
		or production	US Mix		GREET input	Default
		Biomass Fraction	0.5%		Definition of US Mix	
			0.578			Energy Information Administration. (2007, February). Annual
		Coal Fraction	44.2%		Definition of US Mix	Energy Outlook 2007 with Projections to 2030. DOE/EIA- 0383(2007). Washington, D.C. Retreived from
		Natural Gas Fraction	21.5%		Definition of US Mix	www.eia.doe.gov/oiaf/archive/aeo07/index.html National electricity generation data from tables D-7 & D-8 using the
		Nuclear Fraction	21.0%		Definition of US Mix	2005 timeframe. Percentages calculated from total generation values reported with all renewables except
		Residual Oil Fraction	0.9%		Definition of US Mix	biomass aggregated into the "Others (Carbon Neutral)"
		Others (Carbon Neutral - Hydroelectric, Wind, Geothermal, Solar PV, etc)	11.8%		Definition of US Mix	
		lectricity Shares and Efficiency				
		IGCC Share of Biomass Power Plants	1.0%		GREET default input	
		Combustion Share of Biomass Power Plants	99.0%		GREET default input	By difference from IGCC plants
		Biomass IGCC Efficiency	43.0%		GREET default input	
		Biomass Combustion Plant Efficiency	32.1%		GREET default input	
		Effective Efficiency of Biopower Plants	32.2%		GREET default input	
	Coal Elect	tricity Shares and Efficiency				
		IGCC Share of Coal Power Plants	1.0%		GREET default input	
		Combustion Share of Coal Power Plants	99.0%		GREET default input	
		Coal IGCC Efficiency	47.0%		GREET default input	
		Coal Combustion Plant Efficiency	34.1%		GREET default input	
		Effective Efficiency of Coal-Electricity Plants	34.2%		GREET default input	
	Natural G	as Electricity Shares and Efficiency Simple Cycle Gas Turbine Share of Natural Gas Power Plants	37.0%		GREET default input	
		Combined Cycle Gas Turbine Share of Natural Gas Power Plants	46.0%		GREET default input	
		Combustion Boiler Share of Natural Gas Power Plants	40.0%		GREET default input	
		Natural Gas Simple Cycle Gas Turbine Plant Efficiency	33.1%		GREET default input	
		Natural Gas Combined Cycle Efficiency	55.0%		GREET default input	
		Natural Gas Combined Cycle Enclency	34.8%		GREET default input	
		Effective Efficiency of Natural Gas-Electricity Plants	40.9%		GREET default input	
		Dil Electricity Efficiency	101070			
		Residual Oil Electricity Plant Efficiency	34.8%		GREET default input	
		Transmission and Distribution Losses	8.0%		GREET default input	
Ethanol						
	Percentag	e of Ethanol from Corn (grain)	0.0%		GREET default input	
		e of Ethanol from Farmed Trees	0.0%		GREET default input	
	Percentag	e of Ethanol from Switchgrass	0.0%		GREET default input	
	Percentag	e of Ethanol from Corn Stover	100.0%		GREET default input	
	Percentag	e of Ethanol from Forest Residue	0.0%		GREET default input	
	Percentag	e of Ethanol from Sugar Cane	0.0%		GREET default input	
		er Farming - Energy Requirement		Btu / dry ton stover	GREET default input	In addition to corn grain requirement
	Corn Stov	er Farming - Nitrogen Fertilizer		g / dry ton stover	GREET default input	In addition to corn grain requirement
		er Farming - P2O5 Fertilizer		g / dry ton stover	GREET default input	In addition to corn grain requirement
	Corn Stov	er Farming - K2O Fertilizer		g / dry ton stover	GREET default input	In addition to corn grain requirement
		er Farming - Herbicide		g / dry ton	GREET default input	In addition to corn grain requirement
		er Farming - Insecticide		g / dry ton	GREET default input	In addition to corn grain requirement
		er Farming - Yield		dry ton / acre	GREET result	In addition to corn grain requirement
		Emissions due to land use change included?	No		GREET default input	In addition to corn grain requirement
		er Conversion - Ethanol Yield	90.0	gal / dry ton	GREET default input	
	Corn Stov	er Conversion - Electricity Co-Product	-2.28	kWh / gal ethanol	GREET default input	

Parameter		Value	Units	Reference	Comments
Parameters for (GREET2				
Vehicle to	otal mass	3,020 lb	1	GREET2 Default Input	
Battery T	ype for Hybridization	NiMH		GREET2 Default Input	
	tion Battery Size in Peak Hybridization Battery Power	30 k	N	GREET2 Default Input	
Hybridiza	tion Battery Specific Power	272 W	/ / lb	GREET2 Default Input	
	tion Battery Mass	110 lb		GREET2 Default Input	
Number	of replacements of hybridization battery over lifetime	2		GREET2 Default Input	
Starter B	attery (Lead Acid) Mass	22 lb		GREET2 Default Input	
Mass of	luids on-board vehicle	56 lb		GREET2 Default Input	
Compone	ent mass (vehicles without batteries or fluids)	2,832 lb		GREET2 Calculation	
	Powertrain system percentage of component mass	8.0%		GREET2 Default Input	
	Transmission system percentage of component mass	2.6%		GREET2 Default Input	
	Chassis (without battery) percentage of component mass	23.0%		GREET2 Default Input	
	Traction motor percentage of component mass	3.8%		GREET2 Default Input	
	Generator percentage of component mass	0.0%		GREET2 Default Input	
	Electronic controller percentage of component mass	3.4%		GREET2 Default Input	
	Fuel Cell Auxiliary System percentage of component mass	19.3%		GREET2 Default Input	
	Body: including BIW, interior, exterior, and glass	39.9%		GREET2 Default Input	
	Stack Size	70 k		GREET2 Default Input	
Mass of	Fuel Cell Stack - Powertrain System	226 lb		GREET2 Calculation	
Mass of	Fuel Cell Stack - Auxiliary Systems	546 lb		GREET2 Calculation	
Miles driv	ren per vehicle over lifetime	160,000 m	iles in vehicle life	GREET2 Default Input	Current analysis assumes 5-year life 10-year analysis is available

Appendix C: Distributed Electricity Supporting Tables and Figures

Distributed Hydrogen Production

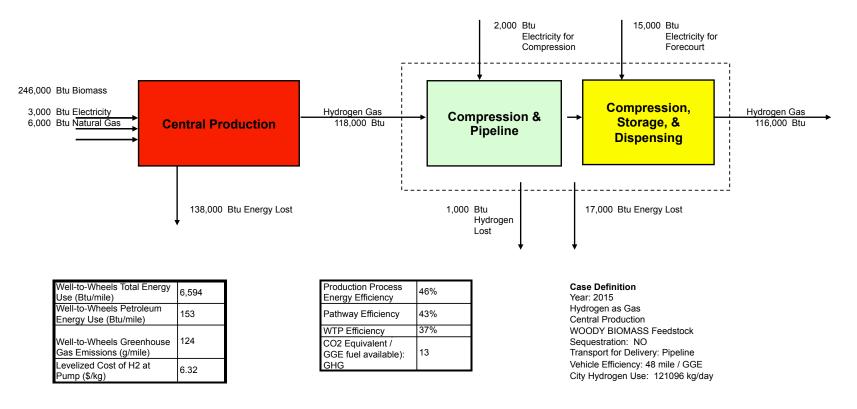

Well-to-Wheels Total Energy Use (Btu/mile)	9,769
Well-to-Wheels Petroleum	212
Energy Use (Btu/mile)	
Well-to-Wheels	
Greenhouse Gas	822
Emissions (g/mile)	
Levelized Cost of H2 at	6.75
Pump (\$/kg)	0.75

Production Process Energy Efficiency	67%
Pathway Efficiency	61%
WTP Efficiency	25%
WTP Emissions (lb CO2 Equivalent / GGE fuel available):	87

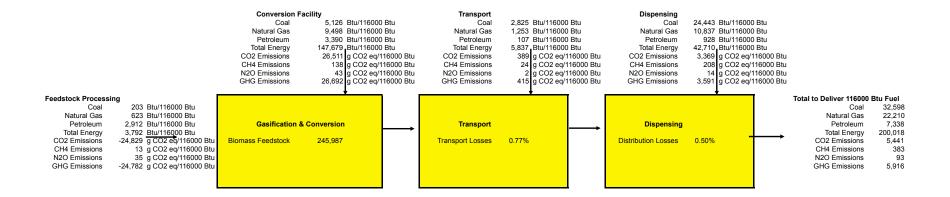
Case Definition

Year: 2015 Hydrogen as Gas Forecourt Production ELECTROLYSIS Feedstock Sequestration: NO Transport for Delivery: None Vehicle Efficiency: 48 mile / GGE City Hydrogen Use: 121096 kg/day

Inputs		Assumptio	ons	Outputs		
Coal Input (including upstream)	159,600 Btu / 116000Btu to Pump	Electricity Generation & U.S. Grid Mix Biomass Fraction Coal Fraction Natural Gas Fraction Nuclear Fraction	& Transmission 1% 44% 21% 21%	Electricity price at H2 production Electricity Share of H2 Cost WTG CO2 Emissions WTG CH4 Emissions	0.0574 2007\$ / kWh \$3.22 2007\$ / kg H2 dispensed 36,930 g CO2 eq./ 116000 Btu 2.280 g CO2 eq./ 116000 Btu	
Natural Gas Input (including upstream) Petroleum Input (including upstream)	70,800 Btu / 116000Btu to Pump 6,100 Btu / 116000Btu to Pump	Residual Oil Fraction Others (Carbon Neutral)	21% 1% 12%	WTG CH4 Emissions WTG N2O Emissions WTG GHG Emissions	150 g CO2 eq./ 116000 Btu 39,360 g CO2 eq./ 116000 Btu	
Electricity consumption Process Water Consumption Cooling Water Consumption	50.0 kWh / kg H2 produced 2.94 gal / kg H2 produced 0.11 gal / kg H2 produced	Hydrogen Proc Distributed plant design capacity Capacity factor	luction 1,500 kg / day 89%	Hydrogen Output Pressure Hydrogen Outlet Quality Total capital investment Levelized Cost of Capital	300 psi 100.0% \$1,700 2007\$ / daily kg H2 (effective capacity) \$0.77 2007\$ / kg H2 dispensed	
Total Capital Investment per station	\$2,258,000 2007\$	# of Plants Needed to Meet City Demand Process energy efficiency Electricity Mix After-tax IRR	91 66.8% US Mix 10%	Fixed O&M Costs Variable O&M Costs Total Levelized Cost	\$0.28 2007\$ / kg H2 dispensed \$0.06 2007\$ / kg H2 dispensed \$4.32 2007\$ / kg H2 dispensed	
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	86,400 Btu / 116000Btu to Pump 38,300 Btu / 116000Btu to Pump 3,300 Btu / 116000Btu to Pump	Assumed Plant Life	20 years	Production CO2 Emissions Production CH4 Emissions Production N2O Emissions Production GHG Emissions	0 g CO2 eq./ 116000 Btu 0 g CO2 eq./ 116000 Btu 0 g CO2 eq./ 116000 Btu 0 g CO2 eq./ 116000 Btu	
Electricity consumption Electricity price	4.4 kWh / kg H2 \$0.088 2007\$ / kWh	Forecourt Disp	1,247,000 people	Hydrogen outlet pressure Basis Hydrogen Quantity	12,700 psi 116,000 Btu (116,000 Btu/gal non-oxygenated conventional unleaded gasoline)	
Total Capital Investment (per station) Total Capital Investment	\$5,059,000 2007\$ / station \$465,391,000 2007\$ / all stations	Hydrogen Vehicle Penetration City hydrogen use Average Dispensing Rate per Station Number of Dispensing Stations Number of Compression Steps Usable Low Pressure Storage per Station Usable Cascade Storage per Station	15% 121,100 kg / day 1,330 kg / day 92 0 1,450 kg H2 200 kg H2	Total capital investment Levelized Cost of Capital Energy & Fuel Other O&M Costs Levelized Cost of Dispensing	\$3,810 2007\$ / daily kg H2 (effective capacity) \$1.49 2007\$ / kg H2 dispensed \$0.40 2007\$ / kg H2 dispensed \$0.54 2007\$ / kg H2 dispensed \$2.43 2007\$ / kg H2 dispensed	
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	21,900 Btu / 116000Btu to Pump 9,700 Btu / 116000Btu to Pump 800 Btu / 116000Btu to Pump	Site storage # of 2-hose Dispensers per Station Hydrogen losses	100% % of design capacity 3 0.50%	CSD CO2 Emissions CSD CH4 Emissions CSD N2O Emissions CSD GHG Emissions	3,020 g CO2 eq./ 116000 Btu 190 g CO2 eq./ 116000 Btu 12 g CO2 eq./ 116000 Btu 3,220 g CO2 eq./ 116000 Btu	
Vehicle Mass Fuel cell size Size of hybridization battery	3,020 lb 70 kW 30 kW	Vehicle Fuel Economy Vehicle Miles Traveled Vehicle Lifetime Purchase Year Vehicle Purchase Cost Fuel Cell System Cost	48.0 mi / gge 15,000 mi / yr 160,000 mi 2015 \$33,700 2007\$ \$4,500 2007\$	Cost Per Mile Fuel Share Maintenance, Tires, Repairs Insurance & Registration Depreciation Financing	\$0.71 2007\$ / mi \$0.14 2007\$ / mi \$0.07 2007\$ / mi \$0.12 2007\$ / mi \$0.27 2007\$ / mi \$0.10 2007\$ / mi	
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	2,300 Btu / gge fuel consumed 12,100 Btu / gge fuel consumed 6,900 Btu / gge fuel consumed	Hydrogen Storage System Cost Tax Credit	\$2,400 2007\$ \$0 2007\$	Vehicle Cycle CO2 Emissions Vehicle Cycle CH4 Emissions Vehicle Cycle N2O Emissions Vehicle Cycle GHG Emissions	1,670 g CO2 eq / gge fuel consumed 7 g CO2 eq / gge fuel consumed 0 g CO2 eq / gge fuel consumed 1,850 g CO2 eq / gge fuel consumed	


Parameter	Value	Units	Reference	Comments
Case Definition				
Startup Year	2015	;	Input	Default for this study's current cases
Reference Year Dollars	2007		Input	Default for this study's current cases
Production Technology	ELECTROLYSIS		Input	Case definition
Form of H2 During Delivery	Gas		Input	Case definition
Delivery Mode	None		Input	Case definition
Dispensing Mode	CASCADE 700 BAR		Input	Case definition
Forecourt Station Size		kg/day	Input	Case definition
Vehicle Type	passenger cars	J ,	Input	Case definition
Vehicle materials (conventional or lightweight)	Conventional		Input	Case definition; lightweight materials not current an MSM option
Vehicles' Fuel Economy	48.0	mile / gge	Input	Default assumption for this study's current cases
Market Definition				
City Population	1,247,364		Input	Case Definition: Indianapolis, IN
Market penetration		(% vehicles in city)	Input	Case definition: Basis for Program Plan
Number of H2 vehicles in city		H2 vehicles / city	HDSAM Result	
Miles driven per vehicle		mile / vehicle year	Input	CPM only allows for 10K, 15K, and 20K/yr.
Miles driven per vehicle		miles in vehicle life	Input - GREET2 default	
City hydrogen use	121,096		HDSAM Result	
Number of H2 refueling stations in city	92		HDSAM Result	
Number of H2 stations/Number of gasoline stations	14%		HDSAM Result	
Average distance between stations (mi)	2.50	miles	HDSAM Result	
Other Assumptions for WTW Calculations				
Share of RFG in Total Gasoline Use	100%)	Input: GREET default	Case definition: Basis for Program Plan
Type of Oxygenate in RFG	None		Input: GREET default	Case definition: Basis for Program Plan
O2 Content in RFG	0%	wt %	Input: GREET default	Case definition: Basis for Program Plan
Ratio of FCEV VOCs (emissions) to GVs fueled with CG & RFG	0%)	Input: GREET default	
Ratio of FCEV VOCs (evaporative) to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV CO emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV NOx emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV Exhaust PM10 emissions to GVs fueled with CG & RFG	0%	1	Input: GREET default	
Ratio of FCEV Brake & Tire Wear PM10 emissions to GVs fueled with CG & RFG	100%)	Input: GREET default	
Ratio of FCEV Exhaust PM2.5 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV Brake & Tire Wear PM2.5 emissions to GVs fueled with CG & RFG	100%	,	Input: GREET default	
Ratio of FCEV CH4 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV N2O emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Marginal Electricity Generation Mix for Transportation Use	US Mix	1	Input	Case definition: Basis for Program Plan

Param	eter		Value	Units	Reference	Comments
Electricit			Value	enne	Reference	
		pr production	US Mix		GREET input	Default
		Biomass Fraction	0.5%		Definition of US Mix	
		Coal Fraction	44.2%		Definition of US Mix	Energy Information Administration. (2007, February). Annual Energy Outlook 2007 with Projections to 2030. DOE/EIA-
		Natural Gas Fraction	21.5%		Definition of US Mix	0383(2007). Washington, D.C. Retreived from www.eia.doe.gov/oiaf/archive/aeo07/index.html National electricity generation data from tables D-7 & D-8 using the
		Nuclear Fraction	21.0%		Definition of US Mix	2005 timeframe. Percentages calculated from total generation values reported with all renewables except
		Residual Oil Fraction	0.9%		Definition of US Mix	biomass aggregated into the "Others (Carbon Neutral)" category
		Others (Carbon Neutral - Hydroelectric, Wind, Geothermal, Solar PV, etc)	11.8%		Definition of US Mix	
-	Biomass E	lectricity Shares and Efficiency				
		IGCC Share of Biomass Power Plants	1.0%		GREET default input	
		Combustion Share of Biomass Power Plants	99.0%		GREET default input	By difference from IGCC plants
		Biomass IGCC Efficiency	43.0%		GREET default input	
		Biomass Combustion Plant Efficiency	32.1%		GREET default input	
		Effective Efficiency of Biopower Plants	32.2%		GREET default input	
	Coal Elect	ricity Shares and Efficiency				
		IGCC Share of Coal Power Plants	1.0%		GREET default input	
		Combustion Share of Coal Power Plants	99.0%		GREET default input	
		Coal IGCC Efficiency	47.0%		GREET default input	
		Coal Combustion Plant Efficiency	34.1%		GREET default input	
		Effective Efficiency of Coal-Electricity Plants	34.2%		GREET default input	
		as Electricity Shares and Efficiency			·	
		Simple Cycle Gas Turbine Share of Natural Gas Power Plants	37.0%		GREET default input	
		Combined Cycle Gas Turbine Share of Natural Gas Power Plants	46.0%		GREET default input	
		Combustion Boiler Share of Natural Gas Power Plants	17.0%		GREET default input	
		Natural Gas Simple Cycle Gas Turbine Plant Efficiency	33.1%		GREET default input	
		Natural Gas Combined Cycle Efficiency	55.0%		GREET default input	
		Natural Gas Combustion Boiler Plant Efficiency	34.8%		GREET default input	
		Effective Efficiency of Natural Gas-Electricity Plants	40.9%		GREET default input	
	Residual (Dil Electricity Efficiency			· ·	
	1	Residual Oil Electricity Plant Efficiency	34.8%		GREET default input	
	Electicitv	Transmission and Distribution Losses	8.0%		GREET default input	

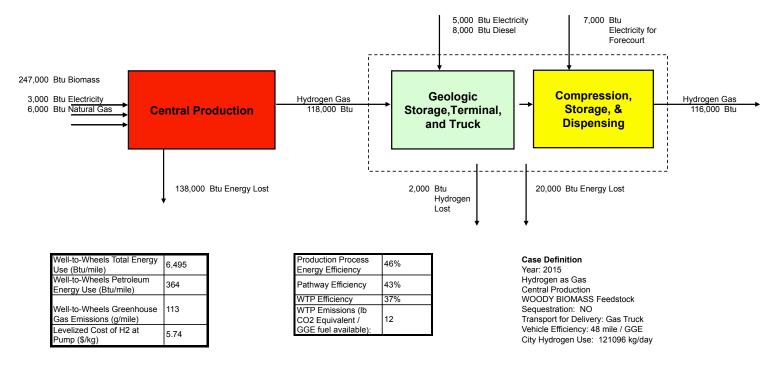

Parameter		Value	Units	Reference	Comments
Parameters for	GREET2				
Vehicle t	otal mass	3,020 Ib		GREET2 Default Input	
Battery	ype for Hybridization	NiMH		GREET2 Default Input	
	ation Battery Size in Peak Hybridization Battery Power	30 kV	V	GREET2 Default Input	
Hybridiz	ation Battery Specific Power	272 W	/ lb	GREET2 Default Input	
	ation Battery Mass	110 lb		GREET2 Default Input	
Number	of replacements of hybridization battery over lifetime	2		GREET2 Default Input	
Starter E	attery (Lead Acid) Mass	22 lb		GREET2 Default Input	
Mass of	fluids on-board vehicle	56 lb		GREET2 Default Input	
Compon	ent mass (vehicles without batteries or fluids)	2,832 lb		GREET2 Calculation	
	Powertrain system percentage of component mass	8.0%		GREET2 Default Input	
	Transmission system percentage of component mass	2.6%		GREET2 Default Input	
	Chassis (without battery) percentage of component mass	23.0%		GREET2 Default Input	
	Traction motor percentage of component mass	3.8%		GREET2 Default Input	
	Generator percentage of component mass	0.0%		GREET2 Default Input	
	Electronic controller percentage of component mass	3.4%		GREET2 Default Input	
	Fuel Cell Auxiliary System percentage of component mass	19.3%		GREET2 Default Input	
	Body: including BIW, interior, exterior, and glass	39.9%		GREET2 Default Input	
	Stack Size	70 kV	V	GREET2 Default Input	
	Fuel Cell Stack - Powertrain System	226 lb		GREET2 Calculation	
Mass of	Fuel Cell Stack - Auxiliary Systems	546 lb		GREET2 Calculation	
Miles dri	ven per vehicle over lifetime	160,000 m	iles in vehicle life	GREET2 Default Input	Current analysis assumes 5-year lif 10-year analysis is available

Appendix D: Central Biomass—Pipeline Delivery Supporting Tables and Figures

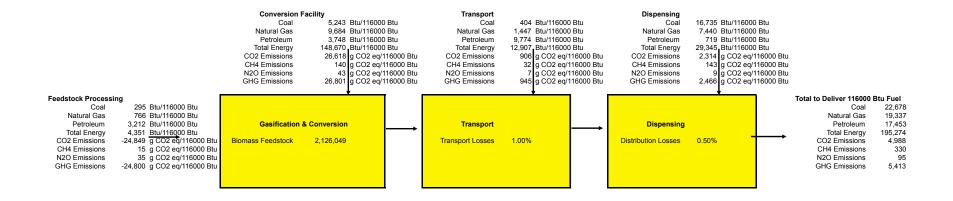
Hydrogen Produced In Central Plant and Transported as Gas via Pipeline

Inputs		Assumpti	ons	Outputs		
Energy Use for Farming Trees	235,000 Btu / dry ton	Biomass Productio	100%	Biomass moisture content Woody biomass LHV Biomass price at H2 production Biomass Share of Levelized Cos	25% 16,013,200 Btu / dry ton \$75 2007 \$ / dry ton \$0.97 2007\$ / kg H2 dispensed	
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	200 Btu / 116000Btu to Pump 600 Btu / 116000Btu to Pump 2,900 Btu / 116000Btu to Pump	LUC GHG changes Average dist from farm to H2 production p	='Params - U g / dry ton stream'!E15 miles	WTG CO2 Emissions WTG CH4 Emissions WTG N2O Emissions WTG GHG Emissions Hydrogen Output Pressure	-24,830 g CO2 eq./ 116000 Btu 13 g CO2 eq./ 116000 Btu 35 g CO2 eq./ 116000 Btu -24,780 g CO2 eq./ 116000 Btu 300 psi	
Biomass consumption	13.5 kg (dry) / kg H2 produced	Hydrogen Proc	duction	Hydrogen Outlet Quality	99.9%	
Natural gas consumption Electricity consumption Process Water Consumption Cooling Water Consumption Total Capital Investment	0.0059 MMBtu / kg H2 produced 0.98 kWh / kg H2 produced 1.32 gal / kg H2 produced 79.3 gal / kg H2 produced \$181,080,000 2007\$	Central plant design capacity Capacity factor Number of production facilities necessary Process energy efficiency Electricity Mix After-tax IRR	155,200 kg / day 90% 0.87 46.0% US Mix 10%	Total capital investment Levelized Cost of Capital Fixed O&M Costs Variable O&M Costs Total Levelized Cost	\$1,300 2007\$ / daily kg H2 (effective capacity) \$0.64 2007\$ / kg H2 dispensed \$0.23 2007\$ / kg H2 dispensed \$0.40 2007\$ / kg H2 dispensed \$2.24 2007\$ / kg H2 dispensed	
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	5,100 Btu / 116000Btu to Pump 9,500 Btu / 116000Btu to Pump 3,400 Btu / 116000Btu to Pump	Assumed Plant Life	40	Production CO2 Emissions Production CH4 Emissions Production N2O Emissions Production GHG Emissions	26,510 g CO2 eq./ 116000 Btu 140 g CO2 eq./ 116000 Btu 43 g CO2 eq./ 116000 Btu 26,690 g CO2 eq./ 116000 Btu	
Electricity consumption for compressor	0.56 kWh / kg H2 dispensed	Pipelines for D	Delivery	Total capital investment	\$3,300 2007\$ / daily kg H2 (effective capacity)	
Electricity consumption for geo storage Total electricity consumption Total Capital Investment	0.01 kWh / kg H2 dispensed 0.57 kWh / kg H2 dispensed \$404,341,000 2007\$	City Population Hydrogen Vehicle Penetration City hydrogen use Distance from City to Production Facility	1,247,000 people 15% 121,100 kg / day 62 miles	Levelized Cost of Capital Energy & Fuel Other O&M Costs Levelized Cost of Delivery	\$1.71 2007\$ / kg H2 dispensed \$0.04 2007\$ / kg H2 dispensed \$0.40 2007\$ / kg H2 dispensed \$2.15 2007\$ / kg H2 dispensed	
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	2,800 Btu / 116000Btu to Pump 1,300 Btu / 116000Btu to Pump 100 Btu / 116000Btu to Pump	Geologic storage capacity Number of trunk pipelines Service-line length Number of service lines Hydrogen losses	1,325,000 kg H2 3 1.5 miles / line 122 0.80%	Delivery CO2 Emissions Delivery CH4 Emissions Delivery N2O Emissions Delivery GHG Emissions	390 g CO2 eq./ 116000 Btu 24 g CO2 eq./ 116000 Btu 2 g CO2 eq./ 116000 Btu 420 g CO2 eq./ 116000 Btu	
Electricity consumption	4.4 kWh / kg H2 dispensed	Forecourt Disp	pensing	Hydrogen outlet pressure Basis Hydrogen Quantity	12,700 psi 116,000 Btu (116,000 Btu/gal non-oxygenated	
Total Capital Investment per Station Total Capital Investment Inlet pressure of hydrogen at stations	\$2,629,000 2007\$ / station \$320,679,000 2007\$ / all stations 300 psi	Average Dispensing Rate per Station Number of Dispensing Stations Number of Compression Steps Usable Low Pressure Storage per Station Usable Cascade Storage per Station	1,000 kg/day 122 5 370 kg H2 130 kg H2	Total capital investment Levelized Cost of Capital Energy & Fuel Other O&M Costs Levelized Cost of Dispensing	conventional unleaded gasoline) \$2,650 2007\$ / daily kg H2 (effective capacity) \$1.08 2007\$ / kg H2 dispensed \$0.41 2007\$ / kg H2 dispensed \$0.43 2007\$ / kg H2 dispensed \$1.93 2007\$ / kg H2 dispensed	
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	24,400 Btu / 116000 Btu to Pump 10,800 Btu / 116000 Btu to Pump 900 Btu / 116000 Btu to Pump	Site storage # of 2-hose Dispensers per Station Hydrogen Losses	42% % of design capacity 2 0.50%	CSD CO2 Emissions CSD CH4 Emissions CSD N2O Emissions CSD GHG Emissions	3,370 g CO2 eq./ 116000 Btu 210 g CO2 eq./ 116000 Btu 14 g CO2 eq./ 116000 Btu 3,590 g CO2 eq./ 116000 Btu	
Vehicle Mass Fuel cell size Hybridization battery (peak power)	3,020 lb 70 kW 30 kW	Vehicle Fuel Economy Vehicle Miles Traveled Vehicle Lifetime Purchase Year Vehicle Purchase Cost	48.0 mi / gge 15,000 mi / yr 160,000 mi 2015 \$33,700 2007\$	Cost Per Mile Fuel Share Maintenance, Tires, Repairs Insurance & Registration Depreciation Financing	\$0.70 2007\$ / mi \$0.03 2007\$ / mi \$0.07 2007\$ / mi \$0.12 2007\$ / mi \$0.27 2007\$ / mi \$0.10 2007\$ / mi	
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	2,300 Btu / gge fuel consumed 12,100 Btu / gge fuel consumed 6,900 Btu / gge fuel consumed	Fuel Cell System Cost Hydrogen Storage System Cost Tax Credit	\$3,700 2007\$ \$4,500 2007\$ \$2,400 2007\$ \$0 2007\$	Veh. Cycle CO2 Emissions Veh. Cycle CH4 Emissions Veh. Cycle N2O Emissions Veh. Cycle GHG Emissions	1,670 g CO2 eq/ gge fuel consumed 7 g CO2 eq/ gge fuel consumed 0 g CO2 eq/ gge fuel consumed 1,850 g CO2 eq/ gge fuel consumed	

Parameter		Hold	Value	Units	Reference	Comments
Case Definition						
Startup Year		2015			Input	Default for this study's current cases
Reference Year D		2007	2007		Input	Default for this study's current cases
Production Techn		WOODY BIOMASS	WOODY BIOMASS		Input	Case definition
Form of H2 Durin	ng Delivery	Gas	Gas		Input	Case definition
Delivery Mode		Pipeline	Pipeline		Input	Case definition
Dispensing Mode			CASCADE_700_BAR		Input	Case definition
Forecourt Station	n Size	1000		kg/day	Input	Case definition
Vehicle Type		passenger cars	passenger cars		Input	Case definition
	s (conventional or lightweight)	Conventional	Conventional		Input	Case definition; lightweight materials not currentl an MSM option
Vehicles' Fuel Ec	conomy	48.0	48.0	mile / gge	Input	Default assumption for this study's current cases
Market Definition						
City Population		1,247,364			Input	Case Definition: Indianapolis, IN
Market penetration		15%		(% vehicles in city)	Input	Case definition: Basis for Program Plan
Number of H2 ve		138,832		H2 vehicles / city	HDSAM Result	
Miles driven per v		15,000		mile / vehicle year	Input	CPM only allows for 10K, 15K, and 20K/yr.
Miles driven per v		160,000		miles in vehicle life	Input - GREET2 default	
City hydrogen us		121,096			HDSAM Result	
	fueling stations in city	122			HDSAM Result	
	ations/Number of gasoline stations	19%			HDSAM Result	
	e between stations (mi)	2.17	2.17	miles	HDSAM Result	
Other Assumptions fo	or WTW Calculations					
	Total Gasoline Use	100%	100%		Input: GREET default	Case definition: Basis for Program Plan
Type of Oxygena	ate in RFG	None			Input: GREET default	Case definition: Basis for Program Plan
O2 Content in RF		0%	0%	wt %	Input: GREET default	Case definition: Basis for Program Plan
	OCs (emissions) to GVs fueled with CG & RFG	0%	0%		Input: GREET default	
	OCs (evaporative) to GVs fueled with CG & RFG	0%	0%		Input: GREET default	
	O emissions to GVs fueled with CG & RFG	0%			Input: GREET default	
	Ox emissions to GVs fueled with CG & RFG	0%	0%		Input: GREET default	
	xhaust PM10 emissions to GVs fueled with CG & RFG	0%	0%		Input: GREET default	
Ratio of FCEV Br	rake & Tire Wear PM10 emissions to GVs fueled with CG & RFG	100%	100%		Input: GREET default	
Ratio of FCEV Ex	xhaust PM2.5 emissions to GVs fueled with CG & RFG	0%	0%		Input: GREET default	
Ratio of FCEV Br	rake & Tire Wear PM2.5 emissions to GVs fueled with CG & RFG	100%	100%		Input: GREET default	
	H4 emissions to GVs fueled with CG & RFG	0%	0%		Input: GREET default	
Ratio of FCEV N2	20 emissions to GVs fueled with CG & RFG	0%	0%		Input: GREET default	
Marginal Electrici	ity Generation Mix for Transportation Use	US Mix	US Mix		Input	Case definition: Basis for Program Plan


Paramo	eter		Value	Units	Reference	Comments
Biomass						
	Percenta	ge of Woody Biomass (Remainder is Herbaceous)	100%		H2A default	Current central H2A production via biomass gasification based on Mann, M & Steward, D.M. (2008, May 28)
	Biomass	(Farmed Trees) Moisture Content	25%		GREET default input	H2A does not specify moisture content so GREET's default was used for GREET calculations
	Energy U	lse for farming trees	234,964	Btu / dry ton	GREET default input	Energy use and fertilizer based on short rotation woody crops (e.g., willow)
		Percentage that is diesel	94%		GREET default input	
		Percentage that is electricity	5.7%		GREET default input	
	Grams of	Nitrogen / short ton biomass (farmed trees)	709	g / dry ton	GREET default input	Equivalent to 75 lb N / ac in the maintenance yea Year 3 or 4) which is reported by De La Torre Ugarte, 2003, App 3.1, assuming 6 dry tons biomass per acre, and harvesting once every 8 years. App 3.1 is for planting on cropland that war just used for traditional crops.
	Grams of	P2O5 / short ton biomass (farmed trees)	189	g / dry ton	GREET default input	Equivalent to 20 lb P / ac in the maintenance yea (Year 3) which is in the range of 15-50 lb P / ac reported by De La Torre Ugarte, 2003, App 3.1, assuming 6 dry tons biomass per acre and harvesting once every 8 years
	Grams of	K2O / short ton biomass (farmed trees)	331	g / dry ton	GREET default input	Equivalent to 35 lb K / ac in the maintenance yea (Year 3) which is in the range of 15-50 lb K / ac reported by De La Torre Ugarte, 2003, App 3.1, assuming 6 dry tons biomass per acre and harvesting once every 8 years)
	Grams of	ⁱ herbicide / short ton biomass (farmed trees)	24	g / dry ton	GREET default input	Equivalent to 2.0 lb herbicide / ac in the planting year which similar to the 2.0 lb glyphosate / ac reported by De La Torre Ugarte, 2000, App 3.2, assuming 6 dry tons biomass per acre and harvesting once every 8 years. Booth reported Trifluralin (5 L/ha) and Metribuzin (395 g/ha). App 3.2 is for planting on currently idled cropland or cropland that was just used for pasture.
	Grams of	insecticide / short ton biomass (farmed trees)	2.0	g / dry ton	GREET default input	As a check, looked at Chastagner: Up to 56% of acreage annually sprayed with Dimethoate (Digo 400, 2-3 pints per acre); up to 56% of acreage annually sprayed with Permethrin 2LB (Ambush, 6.4 ounces per acre); Up to 12% of acreage annually sprayed with Endosulfan 3 EC (24c WA 990025, 2 qts per acre).
	Are GHG	Emissions due to land use change included?	No	- /	GREET default input	
		change GHG removal	0	g / dry ton	GREET default input	GREET model default based on ANL personal communications
	Average	distance from farm to hydrogen production facility	40	miles	GREET default input	GREET basis: distance could be limited by transport costs?
	Fuel ecor	nomy on trip from farm to hydrogen production facility	5	mpg diesel	GREET default input	· ·
		nomy on return trip from hydrogen production facility to farm (heavy		mpg diesel	GREET default input	

Parameter		Value	Units	Reference	Comments
Natural Gas		Value	onito	Reference	
	of NG that is Shale Gas (remainder is conventional NG)	32.1%		GREET default input	
	very efficiency	95.7%		GREET default input	
	during recovery	399	g/MMBtu	GREET default input	Previously reported at percent of total NG not on a MMBtu basis
Percenta	age of energy use/loss for recovery that is combusted natural gas	49.0%	Ŭ	GREET default input	
	as recovery efficiency	96.5%		GREET default input	
	as lost during recovery		g/MMBtu	GREET default input	
Percenta	age of energy use/loss for recovery that is combusted shale gas	57.4%		GREET default input	
	sessing energy efficiency	97.2%		Wang, M.Q. (1999, August). GREET 1.5 - Transportation Fuel-Oycle Model Volume 1: Methodology, development, Use and Results. Argonne, IL: Argonne National Laboratory.	GREET uses 97.5% which is comparable to several other models (Table 4.11)
NG lost	during processing		g/MMBtu	GREET default input	
Percenta	age of energy use for processing that is combusted natural gas	90.7%		GREET default input	
	d & lost during transport and distribution		g / MMBtu	GREET default input	
	sport distance	500	miles	GREET default input	
Electricity					
Grid mix	for production	US Mix		GREET input	Default
	Biomass Fraction	0.5%		Definition of US Mix	Energy Information Administration. (2007,
	Coal Fraction	44.2%		Definition of US Mix	February). Annual Energy Outlook 2007 with Projections to 2030. DOE/EIA-0383(2007).
	Natural Gas Fraction	21.5%		Definition of US Mix	Washington, D.C. Retreived from www.eia.doe.gov/oiaf/archive/aeo07/index.html
	Nuclear Fraction	21.0%		Definition of US Mix	National electricity generation data from tables D & D-8 using the 2005 timeframe. Percentages
	Residual Oil Fraction	0.9%		Definition of US Mix	calculated from total generation values reported with all renewables except biomass aggregated
	Others (Carbon Neutral - Hydroelectric, Wind, Geothermal, Solar PV, etc)	11.8%		Definition of US Mix	into the "Others (Carbon Neutral)" category
Biomass	s Electricity Shares and Efficiency				
	IGCC Share of Biomass Power Plants	1.0%		GREET default input	
	Combustion Share of Biomass Power Plants	99.0%		GREET default input	By difference from IGCC plants
	Biomass IGCC Efficiency	43.0%		GREET default input	
	Biomass Combustion Plant Efficiency	32.1%		GREET default input	
	Effective Efficiency of Biopower Plants	32.2%		GREET default input	
Coal Ele	ectricity Shares and Efficiency				
	IGCC Share of Coal Power Plants	1.0%		GREET default input	
	Combustion Share of Coal Power Plants	99.0%		GREET default input	
	Coal IGCC Efficiency	47.0%		GREET default input	
	Coal Combustion Plant Efficiency	34.1%		GREET default input	
	Effective Efficiency of Coal-Electricity Plants	34.2%		GREET default input	
Natural	Gas Electricity Shares and Efficiency				
	Simple Cycle Gas Turbine Share of Natural Gas Power Plants	37.0%		GREET default input	
	Combined Cycle Gas Turbine Share of Natural Gas Power Plants	46.0%		GREET default input	
	Combustion Boiler Share of Natural Gas Power Plants	17.0%		GREET default input	
	Natural Gas Simple Cycle Gas Turbine Plant Efficiency	33.1%		GREET default input	
	Natural Gas Combined Cycle Efficiency	55.0%		GREET default input	
	Natural Gas Combustion Boiler Plant Efficiency	34.8%		GREET default input	
	Effective Efficiency of Natural Gas-Electricity Plants	40.9%		GREET default input	
Residua	I Oil Electricity Efficiency				
	Residual Oil Electricity Plant Efficiency	34.8%		GREET default input	
Electicity	y Transmission and Distribution Losses	8.0%		GREET default input	

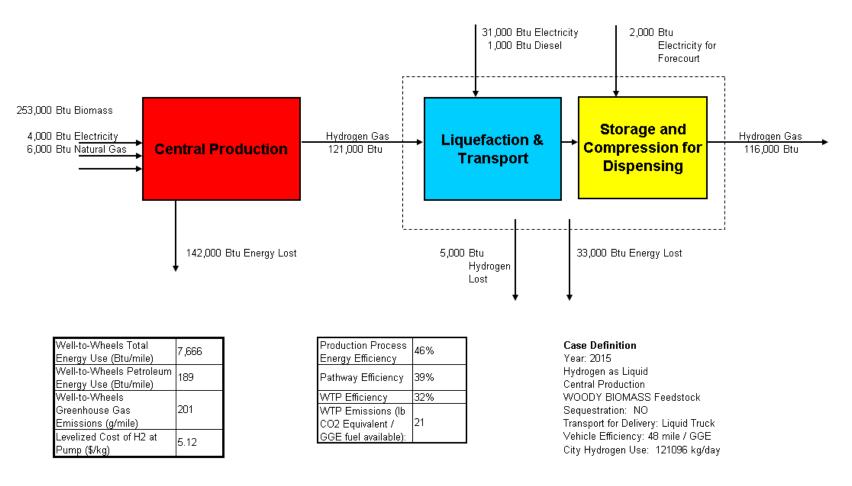

Parameter		Value	Units	Reference	Comments
Parameters for C	REET2				
Vehicle to	otal mass	3,020	lb	GREET2 Default Input	
Battery T	ype for Hybridization	NiMH		GREET2 Default Input	
	tion Battery Size in Peak Hybridization Battery Power	30	kW	GREET2 Default Input	
Hybridiza	tion Battery Specific Power	272	W / Ib	GREET2 Default Input	
	tion Battery Mass	110	lb	GREET2 Default Input	
Number of	of replacements of hybridization battery over lifetime	2		GREET2 Default Input	
Starter B	attery (Lead Acid) Mass	22		GREET2 Default Input	
Mass of f	luids on-board vehicle	56	lb	GREET2 Default Input	
Compone	ent mass (vehicles without batteries or fluids)	2,832	lb	GREET2 Calculation	
	Powertrain system percentage of component mass	8.0%		GREET2 Default Input	
	Transmission system percentage of component mass	2.6%		GREET2 Default Input	
	Chassis (without battery) percentage of component mass	23.0%		GREET2 Default Input	
	Traction motor percentage of component mass	3.8%		GREET2 Default Input	
	Generator percentage of component mass	0.0%		GREET2 Default Input	
	Electronic controller percentage of component mass	3.4%		GREET2 Default Input	
	Fuel Cell Auxiliary System percentage of component mass	19.3%		GREET2 Default Input	
	Body: including BIW, interior, exterior, and glass	39.9%		GREET2 Default Input	
	Stack Size		kW	GREET2 Default Input	
Mass of F	Fuel Cell Stack - Powertrain System	226		GREET2 Calculation	
Mass of F	uel Cell Stack - Auxiliary Systems	546	lb	GREET2 Calculation	
Miles driv	en per vehicle over lifetime	160,000	miles in vehicle life	GREET2 Default Input	Current analysis assumes 5-year life 10-year analysis is available

Appendix E: Central Biomass—Gaseous H₂ **Truck Delivery Supporting Tables and Figures**

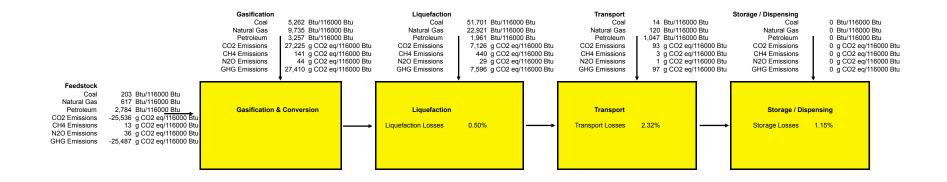
Hydrogen Produced In Central Plant and Transported as Gas via Truck

Inputs		Assumptio	ons	Outputs		
		•		Biomass moisture content 25%		
		Biomass Production	n & Delivery	Woody biomass LHV	16,013,000 Btu / dry ton	
Energy Use for Farming Trees	235,000 Btu / dry ton			Biomass price at H2 production	\$75.02 2007 \$ / dry ton	
	· · ·	Fraction of Woody Biomass	100%	Biomass Share of Levelized Cos	\$0.97 2007\$ / kg H2 dispensed	
		LUC GHG changes	0 g / dry ton		- ·	
Coal Input (including upstream)	300 Btu / 116000Btu to Pump	Average distance from farm to H2 prod.	40 miles	WTG CO2 Emissions	-24,850 g CO2 eq./ 116000 Btu	
Natural Gas Input (including upstream)	800 Btu / 116000Btu to Pump			WTG CH4 Emissions	15 g CO2 eq./ 116000 Btu	
Petroleum Input (including upstream)	3,200 Btu / 116000Btu to Pump			WTG N2O Emissions	35 g CO2 eq./ 116000 Btu	
				WTG GHG Emissions	-24,800 g CO2 eq./ 116000 Btu	
Disease states the	10 5 log (dg.) (log 110 gegelages d	Ukadasa ang Darad		Hydrogen Output Pressure	300 psi	
Biomass consumption	13.5 kg (dry) / kg H2 produced	Hydrogen Prod	luction	Hydrogen Outlet Quality	99.9%	
Natural gas consumption	0.0059 MMBtu / kg H2 produced	Operated a local devices and with	455.000 los (des	Total and Wellington start and	#4.000.0007# (della la U0 (
Electricity consumption	0.98 kWh / kg H2 produced	Central plant design capacity	155,200 kg / day 90%	Total capital investment	\$1,300 2007\$ / daily kg H2 (effective capacity)	
Process Water Consumption Cooling Water Consumption	1.32 gal / kg H2 produced 79.3 gal / kg H2 produced	Capacity factor Number of production facilities necessary	0.87	Levelized Cost of Capital Fixed O&M Costs	\$0.65 2007\$ / kg H2 dispensed \$0.23 2007\$ / kg H2 dispensed	
Cooling water Consumption	79.3 gai / kg Hz produced	Process energy efficiency	46.0%	Variable O&M Costs	\$0.40 2007\$ / kg H2 dispensed	
Total Capital Investment	\$181,080,000 2007\$	Electricity Mix	US Mix	Total Levelized Cost	\$2.25 2007\$ / kg H2 dispensed	
iotal Capital Investment	\$101,000,000 2007\$	After-tax IRR	10%	Total Levenzed Cost		
Coal Input (including upstream)	5,200 Btu / 116000Btu to Pump	Assumed Plant Life	40	Production CO2 Emissions	26,620 g CO2 eg./ 116000 Btu	
Natural Gas Input (including upstream)	9,700 Btu / 116000Btu to Pump			Production CH4 Emissions	140 g CO2 eq./ 116000 Btu	
Petroleum Input (including upstream)	3,700 Btu / 116000Btu to Pump			Production N2O Emissions	43 g CO2 eq./ 116000 Btu	
				Production GHG Emissions	26,800 g CO2 eq./ 116000 Btu	
				Total capital investment	\$2,100 2007\$ / daily kg delivered	
Electricity consumption at terminal	1.31 kWh / kg H2 dispensed	Gas Trucks for Delivery (with Termi	nal and Geologic Storage)	Levelized Electricity cost	\$0.09 2007\$ / kg H2 delivered	
Electricity consumption for geo storage	0.01 kWh / kg H2 dispensed			Levelized Diesel cost	\$0.20 2007\$ / kg H2 delivered	
Total electricity consumption	1.32 kWh / kg H2 dispensed	City Population	1,247,000 people	Levelized Labor cost	\$0.41 2007\$ / kg H2 delivered	
Diesel consumption	58.9 gal / 1000 kg H2	Hydrogen Vehicle Penetration	15%	Levelized Other operating costs	\$0.34 2007\$ / kg H2 delivered	
		City hydrogen use	121,100 kg / day			
		One-way distance for delivery	62 miles	Levelized Cost of Delivery	\$1.88 2007\$ / kg H2 delivered	
Total Capital Investment	\$254,858,000 2007\$	Storage capacity (geologic + terminal)	1,470,000 kg H2		040 × 000 × × / 440000 Ph	
Coal Input (including upstream)	400 Btu / 116000Btu to Pump	Number of truck-trips required Truck hydrogen capacity	79,700 per year 560 kg / truckload	Delivery CO2 Emissions Delivery CH4 Emissions	910 g CO2 eq./ 116000 Btu 32 g CO2 eq./ 116000 Btu	
Natural Gas Input (including upstream)	1,400 Btu / 116000Btu to Pump	Efficiency of truck loading compressors	88.0%	Delivery N2O Emissions	7 g CO2 eq./ 116000 Btu	
Petroleum Input (including upstream)	9,800 Btu / 116000Btu to Pump	Hydrogen losses	1.0%	Delivery GHG Emissions	950 g CO2 eq./ 116000 Btu	
r cablearr inpat (including apolicarri)		Tyurogen losses	1.070	Delivery of to Emissions	000 g 002 cq./ 110000 blu	
				Hydrogen outlet pressure	12,700 psi	
Electricity consumption	2.1 kWh / kg H2	Forecourt Disp	ensing	Basis Hydrogen Quantity	116,000 Btu (116,000 Btu/gal non-oxygenated	
Electricity price	\$0.096 2007\$ / kWh				conventional unleaded gasoline)	
Table Constallance for a first second	04 744 000 00070 / stallar	Average Dispensing Rate per Station	800 kg / day	Total capital investment	\$2,190 2007\$ / daily kg	
Total Capital Investment per Station Total Capital Investment	\$1,744,000 2007\$ / station \$265,136,000 2007\$ / all stations	Number of Dispensing Stations Number of Compressor Steps	152 5	Levelized Cost of Capital Energy & Fuel	\$0.95 2007\$ / kg H2 dispensed \$0.20 2007\$ / kg H2 dispensed	
Total Capital Investment	\$265,136,000 2007\$7 all stations	Usable Low Pressure Storage per Station	N/A (storage on trucks)	Other O&M Costs	\$0.46 2007\$ / kg H2 dispensed	
Minimum inlet pressure from tube trailer	220 psi	Usable Cascade Storage per Station	130 kg H2	Levelized Cost of Dispensing	\$1.61 2007\$ / kg H2 dispensed	
	220 90		100 10112	Letterized obset of Disperiality		
Coal Input (including upstream)	16,700 Btu / 116000Btu to Pump	Site storage	14% % of design capacity	CSD CO2 Emissions	2,310 g CO2 eq./ 116000 Btu	
Natural Gas Input (including upstream)	7,400 Btu / 116000Btu to Pump	# of 2-hose Dispensers per Station	2	CSD CH4 Emissions	140 g CO2 eq./ 116000 Btu	
Petroleum Input (including upstream)	700 Btu / 116000Btu to Pump	Hydrogen loss factor	0.50%	CSD N2O Emissions	9 g CO2 eq./ 116000 Btu	
				CSD GHG Emissions	2,470 g CO2 eq./ 116000 Btu	
				Cost Per Mile	\$0.69 2007\$ / mi	
Vehicle Mass	3,020 lb	Vehicle		Fuel Share	\$0.12 2007\$ / mi	
Fuel cell size	70 kW	Fuel Economy	48.0 mi/gge	Maintenance, Tires, Repairs	\$0.07 2007\$ / mi	
Hybridization battery (peak power)	30 kW	Vehicle Miles Traveled	15,000 mi / yr	Insurance & Registration	\$0.12 2007\$ / mi	
		Vehicle Lifetime	160,000 mi	Depreciation	\$0.27 2007\$ / mi	
		Purchase Year	2015	Financing	\$0.10 2007\$ / mi	
Cool Input (including upstroom)	2 400 Ptu / gao fuel consumed	Vehicle Purchase Cost Fuel Cell System Cost	\$33,700 2007\$ \$4,500 2007\$	Vahiala Cuala CO2 Emiasiana	1 750 a CO2 og/ ago fuel consumed	
Coal Input (including upstream) Natural Gas Input (including upstream)	2,400 Btu / gge fuel consumed 12,400 Btu / gge fuel consumed	Hydrogen Storage System Cost	\$4,500 2007\$ \$2,400 2007\$	Vehicle Cycle CO2 Emissions Vehicle Cycle CH4 Emissions	1,750 g CO2 eq/ gge fuel consumed 170 g CO2 eq/ gge fuel consumed	
Petroleum Input (including upstream)	7,700 Btu / gge fuel consumed	Tax Credit	\$2,400 2007\$ \$0 2007\$	Vehicle Cycle N2O Emissions	7 g CO2 eq/ gge fuel consumed	
	r, roo Biu r gge idei consumed	lax oredit	φυ 2007φ	Vehicle Cycle GHG Emissions	1,940 g CO2 eq/ gge fuel consumed	
				Vehicle Cycle GLIG LINISSIONS	1,040 y CO2 eq/ gye luel consulled	

Parameter	Value	Units	Reference	Comments
Case Definition				
Startup Year	2015		Input	Default for this study's current cases
Reference Year Dollars	2013		Input	Default for this study's current cases
Production Technology	WOODY BIOMASS		Input	Case definition
Form of H2 During Delivery	Gas		Input	Case definition
Delivery Mode	Gas Truck		Input	Case definition
Dispensing Mode	CASCADE 700 BAR		Input	Case definition
Forecourt Station Size		kg/day	Input	Case definition: Limited to two deliveries per day resulting in a maximum of 930 kg/day for gas truck dispensing
Vehicle Type	passenger cars		Input	Case definition
Vehicle materials (conventional or lightweight)	Conventional		Input	Case definition; lightweight materials not currently an MSM option
Vehicle Fuel Economy	48.0	mile / gge	Input	Default assumption for this study's current cases
Market Definition				
City Population	1,247,364		Input	Case Definition: Indianapolis, IN
Market penetration		(% vehicles in city)	Input	Case definition: Basis for Program Plan
Number of H2 vehicles in city		H2 vehicles / city	HDSAM Result	
Miles driven per vehicle		mile / vehicle year	Input	CPM only allows for 10K, 15K, and 20K/yr.
Miles driven per vehicle		miles in vehicle life	Input - GREET2 default	
City hydrogen use	121,096	kg / d	HDSAM Result	
Number of H2 refueling stations in city	152		HDSAM Result	Calculated as city hydrogen demand divided by forecourt station size.
Number of H2 stations/Number of gasoline stations	23%		HDSAM Result	
Average distance between stations (mi)	1.94	miles	HDSAM Result	
Other Assumptions for WTW Calculations				
Share of RFG in Total Gasoline Use	100%		Input: GREET default	Case definition: Basis for Program Plan
Type of Oxygenate in RFG	None	1	Input: GREET default	Case definition: Basis for Program Plan
O2 Content in RFG	0%	wt %	Input: GREET default	Case definition: Basis for Program Plan
Ratio of FCEV VOCs (emissions) to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV VOCs (evaporative) to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV CO emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV NOx emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV Exhaust PM10 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV Brake & Tire Wear PM10 emissions to GVs fueled with CG & RFG	100%		Input: GREET default	
Ratio of FCEV Exhaust PM2.5 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV Brake & Tire Wear PM2.5 emissions to GVs fueled with CG & RFG	100%		Input: GREET default	
Ratio of FCEV CH4 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV N2O emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Marginal Electricity Generation Mix for Transportation Use	US Mix		Input	Case definition: Basis for Program Plan


Parame	eter		Value	Units	Reference	Comments
Biomass						
	Percentage	e of Woody Biomass (Remainder is Herbaceous)	100%		H2A default	Current central H2A production via biomass gasification based on Mann, M & Steward, D.M. (2008, May 28)
	Biomass (F	Farmed Trees) Moisture Content	25%		GREET default input	H2A does not specify moisture content so GREET's default was used for GREET calculations
	0,	e for farming trees	234,964	Btu / dry ton	GREET default input	Energy use and fertilizer based on short rotation woody crops (e.g., willow)
		Percentage that is diesel	94%		GREET default input	
		Percentage that is electricity	5.7%		GREET default input	
	Grams of N	Nitrogen / short ton biomass (farmed trees)	709	g / dry ton	GREET default input	Equivalent to 75 lb N / ac in the maintenance year Year 3 or 4) which is reported by De La Torre Ugarte, 2003, App 3.1, assuming 6 dry tons biomass per acre, and harvesting once every 8 years. App 3.1 is for planting on cropland that was just used for traditional crops.
	Grams of F	205 / short ton biomass (farmed trees)	189	g / dry ton	GREET default input	Equivalent to 20 lb P / ac in the maintenance year (Year 3) which is in the range of 15-50 lb P / ac reported by De La Torre Ugarte, 2003, App 3.1, assuming 6 dry tons biomass per acre and harvesting once every 8 years
	Grams of F	K2O / short ton biomass (farmed trees)	331	g / dry ton	GREET default input	Equivalent to 35 lb K / ac in the maintenance year (Year 3) which is in the range of 15-50 lb K / ac reported by De La Torre Ugarte, 2003, App 3.1, assuming 6 dry tons biomass per acre and harvesting once every 8 years)
	Grams of h	erbicide / short ton biomass (farmed trees)	24	g / dry ton	GREET default input	Equivalent to 2.0 lb herbicide / ac in the planting year which similar to the 2.0 lb glyphosate / ac reported by De La Torre Ugarte, 2000, App 3.2, assuming 6 dry tons biomass per acre and harvesting once every 8 years. Booth reported Triffuralin (5 L/ha) and Metribuzin (395 g/ha). App 3.2 is for planting on currently idled cropland or cropland that was just used for pasture.
	Grams of i	nsecticide / short ton biomass (farmed trees)	2.0	g / dry ton	GREET default input	From Chastagner: Up to 56% of acreage annually sprayed with Dimethoate (Digon 400, 2-3 pints per acre); up to 56% of acreage annually sprayed with Permethrin 2LB (Ambush, 6.4 ounces per acre); Up to 12% of acreage annually sprayed with Endosulfan 3 EC (24c WA-990025, 2 gt/acre).
	Are GHG	Emissions due to land use change included?	No		GREET default input	
		change GHG removal	0	g / dry ton	GREET default input	GREET model default based on ANL personal communications
	Ŭ	stance from farm to hydrogen production facility	40	miles	GREET default input	GREET basis: distance could be limited by transport costs?
		omy on trip from farm to hydrogen production facility		mpg diesel	GREET default input	
	Fuel econo	omy on return trip from hydrogen production facility to farm (heavy h	eavy-dut 6	mpg diesel	GREET default input	

			-			
Param	eter		Value	Units	Reference	Comments
Natural G			Value	Units	Reference	Comments
Natural O		f NG that is Shale Gas (remainder is conventional NG)	32.1%		GREET default input	
		ery efficiency	95.7%		GREET default input	
		uring recovery	399	g/MMBtu	GREET default input	Previously reported at percent of total NG not on a MMBtu basis
	Percentag	ge of energy use/loss for recovery that is combusted natural gas	49.0%	5	GREET default input	
	Shale gas	s recovery efficiency	96.5%		GREET default input	
		s lost during recovery	245	g/MMBtu	GREET default input	
	Percentag	ge of energy use/loss for recovery that is combusted shale gas	57.4%		GREET default input	
		ssing energy efficiency	97.2%		Wang, M.Q. (1999, August). GREET 1.5 - Transportation Fuel-Cycle Model Volume 1: Methodology, development, Use and Results. Argonne, IL: Argonne National Laboratory.	GREET uses 97.5% which is comparable to several other models (Table 4.11)
		uring processing		g/MMBtu	GREET default input	
		ge of energy use for processing that is combusted natural gas	90.7%		GREET default input	
		& lost during transport and distribution		g / MMBtu	GREET default input	
		port distance	500	miles	GREET default input	
Electricity						
	Grid mix f	for production	US Mix		GREET input	Default
		Biomass Fraction	0.5%		Definition of US Mix	Energy Information Administration. (2007,
		Coal Fraction	44.2%		Definition of US Mix	February). Annual Energy Outlook 2007 with Projections to 2030. DOE/EIA-0383(2007).
		Natural Gas Fraction	21.5%		Definition of US Mix	Washington, D.C. Retreived from www.eia.doe.gov/oiaf/archive/aeo07/index.html
		Nuclear Fraction	21.0%		Definition of US Mix	National electricity generation data from tables D- & D-8 using the 2005 timeframe. Percentages
		Residual Oil Fraction	0.9%		Definition of US Mix	calculated from total generation values reported with all renewables except biomass aggregated
		Others (Carbon Neutral - Hydroelectric, Wind, Geothermal, Solar PV, etc)	11.8%		Definition of US Mix	into the "Others (Carbon Neutral)" category
	Biomass I	Electricity Shares and Efficiency	_			
		IGCC Share of Biomass Power Plants	1.0%		GREET default input	
		Combustion Share of Biomass Power Plants	99.0%		GREET default input	By difference from IGCC plants
		Biomass IGCC Efficiency	43.0%		GREET default input	
		Biomass Combustion Plant Efficiency	32.1%		GREET default input	
		Effective Efficiency of Biopower Plants	32.2%		GREET default input	
	Coal Elec	tricity Shares and Efficiency	1.00/			
		IGCC Share of Coal Power Plants Combustion Share of Coal Power Plants	1.0%		GREET default input	
			99.0%		GREET default input	
		Coal IGCC Efficiency	47.0%		GREET default input	
		Coal Combustion Plant Efficiency	34.1%		GREET default input	
	Network	Effective Efficiency of Coal-Electricity Plants	34.2%		GREET default input	
	Inatural G	as Electricity Shares and Efficiency	07.00/		ODEET defeatbland	
		Simple Cycle Gas Turbine Share of Natural Gas Power Plants Combined Cycle Gas Turbine Share of Natural Gas Power Plants	<u>37.0%</u> 46.0%		GREET default input GREET default input	
		Combined Cycle Gas Turbine Share of Natural Gas Power Plants	46.0%		GREET default input	
			17.0% 33.1%		GREET default input	
		Natural Gas Simple Cycle Gas Turbine Plant Efficiency Natural Gas Combined Cycle Efficiency				
			55.0%		GREET default input	
		Natural Gas Combustion Boiler Plant Efficiency	34.8%		GREET default input	
	Desider 11	Effective Efficiency of Natural Gas-Electricity Plants	40.9%		GREET default input	
	Residual	Oil Electricity Efficiency	04.00/			
	Els effects	Residual Óil Electricity Plant Efficiency	34.8%		GREET default input	
	Electicity	Transmission and Distribution Losses	8.0%		GREET default input	

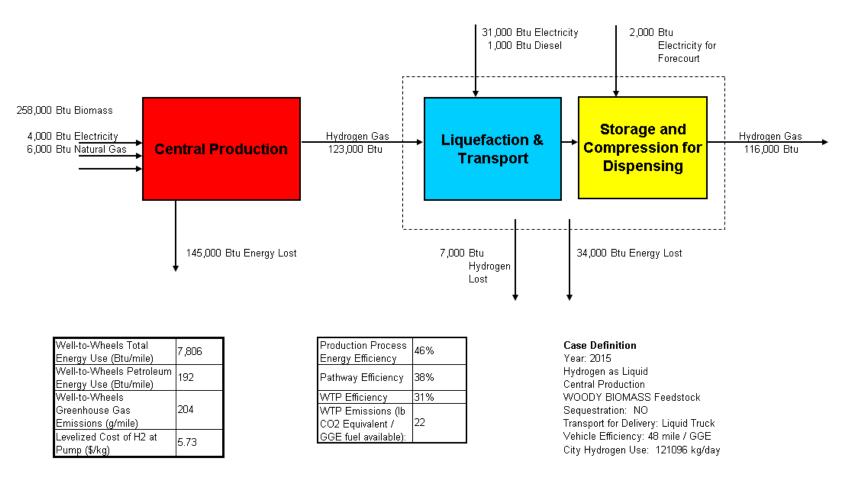

Parameter		Value	Units	Reference	Comments
Parameters for G	REET2				
Vehicle to	otal mass	3,020	lb	GREET2 Default Input	
Battery Ty	ype for Hybridization	NiMH		GREET2 Default Input	
	tion Battery Size in Peak Hybridization Battery Power	30	kW	GREET2 Default Input	
	tion Battery Specific Power	272	W / Ib	GREET2 Default Input	
	tion Battery Mass	110	lb	GREET2 Default Input	
Number o	of replacements of hybridization battery over lifetime	2		GREET2 Default Input	
Starter Ba	attery (Lead Acid) Mass	22	lb	GREET2 Default Input	
Mass of fl	luids on-board vehicle	56	lb	GREET2 Default Input	
Compone	ent mass (vehicles without batteries or fluids)	2,832	lb	GREET2 Calculation	
	Powertrain system percentage of component mass	8.0%		GREET2 Default Input	
	Transmission system percentage of component mass	2.6%		GREET2 Default Input	
	Chassis (without battery) percentage of component mass	23.0%		GREET2 Default Input	
	Traction motor percentage of component mass	3.8%		GREET2 Default Input	
	Generator percentage of component mass	0.0%		GREET2 Default Input	
	Electronic controller percentage of component mass	3.4%		GREET2 Default Input	
	Fuel Cell Auxiliary System percentage of component mass	19.3%		GREET2 Default Input	
	Body: including BIW, interior, exterior, and glass	39.9%		GREET2 Default Input	
	Stack Size		kW	GREET2 Default Input	
Mass of F	Fuel Cell Stack - Powertrain System	226		GREET2 Calculation	
Mass of F	Fuel Cell Stack - Auxiliary Systems	546	lb	GREET2 Calculation	
Miles driv	en per vehicle over lifetime	160,000	miles in vehicle life	GREET2 Default Input	Current analysis assumes 5-year life 10-year analysis is available

Appendix F: Central Biomass—Liquid Truck Delivery and Gaseous Dispensing Supporting Tables and Figures

Hydrogen Produced In Central Plant and Transported as Liquid via Truck

Ir	iputs	Assumpt	ions		Outputs
Energy Use for Farming Trees	235,000 Btu / dry ton	Biomass Production	='Params - Upstream'!D3	Biomass moisture content Woody biomass LHV Biomass price at H2 production Biomass Share of Levelized Cost	25% 16,013,000 Btu / dry ton \$75 2007 \$ / dry ton \$1.00 2007\$ / kg H2 dispensed
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	200 Btu / 116000Btu to Pump 600 Btu / 116000Btu to Pump 2,800 Btu / 116000Btu to Pump	LUC GHG changes Average distance from farm to H2 prod.	='Params - U g / dry ton ='Params - U miles	WTG CO2 Emissions WTG CH4 Emissions WTG N2O Emissions WTG GHG Emissions Hydrogen Output Pressure	-25,540 g CO2 eq./ 116000 Btu 13 g CO2 eq./ 116000 Btu 36 g CO2 eq./ 116000 Btu -25,490 g CO2 eq./ 116000 Btu 300 psi
Biomass consumption	13.5 kg (dry) / kg H2 produced	Hydrogen Pro	oduction	Hydrogen Outlet Quality	99.9%
Natural gas consumption Electricity consumption Process Water Consumption Cooling Water Consumption	0.0059 MMBtu / kg H2 produced 0.98 kWh / kg H2 produced 1.32 gal / kg H2 produced 79.3 gal / kg H2 produced \$181,080,000 2007\$	Central plant design capacity Capacity factor Number of production facilities necessary Process energy efficiency Electricity Mix	155,200 kg / day 90% 0.87 46.0% US Mix	Total capital investment Levelized Cost of Capital Fixed O&M Costs Variable O&M Costs Total Levelized Cost	\$1,300 2007\$ / daily kg H2 (effective capacity) \$0.66 2007\$ / kg H2 dispensed \$0.23 2007\$ / kg H2 dispensed \$0.41 2007\$ / kg H2 dispensed \$2.30 2007\$ / kg H2 dispensed
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	5,300 Btu / 116000Btu to Pump 9,700 Btu / 116000Btu to Pump 3,300 Btu / 116000Btu to Pump	After-tax IRR Assumed Plant Life	10% 40	Production CO2 Emissions Production CH4 Emissions Production N2O Emissions Production GHG Emissions Total capital investment	27,230 g CO2 eq./ 116000 Btu 140 g CO2 eq./ 116000 Btu 44 g CO2 eq./ 116000 Btu 27,410 g CO2 eq./ 116000 Btu \$1,980 2007\$ / daily kg H2 (effective capacity)
Liquefaction electricity consumption	8.5 kWh / kg H2 dispensed	Liquefaction and T	ruck-Delivery	Levelized Electricity cost	\$0.58 2007\$ / daily kg H2 (ellective capacity) \$0.58 2007\$ / kg H2 dispensed
Terminal electricity consumption Total electricity consumption Diesel consumption	0.03 kWh / kg H2 dispensed 8.57 kWh / kg H2 dispensed 7.6 gal / 1000 kg H2 dispensed	City Population Hydrogen Vehicle Penetration City hydrogen use	1,247,000 people 15% 121,100 kg / day	Levelized Diesel cost Levelized Labor cost Levelized Other operating costs	\$0.03 2007\$ / kg H2 dispensed \$0.09 2007\$ / kg H2 dispensed \$0.24 2007\$ / kg H2 dispensed
Total Capital Investment	\$239,448,000 2007\$	One-way distance for delivery Terminal Design Capacity Number of truck-trips required per year	98 miles 1,103,000 kg H2 10,200	Levelized Cost of Delivery	\$1.80 2007\$ / kg H2 delivered
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	51,700 Btu / 116000Btu to Pump 23,000 Btu / 116000Btu to Pump 3,000 Btu / 116000Btu to Pump	Truck hydrogen capacity Liquefaction energy efficiency Hydrogen losses	4,400 kg / truckload 79.3% 2.8%	Delivery CO2 Emissions Delivery CH4 Emissions Delivery N2O Emissions Delivery GHG Emissions	7,220 g CO2 eq./ 116000 Btu 440 g CO2 eq./ 116000 Btu 30 g CO2 eq./ 116000 Btu 7,690 g CO2 eq./ 116000 Btu
Electricity consumption	0.51 kWh / kg H2 dispensed	Forecourt Dis	pensing	Onboard Storage Pressure Basis Hydrogen Quantity	12,700 psi 116,000 Btu (116,000 Btu/gal non-oxygenated
Total Capital Investment per Station Total Capital Investment	\$1,315,000 2007\$ / station \$160,485,000 2007\$ / all stations	Average Dispensing Rate per Station Number of Dispensing Stations Number of Cascade Pumps Liquid H2 storage capacity per Station Usable Cascade Storage per Station	1,000 kg / day 122 1 4,600 kg H2 70 kg H2	Total capital investment Levelized Cost of Capital Energy & Fuel Other O&M Costs Levelized Cost of Dispensing	conventional unleaded gasoline) \$1,330 2007\$ / daily kg H2 (effective capacity) \$0.49 2007\$ / kg H2 dispensed \$0.05 2007\$ / kg H2 dispensed \$0.48 2007\$ / kg H2 dispensed \$1.02 2007\$ / kg H2 dispensed
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	Included in Delivery Section Included in Delivery Section Included in Delivery Section	Site storage # of 2-hose Dispensers per Station Hydrogen Losses	400% % of design capacity 2 1.1%	CSD CO2 Emissions CSD CH4 Emissions CSD N2O Emissions CSD GHG Emissions	Included in Delivery Section Included in Delivery Section Included in Delivery Section Included in Delivery Section
Vehicle Mass	3.020 lb	Vehicle		Cost Per Mile Fuel Share	\$0.67 2007\$ / mi \$0.11 2007\$ / mi
Hybridization battery (peak power)	70 kW 30 kW	Fuel Economy Vehicle Miles Traveled Vehicle Lifetime Purchase Year	48.0 mi / gge 15,000 mi / yr 160,000 mi 2015	Maintenance, Tires, Repairs Insurance & Registration Depreciation Financing	\$0.07 2007\$ / mi \$0.12 2007\$ / mi \$0.27 2007\$ / mi \$0.10 2007\$ / mi
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	2,300 Btu / gge fuel consumed 12,100 Btu / gge fuel consumed 6,900 Btu / gge fuel consumed	Vehicle Purchase Cost Fuel Cell System Cost Hydrogen Storage System Cost Tax Credit	\$33,700 2007\$ \$4,500 2007\$ \$2,400 2007\$ \$0 2007\$	Veh. Cycle CO2 Emissions Veh. Cycle CH4 Emissions Veh. Cycle N2O Emissions Veh. Cycle GHG Emissions	1,670 g CO2 eq/ gge fuel consumed 170 g CO2 eq/ gge fuel consumed 6 g CO2 eq/ gge fuel consumed 1,850 g CO2 eq/ gge fuel consumed

Parameter	Value	Units	Reference	Comments
Case Definition				
Startup Year	2015	;	Input	Default for this study's current cases
Reference Year Dollars	2007		Input	Default for this study's current cases
Production Technology	WOODY BIOMASS		Input	Case definition
Form of H2 During Delivery	Liquid		Input	Case definition
Delivery Mode	Liquid Truck		Input	Case definition
Dispensing Mode	LH2 TO GH2		Input	Case definition
Forecourt Station Size		kg/day	Input	Case definition
Vehicle Type	passenger cars	J ,	Input	Case definition
Vehicle materials (conventional or lightweight)	Conventional		Input	Case definition; lightweight materials not current an MSM option
Vehicle Fuel Economy	48.0	mile / gge	Input	Default assumption for this study's current cases
Market Definition				
City Population	1,247,364		Input	Case Definition: Indianapolis, IN
Market penetration		(% vehicles in city)	Input	Case definition: Basis for Program Plan
Number of H2 vehicles in city		H2 vehicles / city	HDSAM Result	
Miles driven per vehicle		mile / vehicle year	Input	CPM only allows for 10K, 15K, and 20K/yr.
Miles driven per vehicle		miles in vehicle life	Input - GREET2 default	
City hydrogen use	121,096		HDSAM Result	
Number of H2 refueling stations in city	122		HDSAM Result	
Number of H2 stations/Number of gasoline stations	19%		HDSAM Result	
Average distance between stations (mi)	2.17	miles	HDSAM Result	
Other Assumptions for WTW Calculations				
Share of RFG in Total Gasoline Use	100%)	Input: GREET default	Case definition: Basis for Program Plan
Type of Oxygenate in RFG	None		Input: GREET default	Case definition: Basis for Program Plan
O2 Content in RFG	0%	wt %	Input: GREET default	Case definition: Basis for Program Plan
Ratio of FCEV VOCs (emissions) to GVs fueled with CG & RFG	0%)	Input: GREET default	
Ratio of FCEV VOCs (evaporative) to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV CO emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV NOx emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV Exhaust PM10 emissions to GVs fueled with CG & RFG	0%	1	Input: GREET default	
Ratio of FCEV Brake & Tire Wear PM10 emissions to GVs fueled with CG & RFG	100%)	Input: GREET default	
Ratio of FCEV Exhaust PM2.5 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV Brake & Tire Wear PM2.5 emissions to GVs fueled with CG & RFG	100%	,	Input: GREET default	
Ratio of FCEV CH4 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV N2O emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Marginal Electricity Generation Mix for Transportation Use	US Mix	1	Input	Case definition: Basis for Program Plan


Parame	eter		Value	Units	Reference	Comments
Biomass						
	Percentage	e of Woody Biomass (Remainder is Herbaceous)	100%		H2A default	Current central H2A production via biomass gasification based on Mann, M & Steward, D.M. (2008, May 28)
	Biomass (F	Farmed Trees) Moisture Content	25%		GREET default input	H2A does not specify moisture content so GREET's default was used for GREET calculations
	•••	e for farming trees	234,964	Btu / dry ton	GREET default input	Energy use and fertilizer based on short rotation woody crops (e.g., willow)
		Percentage that is diesel	94%		GREET default input	
		Percentage that is electricity	5.7%		GREET default input	
	Grams of N	Nitrogen / short ton biomass (farmed trees)	709	g / dry ton	GREET default input	Equivalent to 75 lb N / ac in the maintenance year Year 3 or 4) which is reported by De La Torre Ugarte, 2003, App 3.1, assuming 6 dry tons biomass per acre, and harvesting once every 8 years. App 3.1 is for planting on cropland that was just used for traditional crops.
	Grams of F	205 / short ton biomass (farmed trees)	189	g / dry ton	GREET default input	Equivalent to 20 lb P / ac in the maintenance year (Year 3) which is in the range of 15-50 lb P / ac reported by De La Torre Ugarte, 2003, App 3.1, assuming 6 dry tons biomass per acre and harvesting once every 8 years
	Grams of F	(20 / short ton biomass (farmed trees)	331	g / dry ton	GREET default input	Equivalent to 35 lb K / ac in the maintenance year (Year 3) which is in the range of 15-50 lb K / ac reported by De La Torre Ugarte, 2003, App 3.1, assuming 6 dry tons biomass per acre and harvesting once every 8 years)
	Grams of h	erbicide / short ton biomass (farmed trees)	24	g / dry ton	GREET default input	Equivalent to 2.0 lb herbicide / ac in the planting year which similar to the 2.0 lb glyphosate / ac reported by De La Torre Ugarte, 2000, App 3.2, assuming 6 dry tons biomass per acre and harvesting once every 8 years. Booth reported Trifturalin (5 L/ha) and Metribuzin (395 g/ha). App 3.2 is for planting on currently idled cropland or cropland that was just used for pasture.
	Grams of i	nsecticide / short ton biomass (farmed trees)	2.0	g / dry ton	GREET default input	From Chastagner: Up to 56% of acreage annually sprayed with Dimethoate (Digon 400, 2-3 pints per acre); up to 56% of acreage annually sprayed with Permethrin 2LB (Ambush, 6.4 ounces per acre); Up to 12% of acreage annually sprayed with Endosulfan 3 EC (24c WA-990025, 2 tat/acre).
	Are GHG E	missions due to land use change included?	No		GREET default input	, ,
	Land use of	hange GHG removal	0	g / dry ton	GREET default input	GREET model default based on ANL personal communications
	0	stance from farm to hydrogen production facility	40	miles	GREET default input	GREET basis: distance could be limited by transport costs?
		my on trip from farm to hydrogen production facility		mpg diesel	GREET default input	
	Fuel econo	my on return trip from hydrogen production facility to farm (heavy heavy-d	ut 6	mpg diesel	GREET default input	

Parameter		Value	Units	Reference	Comments	
Natural Gas		Value	Units	Reference	Comments	
	nt of NG that is Shale Gas (remainder is conventional NG)	32.1%		GREET default input		
	covery efficiency	95.7%		GREET default input		
	NG lost during recovery		g/MMBtu	GREET default input	Previously reported at percent of total NG not on a MMBtu basis	
Percen	ntage of energy use/loss for recovery that is combusted natural gas	49.0%		GREET default input		
	gas recovery efficiency	96.5%		GREET default input		
	gas lost during recovery		g/MMBtu	GREET default input		
Percen	ntage of energy use/loss for recovery that is combusted shale gas	57.4%		GREET default input		
	ocessing energy efficiency	97.2%		Wang, M.Q. (1999, August). GREET 1.5 - Transportation Fuel-Cycle Model Volume 1: Methodology, development, Use and Results. Argonne, IL: Argonne National Laboratory.	GREET uses 97.5% which is comparable to several other models (Table 4.11)	
NG los	st during processing		g/MMBtu	GREET default input		
Percen	ntage of energy use for processing that is combusted natural gas	90.7%		GREET default input		
	ed & lost during transport and distribution		g / MMBtu	GREET default input		
	insport distance	500	miles	GREET default input		
lectricity						
Grid m	nix for production	US Mix		GREET input	Default	
	Biomass Fraction	0.5%		Definition of US Mix	Energy Information Administration. (2007,	
	Coal Fraction	44.2%		Definition of US Mix	February). Annual Energy Outlook 2007 with Projections to 2030. DOE/EIA-0383(2007).	
	Natural Gas Fraction	21.5%		Definition of US Mix	Washington, D.C. Retreived from www.eia.doe.gov/oiaf/archive/aeo07/index.htm	
	Nuclear Fraction	21.0%		Definition of US Mix	National electricity generation data from tables D & D-8 using the 2005 timeframe. Percentages	
	Residual Oil Fraction	0.9%		Definition of US Mix	calculated from total generation values reported with all renewables except biomass aggregated	
	Others (Carbon Neutral - Hydroelectric, Wind, Geothermal, Solar PV, etc)	11.8%		Definition of US Mix	into the "Others (Carbon Neutral)" category	
Biomas	ss Electricity Shares and Efficiency					
	IGCC Share of Biomass Power Plants	1.0%		GREET default input		
	Combustion Share of Biomass Power Plants	99.0%		GREET default input	By difference from IGCC plants	
	Biomass IGCC Efficiency	43.0%		GREET default input		
	Biomass Combustion Plant Efficiency	32.1%		GREET default input		
	Effective Efficiency of Biopower Plants	32.2%		GREET default input		
Coal E	lectricity Shares and Efficiency					
	IGCC Share of Coal Power Plants	1.0%		GREET default input		
	Combustion Share of Coal Power Plants	99.0%		GREET default input		
	Coal IGCC Efficiency	47.0%		GREET default input		
	Coal Combustion Plant Efficiency	34.1%		GREET default input		
	Effective Efficiency of Coal-Electricity Plants	34.2%		GREET default input		
Natura	I Gas Electricity Shares and Efficiency					
	Simple Cycle Gas Turbine Share of Natural Gas Power Plants	37.0%		GREET default input		
	Combined Cycle Gas Turbine Share of Natural Gas Power Plants	46.0%		GREET default input		
	Combustion Boiler Share of Natural Gas Power Plants	17.0%		GREET default input		
	Natural Gas Simple Cycle Gas Turbine Plant Efficiency	33.1%		GREET default input		
	Natural Gas Combined Cycle Efficiency	55.0%		GREET default input		
	Natural Gas Combustion Boiler Plant Efficiency	34.8%		GREET default input		
	Effective Efficiency of Natural Gas-Electricity Plants	40.9%		GREET default input		
Residu	ual Oil Electricity Efficiency					
	Residual Oil Electricity Plant Efficiency	34.8%		GREET default input		
Electic	ity Transmission and Distribution Losses	8.0%		GREET default input		

Parameter		Value	Units	Reference	Comments
Parameters for G	REET2				
Vehicle to	tal mass	3,020 lb		GREET2 Default Input	
Battery Ty	/pe for Hybridization	NiMH		GREET2 Default Input	
	tion Battery Size in Peak Hybridization Battery Power	30 k	V	GREET2 Default Input	
Hybridiza	tion Battery Specific Power	272 W	/ lb	GREET2 Default Input	
	tion Battery Mass	110 lb		GREET2 Default Input	
Number o	f replacements of hybridization battery over lifetime	2		GREET2 Default Input	
Starter Ba	attery (Lead Acid) Mass	22 lb		GREET2 Default Input	
	uids on-board vehicle	56 lb		GREET2 Default Input	
Compone	nt mass (vehicles without batteries or fluids)	2,832 lb		GREET2 Calculation	
	Powertrain system percentage of component mass	8.0%		GREET2 Default Input	
	Transmission system percentage of component mass	2.6%		GREET2 Default Input	
	Chassis (without battery) percentage of component mass	23.0%		GREET2 Default Input	
	Traction motor percentage of component mass	3.8%		GREET2 Default Input	
	Generator percentage of component mass	0.0%		GREET2 Default Input	
	Electronic controller percentage of component mass	3.4%		GREET2 Default Input	
	Fuel Cell Auxiliary System percentage of component mass	19.3%		GREET2 Default Input	
	Body: including BIW, interior, exterior, and glass	39.9%		GREET2 Default Input	
	Stack Size	70 k		GREET2 Default Input	
	uel Cell Stack - Powertrain System	226 lb		GREET2 Calculation	
Mass of F	uel Cell Stack - Auxiliary Systems	546 lb		GREET2 Calculation	
Miles driv	en per vehicle over lifetime	160,000 m	iles in vehicle life	GREET2 Default Input	Current analysis assumes 5-year life 10-year analysis is available

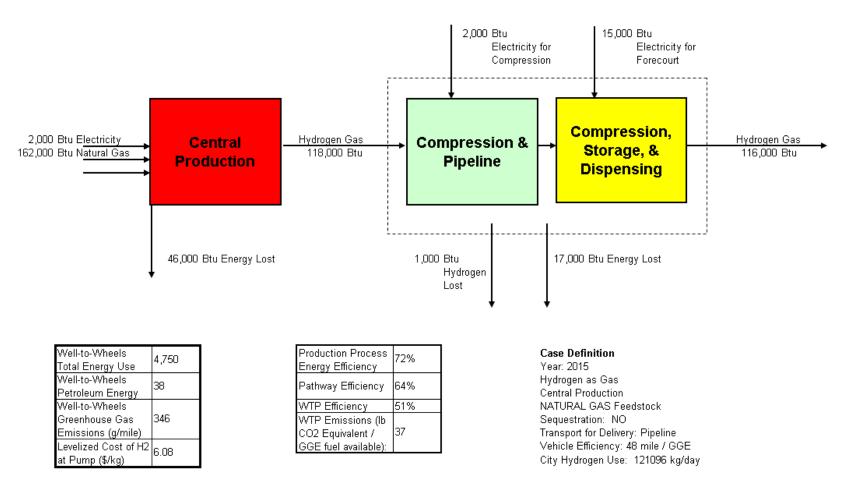
Appendix G: Central Biomass—Liquid Truck Delivery and Cryo-Compressed Dispensing Supporting Tables and Figures

Hydrogen Produced In Central Plant and Transported as Liquid via Truck

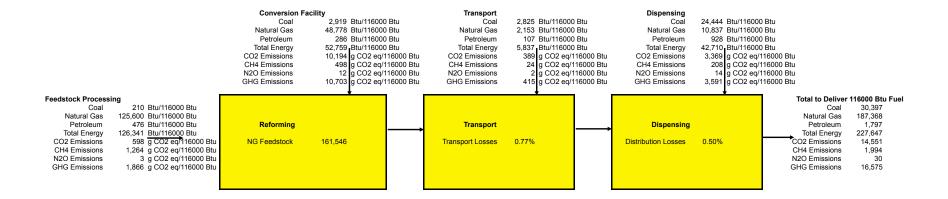
In	iputs	Assumption	tions		Outputs
				Biomass moisture content	25%
		Biomass Producti	on & Delivery	Woody biomass LHV	16,013,000 Btu / dry ton
Energy Use for Farming Trees	235,000 Btu / dry ton			Biomass price at H2 production	\$75 2007 \$ / dry ton
		Fraction of Woody Biomass	100%	Biomass Share of Levelized Cos	\$1.02 2007\$ / kg H2 dispensed
		LUC GHG changes	0 g / dry ton		- · ·
Coal Input (including upstream)	200 Btu / 116000Btu to Pump	Average distance from farm to H2 prod.	40 miles	WTG CO2 Emissions	-26,040 g CO2 eq./ 116000 Btu
Natural Gas Input (including upstream)	600 Btu / 116000Btu to Pump			WTG CH4 Emissions	13 g CO2 eq./ 116000 Btu
Petroleum Input (including upstream)	2,800 Btu / 116000Btu to Pump			WTG N2O Emissions	36 g CO2 eq./ 116000 Btu
				WTG GHG Emissions	-25,990 g CO2 eq./ 116000 Btu
				Hydrogen Output Pressure	300 psi
Biomass consumption	13.5 kg (dry) / kg H2 produced	Hydrogen Pro	oduction	Hydrogen Outlet Quality	99.9%
Natural gas consumption	0.0059 MMBtu / kg H2 produced				
Electricity consumption	0.98 kWh / kg H2	Central plant design capacity	155,200 kg / day	Total capital investment	\$1,300 2007\$ / daily kg H2 (effective capacity)
Process Water Consumption	1.32 gal / kg H2 produced	Capacity factor	90%	Levelized Cost of Capital	\$0.67 2007\$ / kg H2 dispensed
Cooling Water Consumption	79.3 gal / kg H2 produced	Number of production facilities	0.87	Fixed O&M Costs	\$0.24 2007\$ / kg H2 dispensed
	5 5 5	Process energy efficiency	46.0%	Variable O&M Costs	\$0.42 2007\$ / kg H2 dispensed
Total Capital Investment	\$181,080,000 2007\$	Electricity Mix	US Mix	Total Levelized Cost	\$2.35 2007\$ / kg H2 dispensed
	• •	After-tax IRR	10%		· • • •
Coal Input (including upstream)	5,400 Btu / 116000Btu to Pump	Assumed Plant Life	40	Production CO2 Emissions	27,800 g CO2 eq./ 116000 Btu
Natural Gas Input (including upstream)	9,900 Btu / 116000Btu to Pump			Production CH4 Emissions	140 g CO2 eq./ 116000 Btu
Petroleum Input (including upstream)	3,300 Btu / 116000Btu to Pump			Production N2O Emissions	45 g CO2 eg./ 116000 Btu
				Production GHG Emissions	28,000 g CO2 eq./ 116000 Btu
					· · ·
Liquefaction electricity consumption	8.5 kWh / kg H2	Liquefaction and T	ruck-Delivery	Total capital investment	\$2,000 2007\$ / daily kg delivered
Terminal electricity consumption	0.02 kWh / kg H3	•	•	Levelized Electricity cost	\$0.59 2007\$ / kg H2 delivered
Total electricity consumption	8.5 kWh / kg H4	City Population	1,247,000 people	Levelized Diesel cost	\$0.03 2007\$ / kg H2 delivered
Diesel consumption	7.7 gal / 1000 kg H2	Hydrogen Vehicle Penetration	15%	Levelized Labor cost	\$0.09 2007\$ / kg H2 delivered
	5 5	City hydrogen use	121,100 kg / day	Levelized Other operating costs	
Total Capital Investment	\$242,361,000 2007\$	One-way distance for delivery	98 miles		
		Terminal Design Capacity	1,124,000 kg H2	Levelized Cost of Delivery	\$1.82 2007\$ / kg H2 delivered
		Number of truck-trips required	10,400	-	
Coal Input (including upstream)	52,400 Btu / 116000Btu to Pump	Truck hydrogen capacity	4,400 kg / truckload	Delivery CO2 Emissions	7,320 g CO2 eq./ 116000 Btu
Natural Gas Input (including upstream)	23,400 Btu / 116000Btu to Pump	Liquefaction energy efficiency	79.3%	Delivery CH4 Emissions	450 g CO2 eq./ 116000 Btu
Petroleum Input (including upstream)	3,000 Btu / 116000Btu to Pump	Hydrogen losses	2.8%	Delivery N2O Emissions	30 g CO2 eq./ 116000 Btu
				Delivery GHG Emissions	7,800 g CO2 eq./ 116000 Btu
				Hydrogen outlet pressure	12,700 psi
Electricity consumption	0.49 kWh / kg H2	Cryo-Compressed	d Dispensing	Basis Hydrogen Quantity	116,000 Btu (116,000 Btu/gal non-oxygenated
					conventional unleaded gasoline)
		Total Hydrogen Dispensed	1,000 kg / day	Total capital investment	\$2,120 2007\$ / daily kg
Total Capital Investment per Station	\$2,100,000 2007\$ / station	Number of Dispensing Stations	122	Levelized Cost of Capital	\$0.90 2007\$ / kg H2 dispensed
Total Capital Investment	\$256,147,000 2007\$ / all stations	Number of Cascade Pumps	1	Energy & Fuel	\$0.05 2007\$ / kg H2 dispensed
		Liquid H2 storage capacity per Station	4,600 kg H2	Other O&M Costs	\$0.61 2007\$ / kg H2 dispensed
		Usable Cascade Storage per Station	0 kg H2	Levelized Cost of Dispensing	\$3.38 2007\$ / kg H2 dispensed
Cool lanut (including upstrong)	Included in Delivery Castien	Cite starses			Included in Delivery Conting
Coal Input (including upstream)	Included in Delivery Section	Site storage	390% % of design capacity	CSD CO2 Emissions	Included in Delivery Section
Natural Gas Input (including upstream)	Included in Delivery Section	# of 2-hose Dispensers per Station	2 3.1%	CSD CH4 Emissions CSD N2O Emissions	Included in Delivery Section
Petroleum Input (including upstream)	Included in Delivery Section	Hydrogen losses	3.1%		Included in Delivery Section
				CSD GHG Emissions Cost Per Mile	Included in Delivery Section \$0.69 2007\$ / mi
Vehicle Mass	3.020 lb	V-1			
Vehicle Mass		Vehicl		Fuel Share	\$0.12 2007\$ / mi
Fuel cell size	70 kW	Fuel Economy	48.0 mi/gge	Maintenance, Tires, Repairs	\$0.07 2007\$ / mi
Hybridization battery (peak power)	30 kW	Vehicle Miles Traveled Vehicle Lifetime	15,000 mi / yr	Insurance & Registration	\$0.12 2007\$ / mi
		Vehicle Lifetime Purchase Year	160,000 mi	Depreciation	\$0.27 2007\$ / mi
			2015	Financing	\$0.10 2007\$ / mi
Cool locut (including upstroop)	0.000 Dhu / new firel and so it	Vehicle Purchase Cost	\$33,700 2007\$	Mah. Cuala CO2 Emission	1 C70 a / and fuel accounted
Coal Input (including upstream)	2,300 Btu / gge fuel consumed	Fuel Cell System Cost	\$4,500 2007\$ \$2,400 2007\$	Veh. Cycle CO2 Emissions	1,670 g / gge fuel consumed
Natural Gas Input (including upstream)	12,100 Btu / gge fuel consumed 6,900 Btu / gge fuel consumed	Storage System Cost (assume 700Bar Tax Credit	\$2,400 2007\$ \$0 2007\$	Veh. Cycle CH4 Emissions Veh. Cycle N2O Emissions	170 g / gge fuel consumed 6 g / gge fuel consumed
Petroleum Input (including upstream)	0,900 Biu / gge luei consumed		φυ ∠υυ/φ	Veh. Cycle GHG Emissions	6 g / gge fuel consumed 1,850 g / gge fuel consumed
				Ven. Cycle GHG Emissions	1,000 g / gge luel consumed

	Natural Gas 9 Petroleum 3 CO2 Emissions 27 CH4 Emissions N2O Emissions	5,366 Btu/116000 Btu 3,321 Btu/116000 Btu 3,321 Btu/116000 Btu 1,763 g CO2 eq/116000 Btu 144 g CO2 eq/116000 Btu 45 g CO2 eq/116000 Btu 7,952 g CO2 eq/116000 Btu	Liquefaction Coal Natural Gas Petroleum CO2 Emissions CH4 Emissions N2O Emissions GHG Emissions	52,430 Btu/11600 23,245 Btu/11600 1,989 Btu/11600 7,227 g CO2 eq/ 447 g CO2 eq/ 29 g CO2 eq/ 7,703 g CO2 eq/	0 Btu 0 Btu 116000 Btu 116000 Btu 116000 Btu	Transport Coal Natural Gas Petroleum CO2 Emissions CH4 Emissions N2O Emissions GHG Emissions	14 Btu/116000 Btu 120 Btu/116000 Btu 1,047 Btu/116000 Btu 93 g CO2 eq/1160 3 g CO2 eq/1160 1 g CO2 eq/1160 97 g CO2 eq/1160	Natural Gas Petroleum 00 Btu CO2 Emissions 00 Btu CH4 Emissions 00 Btu N20 Emissions	0 Btu/116000 0 Btu/116000 0 Btu/116000 0 g CO2 eq/' 0 g CO2 eq/' 0 g CO2 eq/' 0 g CO2 eq/'	0 Btu 0 Btu 116000 Btu 116000 Btu 116000 Btu	
Feedstock Coal 207 Btu/116000 Btu Natural Gas 629 Btu/116000 Btu Petroleum 2,839 Btu/116000 Btu CO2 Emissions -26,040 g CO2 eq/116000 Btu CH2 Emissions 3 g CO2 eq/116000 Btu N2O Emissions 36 g CO2 eq/116000 Btu GHG Emissions -25,991 g CO2 eq/116000 Btu	Biomass Feedstock 262		Liquefaction Liquefaction Losses	0.50%		Transport Transport Losses	2.32%	Storage / Dis Storage Losses		Total to Deliver 116000 BI Coal Natural Gas Petroleum CO2 Emissions CH4 Emissions N2O Emissions GHG Emissions	tu Fuel 58,018 33,921 9,197 9,043 607 111 9,760

Parameter	Value	Units	Reference	Comments
Case Definition				
Startup Year	2015		Input	Default for this study's current cases
Reference Year Dollars	2013		Input	Default for this study's current cases
Production Technology	WOODY BIOMASS		Input	Case definition
Form of H2 During Delivery	Liquid		Input	Case definition
Delivery Mode	Liquid Truck		Input	Case definition
	CRYOCOMPRESSE		Input	Case delinition
Dispensing Mode	D		Input	Case definition
Forecourt Station Size	1000	kg/day	Input	Case definition
Vehicle Type	passenger cars		Input	Case definition
Vehicle materials (conventional or lightweight)	Conventional		Input	Case definition; lightweight materials not current an MSM option
Vehicles' Fuel Economy	48.0	mile / gge	Input	Default assumption for this study's current case
Market Definition			· ·	
City Population	1,247,364		Input	Case Definition: Indianapolis, IN
Market penetration		(% vehicles in city)	Input	Case definition: Basis for Program Plan
Number of H2 vehicles in city		H2 vehicles / city	HDSAM Result	
Miles driven per vehicle		mile / vehicle year	Input	CPM only allows for 10K, 15K, and 20K/yr.
Miles driven per vehicle		miles in vehicle life	Input - GREET2 default	
City hydrogen use	121,096		HDSAM Result	
Number of H2 refueling stations in city	122		HDSAM Result	
Number of H2 stations/Number of gasoline stations	19%		HDSAM Result	
Average distance between stations (mi)	2.17	miles	HDSAM Result	
Other Assumptions for WTW Calculations				
Share of RFG in Total Gasoline Use	100%		Input: GREET default	Case definition: Basis for Program Plan
Type of Oxygenate in RFG	None		Input: GREET default	Case definition: Basis for Program Plan
O2 Content in RFG	0%	wt %	Input: GREET default	Case definition: Basis for Program Plan
Ratio of FCEV VOCs (emissions) to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV VOCs (evaporative) to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV CO emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV NOx emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV Exhaust PM10 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV Brake & Tire Wear PM10 emissions to GVs fueled with CG & RFG	100%		Input: GREET default	
Ratio of FCEV Exhaust PM2.5 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV Brake & Tire Wear PM2.5 emissions to GVs fueled with CG & RFG	100%		Input: GREET default	
Ratio of FCEV CH4 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV N2O emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Marginal Electricity Generation Mix for Transportation Use	US Mix	1	Input	Case definition: Basis for Program Plan


Parame	eter		Value	Units	Reference	Comments
Biomass						
	Percentage	e of Woody Biomass (Remainder is Herbaceous)	100%		H2A default	Current central H2A production via biomass gasification based on Mann, M & Steward, D.M. (2008, May 28)
	Biomass (Farmed Trees) Moisture Content		25%		GREET default input	H2A does not specify moisture content so GREET's default was used for GREET calculations
	•••	Energy Use for farming trees		Btu / dry ton	GREET default input	Energy use and fertilizer based on short rotation woody crops (e.g., willow)
		Percentage that is diesel	94%		GREET default input	
	Percentage that is electricity		5.7%		GREET default input	
	Grams of N	Nitrogen / short ton biomass (farmed trees)	709	g / dry ton	GREET default input	Equivalent to 75 lb N / ac in the maintenance year Year 3 or 4) which is reported by De La Torre Ugarte, 2003, App 3.1, assuming 6 dry tons biomass per acre, and harvesting once every 8 years. App 3.1 is for planting on cropland that was just used for traditional crops.
	Grams of F	205 / short ton biomass (farmed trees)	189	g / dry ton	GREET default input	Equivalent to 20 lb P / ac in the maintenance year (Year 3) which is in the range of 15-50 lb P / ac reported by De La Torre Ugarte, 2003, App 3.1, assuming 6 dry tons biomass per acre and harvesting once every 8 years
	Grams of F	(20 / short ton biomass (farmed trees)	331	g / dry ton	GREET default input	Equivalent to 35 lb K / ac in the maintenance year (Year 3) which is in the range of 15-50 lb K / ac reported by De La Torre Ugarte, 2003, App 3.1, assuming 6 dry tons biomass per acre and harvesting once every 8 years)
	Grams of h	erbicide / short ton biomass (farmed trees)	24	g / dry ton	GREET default input	Equivalent to 2.0 lb herbicide / ac in the planting year which similar to the 2.0 lb glyphosate / ac reported by De La Torre Ugarte, 2000, App 3.2, assuming 6 dry tons biomass per acre and harvesting once every 8 years. Booth reported Trifturalin (5 L/ha) and Metribuzin (395 g/ha). App 3.2 is for planting on currently idled cropland or cropland that was just used for pasture.
	Grams of i	nsecticide / short ton biomass (farmed trees)	2.0	g / dry ton	GREET default input	From Chastagner: Up to 56% of acreage annually sprayed with Dimethoate (Digon 400, 2-3 pints per acre); up to 56% of acreage annually sprayed with Permethrin 2LB (Ambush, 6.4 ounces per acre); Up to 12% of acreage annually sprayed with Endosulfan 3 EC (24c WA-990025, 2 tat/acre).
	Are GHG E	missions due to land use change included?	No		GREET default input	, ,
	Land use of	hange GHG removal	0	g / dry ton	GREET default input	GREET model default based on ANL personal communications
	0	stance from farm to hydrogen production facility	40	miles	GREET default input	GREET basis: distance could be limited by transport costs?
		my on trip from farm to hydrogen production facility		mpg diesel	GREET default input	
	Fuel econo	my on return trip from hydrogen production facility to farm (heavy heavy-d	ut 6	mpg diesel	GREET default input	

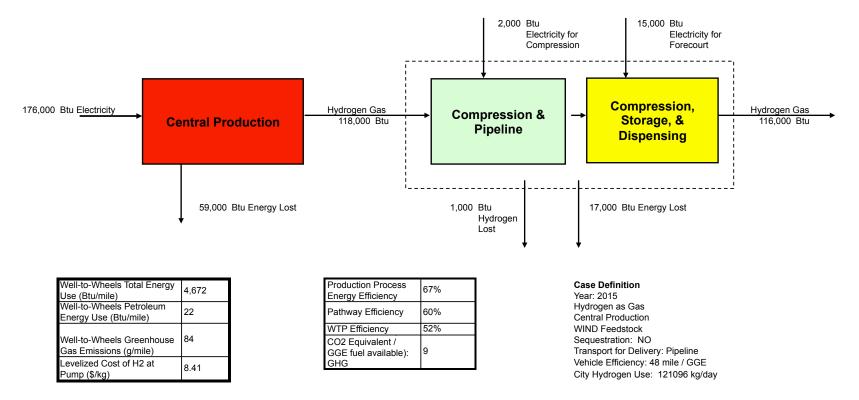
Parameter		Value	Units	Reference	Comments	
Natural Gas		Value	onito	Reference	Comments	
	nt of NG that is Shale Gas (remainder is conventional NG)	32.1%		GREET default input		
	NG recovery efficiency			GREET default input		
	NG lost during recovery		g/MMBtu	GREET default input	Previously reported at percent of total NG not on a MMBtu basis	
Percen	Percentage of energy use/loss for recovery that is combusted natural gas		Ŭ	GREET default input		
	Shale gas recovery efficiency			GREET default input		
	Shale gas lost during recovery		g/MMBtu	GREET default input		
Percen	Percentage of energy use/loss for recovery that is combusted shale gas			GREET default input		
	NG processing energy efficiency		bcessing energy efficiency 97.2% Transportation Fuel- Methodology, develo		Wang, M.Q. (1999, August). GREET 1.5 - Transportation Fuel-Cycle Model Volume 1: Methodology, development, Use and Results. Argonne, IL: Argonne National Laboratory.	GREET uses 97.5% which is comparable to several other models (Table 4.11)
NG los	NG lost during processing		g/MMBtu	GREET default input		
Percen	ntage of energy use for processing that is combusted natural gas	90.7%		GREET default input		
	ed & lost during transport and distribution		g / MMBtu	GREET default input		
	insport distance	500	miles	GREET default input		
lectricity						
Grid m	nix for production	US Mix		GREET input	Default	
	Biomass Fraction	0.5%		Definition of US Mix	Energy Information Administration. (2007,	
	Coal Fraction	44.2%		Definition of US Mix	February). Annual Energy Outlook 2007 with Projections to 2030. DOE/EIA-0383(2007).	
	Natural Gas Fraction	21.5%		Definition of US Mix	Washington, D.C. Retreived from www.eia.doe.gov/oiaf/archive/aeo07/index.html	
	Nuclear Fraction	21.0%		Definition of US Mix	National electricity generation data from tables D & D-8 using the 2005 timeframe. Percentages	
	Residual Oil Fraction	0.9%		Definition of US Mix	calculated from total generation values reported with all renewables except biomass aggregated	
	Others (Carbon Neutral - Hydroelectric, Wind, Geothermal, Solar PV, etc)	11.8%		Definition of US Mix	into the "Others (Carbon Neutral)" category	
Biomas	Biomass Electricity Shares and Efficiency					
	IGCC Share of Biomass Power Plants	1.0%		GREET default input		
	Combustion Share of Biomass Power Plants	99.0%		GREET default input	By difference from IGCC plants	
	Biomass IGCC Efficiency	43.0%		GREET default input		
	Biomass Combustion Plant Efficiency	32.1%		GREET default input		
	Effective Efficiency of Biopower Plants	32.2%		GREET default input		
Coal E	lectricity Shares and Efficiency					
	IGCC Share of Coal Power Plants	1.0%		GREET default input		
	Combustion Share of Coal Power Plants	99.0%		GREET default input		
	Coal IGCC Efficiency	47.0%		GREET default input		
	Coal Combustion Plant Efficiency	34.1%		GREET default input		
	Effective Efficiency of Coal-Electricity Plants	34.2%		GREET default input		
Natura	I Gas Electricity Shares and Efficiency					
	Simple Cycle Gas Turbine Share of Natural Gas Power Plants	37.0%		GREET default input		
	Combined Cycle Gas Turbine Share of Natural Gas Power Plants	46.0%		GREET default input		
	Combustion Boiler Share of Natural Gas Power Plants	17.0%		GREET default input		
	Natural Gas Simple Cycle Gas Turbine Plant Efficiency	33.1%		GREET default input		
	Natural Gas Combined Cycle Efficiency	55.0%		GREET default input		
	Natural Gas Combustion Boiler Plant Efficiency	34.8%		GREET default input		
	Effective Efficiency of Natural Gas-Electricity Plants	40.9%		GREET default input		
Residu	ual Oil Electricity Efficiency					
	Residual Oil Electricity Plant Efficiency	34.8%		GREET default input		
Electic	ity Transmission and Distribution Losses	8.0%		GREET default input		


Parameter		Value	Units	Reference	Comments
Parameters for GREET2					
Vehicle to	tal mass	3,020 lb		GREET2 Default Input	
Battery Ty	/pe for Hybridization	NiMH		GREET2 Default Input	
	tion Battery Size in Peak Hybridization Battery Power	30 kV	V	GREET2 Default Input	
	tion Battery Specific Power	272 W	/ lb	GREET2 Default Input	
	tion Battery Mass	110 lb		GREET2 Default Input	
Number o	f replacements of hybridization battery over lifetime	2		GREET2 Default Input	
Starter Ba	attery (Lead Acid) Mass	22 lb		GREET2 Default Input	
Mass of fl	uids on-board vehicle	56 lb		GREET2 Default Input	
Compone	nt mass (vehicles without batteries or fluids)	2,832 lb		GREET2 Calculation	
	Powertrain system percentage of component mass	8.0%		GREET2 Default Input	
	Transmission system percentage of component mass	2.6%		GREET2 Default Input	
	Chassis (without battery) percentage of component mass	23.0%		GREET2 Default Input	
	Traction motor percentage of component mass	3.8%		GREET2 Default Input	
	Generator percentage of component mass	0.0%		GREET2 Default Input	
	Electronic controller percentage of component mass	3.4%		GREET2 Default Input	
	Fuel Cell Auxiliary System percentage of component mass	1 9.3%		GREET2 Default Input	
	Body: including BIW, interior, exterior, and glass	39.9%		GREET2 Default Input	
	Stack Size	70 kV	V	GREET2 Default Input	
	uel Cell Stack - Powertrain System	226 lb		GREET2 Calculation	
Mass of F	uel Cell Stack - Auxiliary Systems	7 546 lb		GREET2 Calculation	
Miles drive	en per vehicle over lifetime	160,000 mi	iles in vehicle life	GREET2 Default Input	Current analysis assumes 5-year life 10-year analysis is available

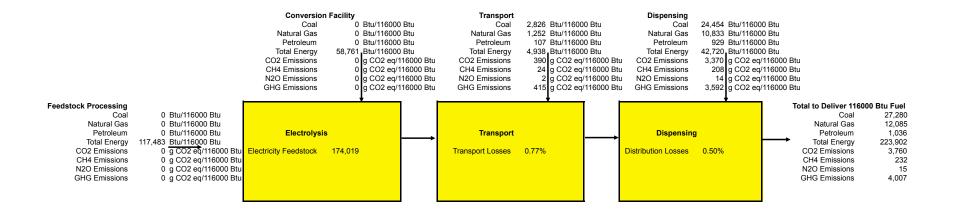
Appendix H: Central Natural Gas—Pipeline Delivery Supporting Tables and Figures

Hydrogen Produced In Central Plant and Transported as Gas via Pipeline

In	puts	Assumption	ons	Outputs	
				NG Delivery Pressure Average of gas companies	
		NG Recovery, Processi	ng, & Transport	NG Quality at Delivery	Average of gas companies
		NG Recovery Efficiency NG emitted during recovery NG processing energy efficiency	95.7% 400 g / MMbtu NG 97.2%	NG Cost in 2015 NG Share of Levelized Cost	\$6.09 2007 \$ / mmBTU \$1.52 2007\$ / kg H2 dispensed
Coal Input (including upstream)	200 Btu / 116000Btu to Pump	NG emitted during processing	30 g / MMbtu NG	WTG CO2 Emissions	600 g CO2 eq./ 116000 Btu
Natural Gas Input (including upstream)	125,600 Btu / 116000Btu to Pump	NG emitted during processing	199,400 g / MMbtu NG	WTG CH4 Emissions	1,260 g CO2 eq./ 116000 Btu
Petroleum Input (including upstream)	500 Btu / 116000Btu to Pump	NG transport distance	500 miles	WTG N2O Emissions WTG GHG Emissions	3 g CO2 eq./ 116000 Btu 1,870 g CO2 eq./ 116000 Btu
				Hydrogen Output Pressure	300 psi
Natural gas consumption	0.1564 MMBtu/kg H2 produced	Hydrogen Proc	duction	Hydrogen Outlet Quality	99.9%
Electricity consumption	0.57 kWh / kg H2				
Process Water Consumption	3.36 gal / kg H2	Central plant design capacity	379,400 kg / day	Total capital investment	\$632 2007\$ / daily kg H2 (effective capacity)
Cooling Water Consumption	1.50 gal / kg H2	Capacity factor	90%	Levelized Cost of Capital	\$0.34 2007\$ / kg H2 dispensed
Total Capital Investment	\$215,844,000 2007\$	necessary Process energy efficiency	0.35 71.9%	Fixed O&M Costs Variable O&M Costs	\$0.06 2007\$ / kg H2 dispensed \$0.08 2007\$ / kg H2 dispensed
Total Capital Investment	\$215,644,000 2007\$	Electricity Mix	US Mix	Total Levelized Cost	\$2.00 2007\$ / kg H2 dispensed
		After-tax IRR	10%		ψ2.00 2001ψ1 kg 112 dispensed
Coal Input (including upstream)	2.900 Btu / 116000Btu to Pump	Assumed Plant Life	40	SMR CO2 Emissions	10,200 g CO2 eg./ 116000 Btu
Natural Gas Input (including upstream)	48,800 Btu / 116000Btu to Pump			SMR CH4 Emissions	500 g CO2 eq./ 116000 Btu
Petroleum Input (including upstream)	300 Btu / 116000Btu to Pump			SMR N2O Emissions	12 g CO2 eq./ 116000 Btu
	•			SMR GHG Emissions	10,700 g CO2 eq./ 116000 Btu
	0.50 JANE (he US are done d	Pipelines for D	aliyon	Total and talling a strengt	
Electricity consumption for compressor Electricity consumption for geo storage	0.56 kWh / kg H2 produced 0.01 kWh / kg H2 produced	Pipelines for L	Jenvery	Total capital investment	\$3,340 2007\$ / daily kg H2 (effective capacity)
Total electricity consumption	0.57 kWh / kg H2 produced	City Population	1,247,000 people	Levelized Cost of Capital	\$1.71 2007\$ / kg H2 dispensed
Total electricity consumption	0.57 KWIT/ Kg Hz ploddeed	Hydrogen Vehicle Penetration	15%	Energy & Fuel	\$0.04 2007\$ / kg H2 dispensed
		City hydrogen use	121.100 kg / day	Other O&M Costs	\$0.40 2007\$ / kg H2 dispensed
Total Capital Investment	\$404,341,000 2007\$	Distance from City to Production Facility	62 miles	Levelized Cost of Delivery	\$2.15 2007\$ / kg H2 dispensed
	, . ,	Geologic storage capacity	1,324,700 kg H2		, , , , , , , , , , , , , , , , , , , ,
		Number of trunk pipelines	3	Delivery CO2 Emissions	390 g CO2 eq./ 116000 Btu
Coal Input (including upstream)	2,800 Btu / 116000Btu to Pump	Service-line length	1.5 miles / line	Delivery CH4 Emissions	24 g CO2 eq./ 116000 Btu
Natural Gas Input (including upstream)	2,200 Btu / 116000Btu to Pump	Number of service lines	122	Delivery N2O Emissions	2 g CO2 eq./ 116000 Btu
Petroleum Input (including upstream)	100 Btu / 116000Btu to Pump	Hydrogen losses	0.80%	Delivery GHG Emissions	420 g CO2 eq./ 116000 Btu
				Hydrogen outlet pressure	12,700 psi
Electricity consumption	4.4 kWh / kg H2 produced	Forecourt Disp	-	Basis Hydrogen Quantity	116,000 Btu (116,000 Btu/gal non-oxygenated conventional unleaded gasoline)
Total Capital Investment per Station	\$2,629,000 2007\$ / station	Average Dispensing Rate per Station	1,000 kg / day	Total capital investment	\$2,650 2007\$ / daily kg H2 (effective capacity)
Total Capital Investment	\$320,679,000 2007\$ / all stations	Number of Dispensing Stations	122	Levelized Cost of Capital	\$1.08 2007\$ / kg H2 dispensed
Inlet pressure of hydrogen at stations	300 psi	Number of Compression Steps	5 370 kg H2	Energy & Fuel Other O&M Costs	\$0.41 2007\$ / kg H2 dispensed
iniet pressure of hydrogen at stations	300 psi	Usable Low Pressure Storage per Station Usable Cascade Storage per Station	130 kg H2	Levelized Cost of Dispensing	\$0.43 2007\$ / kg H2 dispensed \$1.93 2007\$ / kg H2 dispensed
Coal Input (including upstream)	24,400 Btu / 116000Btu to Pump	Site storage	42% % of design capacity	CSD CO2 Emissions	3,370 g CO2 eq./ 116000 Btu
Natural Gas Input (including upstream)	10,800 Btu / 116000Btu to Pump	# 2-hose Dispensers per Station	2	CSD CH4 Emissions	210 g CO2 eq./ 116000 Btu
Petroleum Input (including upstream)	900 Btu / 116000Btu to Pump	Hydrogen Losses	0.50%	CSD N2O Emissions	14 g CO2 eq./ 116000 Btu
· · · · · · · · · · · · · · · · · · ·				CSD GHG Emissions	3,590 g CO2 eq./ 116000 Btu
				Cost Per Mile	\$0.69 2007\$ / mi
Vehicle Mass	3,020 lb	Vehicle		Fuel Share	\$0.13 2007\$ / mi
Fuel cell size	70 kW	Fuel Economy	48.0 mi/gge	Maintenance, Tires, Repairs	\$0.07 2007\$ / mi
Hybridization battery (peak power)	30 kW	Vehicle Miles Traveled	15,000 mi / yr	Insurance & Registration	\$0.12 2007\$ / mi
		Vehicle Lifetime	160,000 mi	Depreciation	\$0.27 2007\$ / mi
		Purchase Year	2015	Financing	\$0.10 2007\$ / mi
		Vehicle Purchase Cost	\$33,700 2007\$		
Coal Input (including upstream)	2,300 Btu / gge fuel consumed	Fuel Cell System Cost	\$4,500 2007\$	Veh. Cycle CO2 Emissions	1,670 g CO2 eq / gge fuel consumed
Natural Gas Input (including upstream)	12,100 Btu / gge fuel consumed	Hydrogen Storage System Cost	\$2,400 2007\$	Veh. Cycle CH4 Emissions	170 g CO2 eq / gge fuel consumed
Petroleum Input (including upstream)	6,900 Btu / gge fuel consumed	Tax Credit	\$0 2007\$	Veh. Cycle N2O Emissions	6 g CO2 eq / gge fuel consumed
				Veh. Cycle GHG Emissions	1,850 g CO2 eq / gge fuel consumed


Parameter	Value	Units	Reference	Comments
Case Definition				
Startup Year	2015		Input	Default for this study's current cases
Reference Year Dollars	2007		Input	Default for this study's current cases
Production Technology	NATURAL GAS		Input	Case definition
Form of H2 During Delivery	Gas		Input	Case definition
Delivery Mode	Pipeline		Input	Case definition
Dispensing Mode	CASCADE_700_BAR		Input	Case definition
Forecourt Station Size		kg/day	Input	Case definition
Vehicle Type	passenger cars		Input	Case definition
Vehicle materials (conventional or lightweight)	Conventional		Input	Case definition; lightweight materials not current an MSM option
Vehicles' Fuel Economy	48.0	mile / gge	Input	Default assumption for this study's current cases
Market Definition				
City Population	1,247,364	people	Input	Case Definition: Indianapolis, IN
Market penetration	15%	(% vehicles in city)	Input	Case definition: Basis for Program Plan
Number of H2 vehicles in city	138,832	H2 vehicles / city	HDSAM Result	
Miles driven per vehicle	15,000	mile / vehicle year	Input	CPM only allows for 10K, 15K, and 20K/yr.
Miles driven per vehicle	160,000	miles in vehicle life	Input - GREET2 default	
City hydrogen use	121,096	kg / d	HDSAM Result	
Number of H2 refueling stations in city	122	1	HDSAM Result	
Number of H2 stations/Number of gasoline stations	19%		HDSAM Result	
Average distance between stations (mi)	2.17	miles	HDSAM Result	
Other Assumptions for WTW Calculations				
Share of RFG in Total Gasoline Use	100%		Input: GREET default	Case definition: Basis for Program Plan
Type of Oxygenate in RFG	None	2	Input: GREET default	Case definition: Basis for Program Plan
O2 Content in RFG	0%	wt %	Input: GREET default	Case definition: Basis for Program Plan
Ratio of FCEV VOCs (emissions) to GVs fueled with CG & RFG	0%		Input: GREET default	ŭ
Ratio of FCEV VOCs (evaporative) to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV CO emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV NOx emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV Exhaust PM10 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV Brake & Tire Wear PM10 emissions to GVs fueled with CG & RFG	100%		Input: GREET default	
Ratio of FCEV Exhaust PM2.5 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV Brake & Tire Wear PM2.5 emissions to GVs fueled with CG & RFG	100%	,	Input: GREET default	
Ratio of FCEV CH4 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV N2O emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Marginal Electricity Generation Mix for Transportation Use	US Mix		Input	Case definition: Basis for Program Plan

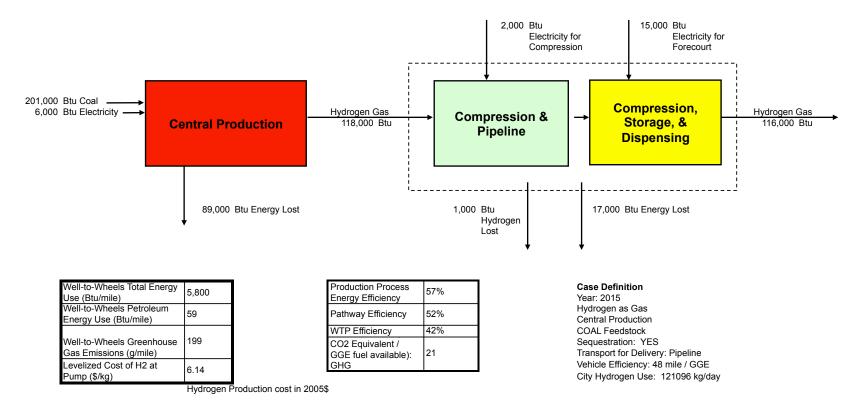
Invision Other						
Natural Onion Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG) Device of the last Shake Gas (remainder is conventional NG)	Paramotor		Valuo	Unite	Reference	Comments
Percent /K N Fint I: Shale Gas (remamper sonventional NG) 32:1% OREET default input Percenting of the shale gas N K test during necessry 68:7X GREET default input Percenting of energy use/loss for recovery that is contrusted natural gas 68:5% Shale gas recover officiency 68:5% GREET default input Percenting of energy use/loss for recovery that is contrusted natural gas 66:5% Shale gas recover officiency 67:5% GREET default input GREET default input N Cost during necessing 67:5% Wang, MG, 106:662 f 1.5 - Control of the control of the loss of 1.5% which is comparable to accomparable to accompar			Value	01113	Reference	Comments
NG modely effectively 95.75 CREET cellul input Prevoluty reported at percent of fold NG F NG text during econery 49.05 WAIbitu GREET cellul input Interval Shate gas texcely efficiency 98.55 GREET cellul input Interval No text during econery 98.55 GREET cellul input Interval No text during econery 98.55 GREET cellul input Interval No text during econery 98.55 GREET cellul input Interval NG processing energy efficiency 97.25 Transportation fair/Cycle Model Volume 1: Method and Results. GREET cellul input NG text during econerging efficiency 97.25 MMBED GREET cellul input GREET cellul input NG text during econerging efficiency 97.25 MMBED GREET cellul input GREET cellul input GREET cellul input NG used & kst during transport and distribution 97.85 GREET cellul input		ant of NG that is Shale Gas (remainder is conventional NG)	32.1%		GREET default input	
NG bit dung scoreiny Boyst Preventage of energy unlikes for recovery that is combusted natural gas Preventage of energy unlikes for recovery that is combusted natural gas Preventage of energy unlikes for recovery that is combusted natural gas Preventage of energy unlikes for recovery that is combusted natural gas Preventage of energy unlikes for recovery that is combusted natural gas Preventage of energy unlikes for recovery that is combusted natural gas Preventage of energy unlikes for recovery that is combusted natural gas Preventage of energy unlikes for recovery that is combusted natural gas Preventage of energy unlikes for recovery that is combusted natural gas Preventage of energy unlikes for recovery that is combusted natural gas Preventage of energy unlikes for recovery for the combusted natural gas Preventage of energy unlikes for recovery for the combusted natural gas Preventage of energy unlikes for recovery for the combusted natural gas Preventage of energy unlikes for recovery for the combusted natural gas Preventage of energy unlikes for recovery for the combusted natural gas Preventage of energy unlikes for recovery for the combusted natural gas Preventage of energy unlikes for recovery for the combusted natural gas Preventage of energy unlikes for recovery for the combusted natural gas Preventage of energy unlikes for recovery for the combusted natural gas Preventage of energy unlikes for recovery for the combusted natural gas Preventage of energy unlikes for recovery for the combusted natural gas Preventage of energy unlikes for recovery for the combusted natural gas Prev						
Parcentage of encry use/loss for recovery that is combusted natural gas 44.0% GREET default input Shate gas load curring encry 2428 pMMBu GREET default input Protocollage of encry use/loss for recovery that is combusted shale gas 57.4% Ware, NO. (1995 August). GREET 1.5 NG processing encry efficiency 57.4% Ware, NO. (1995 August). GREET 1.5 NG processing encry efficiency 57.4% Ware, NO. (1995 August). GREET 1.5 NG boot during processing that is combusted valuer gas 597.2% GREET default input Percentage of encry use/loss for recovery fluit is combusted valuer gas 690.7% GREET default input NG text during processing that is combusted valuer gas 690.7% GREET default input several other models NG used & lost during processing that is combusted valuer gas 690.7% GREET default input EvertSign Grid mix for production US Mix GREET default input Default EvertSign Grid mix for production US Mix GREET default input EvertSign EvertSign Grid mix for production US Mix GREET default input EvertSign EvertSign Grid mix for production <				g/MMBtu		Previously reported at percent of total NG not on a MMBtu basis
Shale gas ecovery efficiency 0	Perce	entage of energy use/loss for recovery that is combusted natural gas	49.0%	g/minibita	GREET default input	
Shale gas tot during recovery D245 g/MMBiu CREET default input Percentage of energy useful sombusted shale gas 57.4% CREET default input CREET default input NG processing energy efficiency 07.2% Ware, LG, (1969, August), ORE T, General Laboratory. CREET default input CREET default input Parcentage of energy useful processing that is contrusted entural gas 03.7% ////////////////////////////////////						
Percentage of energy usefues for recovery that is combusted shale gas 97.7% OREF redual input CREET detail input NG processing energy efficiency 97.2% Wing, MO. (1996, August), GREET 1.5. GREET detail input Sector 4.5% NG fort during processing 97.2% GREET detail input Sector 4.5% Sector 4.5% NG lott during processing 33. p/MMBu GREET detail input Sector 4.5% Sector 4.5% NG use & lost during transport and distribution 199.5% GREET detail input Sector 4.5% Sector 4.5% NG use & lost during transport and distribution 199.5% GREET detail input Default Electrinol 0.5% Definition of US Mix Energy information Administration. (207, 10.5% Ident to production 2.1% Definition of US Mix Projections to 203.0DE/EIA/383/2007. Ident to production 2.1% Definition of US Mix Wave as doe growing/intric/vie/ad/364/2007. Ident to production 2.1% Definition of US Mix Wave as doe growing/intric/vie/ad/364/2007. Ident to production 2.1% Definition of US Mix Wave as doe growing/intric/vie/ad/364/2007. Ident t				a/MMBtu		
NG processing energy efficiency 97.2% Wang, MA (1969, August), GREET 1.5- Transportation/Ed-Cycle Med Volume 1: Methodogy, development, Use and Results. GREET uses 97.5% which is comparable to everal other models (Table 4.11) NG lost during processing Precentage of energy use to processing that is combuded natural gas NG transport and simple and distribution 39 pMMBbu GREET default input Executed other models (Table 4.11) NG tools do during transport and distribution 199434 g/ MMBbu GREET default input Executed other models (Table 4.11) NG tools do during transport and distribution 199434 g/ MMBbu GREET default input Executed other models (Table 4.11) NG transport distance US Mix GREET default input Energy information Administration. (207, Pertuary) Annual Energy Outlock 2007 with Pertuary) Annual Energy Outlock 20				9		
Percentage of inergy use for processing that is combusted natural gas 90.7% GREET default input NO transport and distribution 1994848 g/ MMBlu GREET default input INO transport distance 800 miles GREET default input IGM miles GREET default input Default IGM miles GREET default input Default <td>NG pi</td> <td>rocessing energy efficiency</td> <td>97.2%</td> <td></td> <td>Wang, M.Q. (1999, August). GREET 1.5 - Transportation Fuel-Cycle Model Volume 1: Methodology, development, Use and Results. Argonne, IL: Argonne National Laboratory.</td> <td>GREET uses 97.5% which is comparable to several other models (Table 4.11)</td>	NG pi	rocessing energy efficiency	97.2%		Wang, M.Q. (1999, August). GREET 1.5 - Transportation Fuel-Cycle Model Volume 1: Methodology, development, Use and Results. Argonne, IL: Argonne National Laboratory.	GREET uses 97.5% which is comparable to several other models (Table 4.11)
No used & bast during transport and distribution 199848 g/l (MBtu) GREET default input No transport distance 500 miles GREET input Default Electricity Green and distribution US Mix GREET input Default Image: Second and the second and distribution US Mix GREET input Default Image: Second and distribution US Mix GREET input Default Default Image: Second and distribution 0.5% Definition of US Mix Feature (Leo Association and distribution and distri				g/MMBtu		
No transport distance 500 miles GREET default input Enter of the second						
Electricity Or Or Grid mix for production US Mix GREET input Default Image: Construction 0.5% Definition of US Mix Energy Information Administration. (2007, Proteins to 2003, DOE/ELA 0383 (2007). Image: Construction of US Mix Proteins to 200, DOE/ELA 0383 (2007). Proteins to 200, DOE/ELA 0383 (2007). Image: Construction of US Mix Proteins to 200, DOE/ELA 0383 (2007). Proteins to 200, DOE/ELA 0383 (2007). Image: Construction of US Mix Nuclear Fraction 21.0% Definition of US Mix National electricity generation data from tails electricity generation data from tails electricity generation values reprint on values reprint on values reprint values reprint on values reprint values rep						
Grid mix for production US Mix GREET input Default Biomass Fraction 0.5% Definition of US Mix Energy Information Administration (2007, February), Annual Energy Outlook 2007 with Pebruary), Annual Energy Outlook 2007 with Pebruary Annual Energy Outlook 2007 with Wex eta doe goviolation the Onton 000 Mix Energy Information Administration (2007, Pebruary), Annual Energy Outlook 2007 with Wex eta doe goviolation Pebruary With all renewables except biomass agree with all renewables except biomass ag		ansport distance	500	miles	GREET default input	
Biomass Fraction 0.5% Definition of US Mix Energy Information Administration. (2007, February). Annual Energy Outlook 2007 will Projections to 2030. DDE/EA-0383(2007). Natural Gas Fraction 21.5% Definition of US Mix Washington. DC. Retrieved for Administration. (2007, February). Annual Energy Outlook 2007 will Projections to 2030. DDE/EA-0383(2007). Nuclear Fraction 21.5% Definition of US Mix Washington. DC. Retrieved for Administration. (2007, February). Annual Energy Outlook 2007 will Projections to 2030. DDE/EA-0383(2007). Residual Oil Fraction 21.9% Definition of US Mix Washington. DC. Retrieved for the 265 limefrican be 265 limefrican. Percentin ead to 26 giviolation to 263 givingtion. Percentin with all remevables except bonoses agoing with all remevables except bonoses agoing into the "Others (Carbon Neutral - Hydroelectric, Wind, Geothermal, Solar PV, etc) 11.8% Definition of US Mix edinates for energy information advector per- with all remevables except bonoses agoing into the "Others (Carbon Neutral")" calegory into the "Others Informery Biomass Conduston Plant Efficiency 32.7% GREET default input By difference from IGCC plants Combustion of US Mix Biomass Combustion Plant Efficiency 32.7% GREET defauit input Biomass Combustion Plant Efficiency	Electricity					
Image: Coll Fraction Cal Fraction Fraction Fraction Fraction Image: Coll Fraction Atural Cas Fraction 21.5% Definition of US Mix Fraction Aussiance 2002 (Coll Coll Coll Coll Coll Coll Coll Col	Grid r	mix for production	US Mix		GREET input	Default
Image: Coal Fraction 44.2% Definition of US Mix February, Annual Energy Outlook 2007 with Projections 2003. DOEK-0A383(2007) Image: Coal Fraction 21.5% Definition of US Mix Washington, D.C. Retreived from two weights 2003. DOEK 0000 with a storage opyologifactor 2000. DOEK 0000 with a storage opyologifactor 20000 with a storage opyologifactor 20000 with a storage o		Biomass Fraction	0.5%		Definition of US Mix	En un la fama l'an Administration (2007
Natural Gas Fraction 21.5% Definition of US Mix Washington, D. C. Retrieved from www.eia.doe.gov/oid/afarchive/generation data from tata National electricity generation data from tata Porter State Image: State Stat		Coal Fraction	44.2%		Definition of US Mix	February). Annual Energy Outlook 2007 with
Nuclear Fraction 21.0% Definition of US Mix National electricity generation data from that & D-8 using the 2005 time/stome. Procentat & D-8 using the 2005 time/stomes agenge Image: Carbon Neutral - Hydroelectric, Wind, Geothermal, Solar PV, etc) 0.9% Definition of US Mix calculated from total generation values reprivation as aggregation of US Mix Biomass Electricity Shares and Efficiency 11.8% Definition of US Mix into the "Others (Carbon Neutral)" category Image: Carbon Neutral - Hydroelectric, Wind, Geothermal, Solar PV, etc) 11.8% Definition of US Mix into the "Others (Carbon Neutral)" category Image: Carbon Neutral - Hydroelectric, Wind, Geothermal, Solar PV, etc) 11.8% Definition of US Mix into the "Others (Carbon Neutral)" category Image: Carbon Neutral - Hydroelectric, Wind, Geothermal, Solar PV, etc) 11.8% Definition of US Mix into the "Others (Carbon Neutral)" category Image: Carbon Neutral - Hydroelectric, Wind, Geothermal, Solar PV, etc) 11.8% Definition of US Mix Image: Carbon Neutral - Hydroelectric, Wind, Geothermal, Solar PV, etc) 11.8% Definition of US Mix Image: Carbon Neutral - Carbon Neutral		Natural Gas Fraction	21.5%		Definition of US Mix	Washington, D.C. Retreived from
Residual Oil Fraction 0.9% Definition of US Mix calculated framewables except biomass aggreg into the "Others (Carbon Neutral - Hydroelectric, Wind, Geothermal, Solar PV, etc) 11.8% Definition of US Mix with all renevables except biomass aggreg into the "Others (Carbon Neutral)" category Biomass Electricity Shares and Efficiency 11.8% Definition of US Mix into the "Others (Carbon Neutral)" category IGCC Share of Biomass Power Plants 99.0% GREET default input By difference from IGCC plants Biomass Concentro Biomass Power Plants 99.0% GREET default input By difference from IGCC plants Effective Efficiency Of Biopower Plants 22.2% GREET default input Effective Efficiency of Biopower Plants 22.4% Coal Electricity Shares and Efficiency 32.1% GREET default input Effective Efficiency of Dower Plants 90.0% Coal Electricity Shares and Efficiency 43.0% GREET default input Effective Efficiency of Coal Power Plants 90.0% Coal Electricity Shares and Efficiency 47.0% GREET default input Effective Efficiency of Coal-Electricity Plants 34.2% GREET default input Effective Efficiency of Coal-Electricity Plants 34.2% GREET default input Effective Efficiency of		Nuclear Fraction	21.0%		Definition of US Mix	National electricity generation data from tables D-7
Others (Carbon Neutral - Hydroelectric, Wind, Geothermal, Solar PV, etc) 11.8% Definition of US Mix Biomass Electricity Shares and Efficiency 10% GREET default input Mathematical Science		Residual Oil Fraction	0.9%		Definition of US Mix	calculated from total generation values reported with all renewables except biomass aggregated
IGCC Share of Biomass Power Plants 1.0% GREET default input Biomass IGCC Efficiency Biomass IGCC Efficiency 43.0% GREET default input Biomass IGCC Efficiency Biomass IGCC Efficiency 43.0% GREET default input Biomass Combustion Plant Efficiency Effective Efficiency of Biopower Plants 32.1% GREET default input Biomass Combustion Plant Efficiency Coal Electricity Shares and Efficiency 32.2% GREET default input Biomass Coal Power Plants Coal ISCC Efficiency 1.0% GREET default input Biomass Coal Power Plants Coal IGCC Efficiency 1.0% GREET default input Biomass Coal Power Plants Coal IGCC Efficiency 1.0% GREET default input Biomass Coal Power Plants Coal IGCC Efficiency 47.0% GREET default input Biomass Coal Power Plants Coal IGC Efficiency 47.0% GREET default input Biomass Coal Power Plants Biomass Coal Power Plant Efficiency GREET default input		Others (Carbon Neutral - Hydroelectric, Wind, Geothermal, Solar PV, etc)	11.8%		Definition of US Mix	into the "Others (Carbon Neutral)" category
IGCC Share of Biomass Power Plants 1.0% GREET default input Biomass IGCC Efficiency Biomass IGCC Efficiency 43.0% GREET default input By difference from IGCC plants Biomass IGCC Efficiency 43.0% GREET default input Biomass Combustion Plant Efficiency 32.1% GREET default input Effective Efficiency of Biopower Plants 32.2% GREET default input Biomass Combustion Plant Efficiency 32.2% Coal Electricity Shares and Efficiency 32.2% GREET default input Biomass Coal Power Plants 32.2% Coal IGCC Efficiency 1.0% GREET default input Biomass Coal Power Plants Biomass Plant Efficiency Coal IGCC Efficiency 1.0% GREET default input Biomass Coal Power Plants Biomass Plant Efficiency Coal IGCC Efficiency 47.0% GREET default input Biomass Coal Plant Efficiency Biomass Plant Efficiency Biomase Plant Plant Efficiency Biomass Plant Plant Efficiency Biomass Plant Plant Efficiency Biomass Plant P	Bioma	ass Electricity Shares and Efficiency				
Combustion Share of Biomass Power Plants 99.0% GREET default input By difference from IGCC plants Biomass IGCC Efficiency 43.0% GREET default input Image: Combustion Plant Efficiency 32.1% GREET default input Image: Combustion Plant Efficiency 32.2% GREET default input Image: Combustion Plant Efficiency 32.2% GREET default input Image: Combustion Plant Efficiency Image: Combustion Plant Efficiency 32.2% GREET default input Image: Combustion Plant Efficiency Image: Combustion Plant Efficiency 32.2% GREET default input Image: Combustion Plant Efficiency Image: Combus	Bioine		1.0%		GREET default input	
Biomass IGCC Efficiency 43.0% GREET default input Biomass Combustion Plant Efficiency 32.1% GREET default input Effective Efficiency of Biopower Plants 32.2% GREET default input Coal Electricity Shares and Efficiency 1.0% GREET default input IlGCC Share of Coal Power Plants 9.0% GREET default input Combustion Share of Coal Power Plants 99.0% GREET default input Coal IGCC Efficiency 47.0% GREET default input Coal Combustion Plant Efficiency 34.1% GREET default input Matural Gas Electricity Plants 34.2% GREET default input Simple Cycle Gas Turbine Share of Natural Gas Power Plants 37.0% GREET default input Combustion Bolar Efficiency						By difference from IGCC plants
Biomass Combustion Plant Efficiency 32.1% GREET default input Effective Efficiency of Biopower Plants 32.2% GREET default input Coal Electricity Shares and Efficiency						
Effective Efficiency of Biopower Plants 32.2% GREET default input Coal Electricity Shares and Efficiency 1.0% GREET default input IGCC Share of Coal Power Plants 1.0% GREET default input Coal IGCC Efficiency 47.0% GREET default input Coal Combustion Plant Efficiency 34.1% GREET default input IEffective Efficiency of Coal-Electricity Plants 34.2% GREET default input Natural Gas Electricity Shares and Efficiency 34.1% GREET default input Simple Cycle Gas Turbine Share of Natural Gas Power Plants 37.0% GREET default input Combustion Boiler Share of Natural Gas Power Plants 46.0% GREET default input Combustion Boiler Share of Natural Gas Power Plants 17.0% GREET default input Matural Gas Combustion Boiler Plant Efficiency 33.1% GREET default input Natural Gas Combustion Boiler Plant Efficiency 55.0% GREET default input Natural Gas Combustion Boiler Plant Efficiency 34.8% GREET default input Residual Oil Electricity Plant Efficiency 34.8% GREET default input Residual Oil Electricity Plant Efficiency 34.8% GREET default input Residual Oil Electr						
Coal Electricity Shares and Efficiency 1.0% GREET default input IGCC Share of Coal Power Plants 99.0% GREET default input Combustion Share of Coal Power Plants 99.0% GREET default input Coal IGCC Efficiency 47.0% GREET default input Coal Combustion Plant Efficiency 34.1% GREET default input Effective Efficiency of Coal-Electricity Plants 34.2% GREET default input Natural Gas Electricity Shares and Efficiency						
IGCC Share of Coal Power Plants 1.0% GREET default input Combustion Share of Coal Power Plants 99.0% GREET default input Coal IGCC Efficiency 47.0% GREET default input Coal IGCC Efficiency 34.1% GREET default input Coal Combustion Plant Efficiency 34.1% GREET default input Image: Simple Cycle Gas Turbine Share of Natural Gas Power Plants 37.0% GREET default input Simple Cycle Gas Turbine Share of Natural Gas Power Plants 37.0% GREET default input Combustion Boiler Share of Natural Gas Power Plants 17.0% GREET default input Combustion Boiler Share of Natural Gas Power Plants 17.0% GREET default input Natural Gas Simple Cycle Gas Turbine Plant Efficiency 33.1% GREET default input Natural Gas Simple Cycle Gas Turbine Plant Efficiency 33.1% GREET default input Natural Gas Combustion Boiler Plant Efficiency 55.0% GREET default input Natural Gas Combustion Boiler Plant Efficiency 34.8% GREET default input Residual Oil Electricity Plant Efficiency 34.8% GREET default input Residual Oil Electricity Plant Efficiency 34.8% GREET default input Residu	Coal	Electricity Shares and Efficiency	52.270			
Combustion Share of Coal Power Plants 99.0% GREET default input Coal IGCC Efficiency 47.0% GREET default input Coal Combustion Plant Efficiency 34.1% GREET default input Effective Efficiency of Coal-Electricity Plants 34.2% GREET default input Natural Gas Electricity Shares and Efficiency 34.2% GREET default input Simple Cycle Gas Turbine Share of Natural Gas Power Plants 37.0% GREET default input Combustion Boiler Share of Natural Gas Power Plants 46.0% GREET default input Combustion Boiler Share of Natural Gas Power Plants 17.0% GREET default input Natural Gas Combustion Boiler Share of Natural Gas Power Plants 17.0% GREET default input Natural Gas Combustion Boiler Share of Natural Gas Power Plants 17.0% GREET default input Natural Gas Combustion Boiler Plant Efficiency 33.1% GREET default input Natural Gas Combustion Boiler Plant Efficiency 55.0% GREET default input Natural Gas Combustion Boiler Plant Efficiency 34.8% GREET default input Effective Efficiency of Natural Gas-Electricity Plants 40.9% GREET default input Residual Oil Electricity Plant Efficiency 34.8% GREE	Cuari	Liectificity Shales and Lindency	1.0%		CREET default input	
Coal IGCC Efficiency 47.0% GREET default input Coal Combustion Plant Efficiency 34.1% GREET default input Effective Efficiency of Coal-Electricity Plants 34.2% GREET default input Natural Gas Electricity Shares and Efficiency 34.2% GREET default input Simple Cycle Gas Turbine Share of Natural Gas Power Plants 37.0% GREET default input Combustion Boiler Share of Natural Gas Power Plants 46.0% GREET default input Combustion Boiler Share of Natural Gas Power Plants 17.0% GREET default input Natural Gas Simple Cycle Gas Turbine Plant Efficiency 33.1% GREET default input Natural Gas Combustion Boiler Plant Efficiency 33.1% GREET default input Natural Gas Combustion Boiler Plant Efficiency 55.0% GREET default input Natural Gas Combustion Boiler Plant Efficiency 34.8% GREET default input Residual Oil Electricity Plant Efficiency 34.8% GREET default input Residual Oil Electricity Plant Efficiency 34.8% GREET default input Residual Oil Electricity Plant Efficiency 34.8% GREET default input Residual Oil Electricity Plant Efficiency 34.8% GREET default input						
Coal Combustion Plant Efficiency 34.1% GREET default input Effective Efficiency of Coal-Electricity Plants 34.2% GREET default input Natural Gas Electricity Shares and Efficiency						
Effective Efficiency of Coal-Electricity Plants 34.2% GREET default input Natural Gas Electricity Shares and Efficiency Simple Cycle Gas Turbine Share of Natural Gas Power Plants 37.0% GREET default input Combined Cycle Gas Turbine Share of Natural Gas Power Plants 37.0% GREET default input Combined Cycle Gas Turbine Share of Natural Gas Power Plants 46.0% GREET default input Combustion Boiler Share of Natural Gas Power Plants 17.0% GREET default input Natural Gas Simple Cycle Gas Turbine Plant Efficiency 33.1% GREET default input Natural Gas Combined Cycle Efficiency 55.0% GREET default input Natural Gas Combustion Boiler Plant Efficiency 34.8% GREET default input Residual Oil Electricity Plant Efficiency 34.8% GREET default input Residual Oil Electricity Plant Efficiency 34.8% GREET default input Residual Oil Electricity Plant Efficiency 34.8% GREET default input						
Natural Gas Electricity Shares and Efficiency Image: Combined Cycle Gas Turbine Share of Natural Gas Power Plants 37.0% GREET default input Combined Cycle Gas Turbine Share of Natural Gas Power Plants 46.0% GREET default input Combustion Boiler Share of Natural Gas Power Plants 46.0% GREET default input Matural Gas Simple Cycle Gas Turbine Plant Efficiency 33.1% GREET default input Natural Gas Combined Cycle Efficiency 55.0% GREET default input Natural Gas Combustion Boiler Plant Efficiency 34.8% GREET default input Natural Gas Combustion Boiler Plant Efficiency 34.8% GREET default input Residual Oil Electricity Plant Efficiency 34.8% GREET default input Residual Oil Electricity Plant Efficiency 34.8% GREET default input						
Simple Cycle Gas Turbine Share of Natural Gas Power Plants 37.0% GREET default input Combined Cycle Gas Turbine Share of Natural Gas Power Plants 46.0% GREET default input Combustion Boiler Share of Natural Gas Power Plants 46.0% GREET default input Combustion Boiler Share of Natural Gas Power Plants 17.0% GREET default input Natural Gas Simple Cycle Gas Turbine Plant Efficiency 33.1% GREET default input Natural Gas Combined Cycle Efficiency 55.0% GREET default input Natural Gas Combustion Boiler Plant Efficiency 34.8% GREET default input Effective Efficiency of Natural Gas-Electricity Plants 40.9% GREET default input Residual Oil Electricity Efficiency 34.8% GREET default input Residual Oil Electricity Plant Efficiency 34.8% GREET default input	N. :		34.2%		GREET default input	
Combined Cycle Gas Turbine Share of Natural Gas Power Plants 46.0% GREET default input Combustion Boiler Share of Natural Gas Power Plants 17.0% GREET default input Natural Gas Simple Cycle Gas Turbine Plant Efficiency 33.1% GREET default input Natural Gas Combined Cycle Efficiency 55.0% GREET default input Natural Gas Combustion Boiler Plant Efficiency 34.8% GREET default input Effective Efficiency of Natural Gas-Electricity Plants 40.9% GREET default input Residual Oil Electricity Efficiency 34.8% GREET default input Residual Oil Electricity Plant Efficiency 34.8% GREET default input	Natur		A			
Combustion Boiler Share of Natural Gas Power Plants 17.0% GREET default input Natural Gas Simple Cycle Gas Turbine Plant Efficiency 33.1% GREET default input Natural Gas Combined Cycle Efficiency 55.0% GREET default input Natural Gas Combustion Boiler Plant Efficiency 55.0% GREET default input Natural Gas Combustion Boiler Plant Efficiency 34.8% GREET default input Effective Efficiency of Natural Gas-Electricity Plants 40.9% GREET default input Residual Oil Electricity Plant Efficiency 34.8% GREET default input						
Natural Gas Simple Cycle Gas Turbine Plant Efficiency 33.1% GREET default input Natural Gas Combined Cycle Efficiency 55.0% GREET default input Natural Gas Combustion Boiler Plant Efficiency 34.8% GREET default input Effective Efficiency of Natural Gas-Electricity Plants 40.9% GREET default input Residual Oil Electricity Efficiency 34.8% GREET default input Residual Oil Electricity Plant Efficiency 34.8% GREET default input						
Natural Gas Combined Cycle Efficiency 55.0% GREET default input Natural Gas Combustion Boiler Plant Efficiency 34.8% GREET default input Effective Efficiency of Natural Gas-Electricity Plants 40.9% GREET default input Residual Oit Electricity Efficiency 34.8% GREET default input Residual Oit Electricity Plant Efficiency 34.8% GREET default input						
Natural Gas Combustion Boiler Plant Efficiency 34.8% GREET default input Effective Efficiency of Natural Gas-Electricity Plants 40.9% GREET default input Residual Oil Electricity Efficiency 34.8% GREET default input Residual Oil Electricity Plant Efficiency 34.8% GREET default input						
Effective Efficiency of Natural Gas-Electricity Plants 40.9% GREET default input Residual Oil Electricity Efficiency 34.8% GREET default input						
Residual Oil Electricity Efficiency 34.8% GREET default input						
Residual Oil Electricity Efficiency 34.8% GREET default input			40.9%		GREET default input	
Residual Óil Electricity Plant Efficiency 34.8% GREET default input	Resid				· · ·	
			34.8%		GREET default input	
	Electi		8.0%		GREET default input	


Parameter		Value	Units	Reference	Comments
arameters for G	REET2				
Vehicle to	tal mass	3,020	lb	GREET2 Default Input	
Battery Ty	/pe for Hybridization	NiMH		GREET2 Default Input	
	tion Battery Size in Peak Hybridization Battery Power	30	kW	GREET2 Default Input	
Hybridizat	tion Battery Specific Power	272	W / Ib	GREET2 Default Input	
	tion Battery Mass	110	lb	GREET2 Default Input	
Number o	f replacements of hybridization battery over lifetime	2		GREET2 Default Input	
Starter Ba	attery (Lead Acid) Mass	22	lb	GREET2 Default Input	
Mass of fl	uids on-board vehicle	56	lb	GREET2 Default Input	
Compone	nt mass (vehicles without batteries or fluids)	2,832	lb	GREET2 Calculation	
	Powertrain system percentage of component mass	8.0%		GREET2 Default Input	
	Transmission system percentage of component mass	2.6%		GREET2 Default Input	
	Chassis (without battery) percentage of component mass	23.0%		GREET2 Default Input	
	Traction motor percentage of component mass	3.8%		GREET2 Default Input	
	Generator percentage of component mass	0.0%		GREET2 Default Input	
	Electronic controller percentage of component mass	3.4%		GREET2 Default Input	
	Fuel Cell Auxiliary System percentage of component mass	19.3%		GREET2 Default Input	
	Body: including BIW, interior, exterior, and glass	39.9%		GREET2 Default Input	
	Stack Size		kW	GREET2 Default Input	
	uel Cell Stack - Powertrain System	226		GREET2 Calculation	
Mass of F	uel Cell Stack - Auxiliary Systems	546	lb	GREET2 Calculation	
Miles drive	en per vehicle over lifetime	160,000	miles in vehicle life	GREET2 Default Input	Current analysis assumes 5-year li 10-year analysis is available

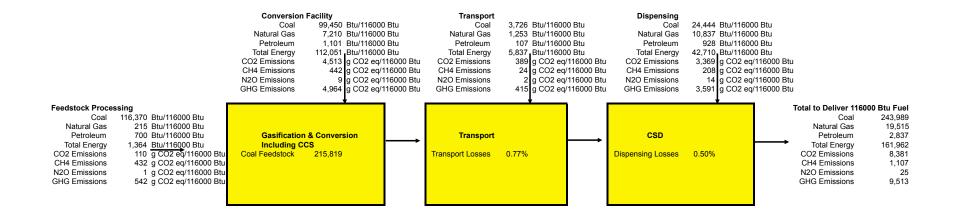
Appendix I: Central Wind Electricity—Pipeline Delivery Supporting Tables and Figures

Hydrogen Produced In Central Plant and Transported as Gas via Pipeline

Inputs		Assumptio	ons	Outputs		
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	0 Btu / 116000Btu to Pump 0 Btu / 116000Btu to Pump 0 Btu / 116000Btu to Pump	Wind Electricity Green credits for wind-generated electricity on the grid are assumed. The electrolyzers are not necessarily co-located with the wind farm. A high capacity factor is available due to use of green credits.		Electricity price at prod. facility Electricity WTG CO2 Emissions WTG CH4 Emissions WTG N2O Emissions WTG GHG Emissions	\$0.0574 2007\$ / kWh \$3.37 2007\$ / kg H2 dispensed 0 g CO2 eq./ 116000 Btu 0 g CO2 eq./ 116000 Btu 0 g CO2 eq./ 116000 Btu 0 g CO2 eq./ 116000 Btu	
Electricity consumption Process Water Consumption Cooling Water Consumption	50.0 kWh / kg H2 produced 2.94 gal / kg H2 produced 294 gal / kg H2 produced \$67,634.000 2007\$	Hydrogen Proc Central plant design capacity Capacity factor Number of production facilities necessary Process enorgy officiency	luction 52,300 kg / day 98% 2.36 66.7%	Hydrogen Output Pressure Hydrogen Outlet Quality Total capital investment Levelized Cost of Capital Fixed O&M Costs Variable O&M Costs	300 psi 99.9% \$1,320 2007\$ / daily kg H2 (effective capacity) \$0.67 2007\$ / kg H2 dispensed \$0.23 2007\$ / kg H2 dispensed \$0.06 2007\$ / kg H2 dispensed	
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	0 Btu / 116000Btu to Pump 0 Btu / 116000Btu to Pump 0 Btu / 116000Btu to Pump 0 Btu / 116000Btu to Pump	Process energy efficiency Electricity Mix After-tax IRR Assumed Plant Life	00.7% US Mix 10% 40	Variable Odini Costs Total Levelized Cost Production CO2 Emissions Production CH4 Emissions Production N2O Emissions Production GHG Emissions	\$0.06 2007\$ / kg H2 dispensed \$4.33 2007\$ / kg H2 dispensed 0 g CO2 eq./ 116000 Btu 0 g CO2 eq./ 116000 Btu 0 g CO2 eq./ 116000 Btu 0 g CO2 eq./ 116000 Btu	
Electricity consumption for compressor Electricity consumption for geo storage Total electricity consumption	0.56 kWh / kg H2 dispensed 0.01 kWh / kg H2 dispensed 0.57 kWh / kg H2 dispensed	Pipelines for D City Population Hydrogen Vehicle Penetration	elivery 1,247,000 people 15%	Total capital investment Levelized Cost of Delivery Energy & Fuel	\$3,340 2007\$ / daily kg H2 (effective capacity) \$1.71 2007\$ / kg H2 dispensed \$0.04 2007\$ / kg H2 dispensed	
Total Capital Investment	\$404,341,000 2007\$	City hydrogen use Distance from City to Production Facility Geologic storage capacity	121,100 kg / day 62 miles 1,324,700 kg H2	Other O&M Costs Levelized Cost of Delivery	\$0.40 2007\$ / kg H2 dispensed \$2.15 2007\$ / kg H2 dispensed	
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	2,800 Btu / 116000Btu to Pump 1,300 Btu / 116000Btu to Pump 100 Btu / 116000Btu to Pump	Number of trunk pipelines Service-line length Number of service lines Hydrogen losses	3 1.5 miles / line 122 0.80%	Delivery CO2 Emissions Delivery CH4 Emissions Delivery N2O Emissions Delivery GHG Emissions	390 g CO2 eq./ 116000 Btu 24 g CO2 eq./ 116000 Btu 2 g CO2 eq./ 116000 Btu 420 g CO2 eq./ 116000 Btu	
Electricity consumption	4.4 kWh / kg H2 dispensed	Forecourt Disp	ensing	Hydrogen outlet pressure Basis Hydrogen Quantity	12,700 psi 116,000 Btu (116,000 Btu/gal non-oxygenated conventional unleaded gasoline)	
Total Capital Investment per Station Total Capital Investment Inlet pressure of hydrogen at stations	\$2,629,000 2007\$ / station \$320,679,000 2007\$ / all stations 300 psi	Average Dispensing Rate per Station Number of Dispensing Stations Number of Compression Steps Useable Low Pressure Storage per Statio Useable Cascade Storage per Station	1,000 kg/day 122 5 370 kg H2 130 kg H2	Total capital investment Levelized Cost of Capital Energy & Fuel Other O&M Costs Levelized Cost of Dispensing	\$2,650 2007\$ / daily kg H2 (effective capacity) \$1.08 2007\$ / kg H2 dispensed \$0.41 2007\$ / kg H2 dispensed \$0.43 2007\$ / kg H2 dispensed \$1.93 2007\$ / kg H2 dispensed	
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	24,500 Btu / 116000Btu to Pump 10,800 Btu / 116000Btu to Pump 900 Btu / 116000Btu to Pump	Site storage # of 2-hose Dispensers per Station Hydrogen losses	42% % of design capacity 2 0.50%	CSD CO2 Emissions CSD CH4 Emissions CSD N2O Emissions CSD GHG Emissions	3,370 g CO2 eq./ 116000 Btu 210 g CO2 eq./ 116000 Btu 14 g CO2 eq./ 116000 Btu 3,590 g CO2 eq./ 116000 Btu	
Vehicle Mass Fuel cell size Hybridization battery (peak power)	3,020 lb 70 kW 30 kW	Vehicle Fuel Economy Vehicle Miles Traveled Vehicle Lifetime Purchase Year Vehicle Purchase Cost	48.0 mi / gge 15,000 mi / yr 160,000 mi 2015 \$33,700 2007\$	Cost Per Mile Fuel Share Maintenance, Tires, Repairs Insurance & Registration Depreciation Financing	\$0.74 2007\$ / mi \$0.18 2007\$ / mi \$0.07 2007\$ / mi \$0.12 2007\$ / mi \$0.27 2007\$ / mi \$0.27 2007\$ / mi	
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	2,400 Btu / gge fuel consumed 12,100 Btu / gge fuel consumed 6,900 Btu / gge fuel consumed	Fuel Cell System Cost Hydrogen Storage System Cost Tax Credit	\$4,500 2007\$ \$2,400 2007\$ \$0 2007\$	Vehicle Cycle CO2 Emissions Vehicle Cycle CH4 Emissions Vehicle Cycle N2O Emissions Vehicle Cycle GHG Emissions	1,680 g CO2 eq / gge fuel consumed 170 g CO2 eq / gge fuel consumed 6 g CO2 eq / gge fuel consumed 1,850 g CO2 eq / gge fuel consumed	


Parameter	Value	Units	Reference	Comments
Case Definition				
	0015			
Startup Year	2015		Input	Default for this study's current cases
Reference Year Dollars	2007		Input	Default for this study's current cases
Production Technology	WIND		Input	Case definition
Form of H2 During Delivery	Gas		Input	Case definition
Delivery Mode	Pipeline		Input	Case definition
Dispensing Mode	CASCADE_700_BAR		Input	Case definition
Forecourt Station Size		kg/day	Input	Case definition
Vehicle Type	passenger cars		Input	Case definition
Vehicle materials (conventional or lightweight)	Conventional		Input	Case definition; lightweight materials not current an MSM option
Vehicles' Fuel Economy	48.0	mile / gge	Input	Default assumption for this study's current cases
Market Definition				
City Population	1,247,364	people	Input	Case Definition: Indianapolis, IN
Market penetration	15%	(% vehicles in city)	Input	Case definition: Basis for Program Plan
Number of H2 vehicles in city	138,832	H2 vehicles / city	HDSAM Result	
Miles driven per vehicle	15,000	mile / vehicle year	Input	CPM only allows for 10K, 15K, and 20K/yr.
Miles driven per vehicle	160,000	miles in vehicle life	Input - GREET2 default	
City hydrogen use	121,096	kg / d	HDSAM Result	
Number of H2 refueling stations in city	122		HDSAM Result	
Number of H2 stations/Number of gasoline stations	19%		HDSAM Result	
Average distance between stations (mi)	2.17	miles	HDSAM Result	
Other Assumptions for WTW Calculations				
Share of RFG in Total Gasoline Use	100%	1	Input: GREET default	Case definition: Basis for Program Plan
Type of Oxygenate in RFG	None		Input: GREET default	Case definition: Basis for Program Plan
O2 Content in RFG	0%	wt %	Input: GREET default	Case definition: Basis for Program Plan
Ratio of FCEV VOCs (emissions) to GVs fueled with CG & RFG	0%		Input: GREET default	ŭ
Ratio of FCEV VOCs (evaporative) to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV CO emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV NOx emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV Exhaust PM10 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV Brake & Tire Wear PM10 emissions to GVs fueled with CG & RFG	100%		Input: GREET default	
Ratio of FCEV Exhaust PM2.5 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV Brake & Tire Wear PM2.5 emissions to GVs fueled with CG & RFG	100%		Input: GREET default	
Ratio of FCEV CH4 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV N2O emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Marginal Electricity Generation Mix for Transportation Use	US Mix		Input	Case definition: Basis for Program Plan

Param	eter		Value	Units	Reference	Comments
Electricit	y					
	Grid mix	for production	Green - Zero			Case Definition
			Carbon			
	Grid mix	for compression & CSD	US Mix		GREET input	Default
		Biomass Fraction	0.5%		Definition of US Mix	Energy Information Administration. (2007,
		Coal Fraction	44.2%		Definition of US Mix	February). Annual Energy Outlook 2007 with Projections to 2030. DOE/EIA-0383(2007).
		Natural Gas Fraction	21.5%		Definition of US Mix	Washington, D.C. Retreived from www.eia.doe.gov/oiaf/archive/aeo07/index.html
		Nuclear Fraction	21.0%		Definition of US Mix	National electricity generation data from tables D-7 & D-8 using the 2005 timeframe. Percentages
		Residual Oil Fraction	0.9%		Definition of US Mix	calculated from total generation values reported with all renewables except biomass aggregated
		Others (Carbon Neutral - Hydroelectric, Wind, Geothermal, Solar PV, etc)	11.8%		Definition of US Mix	into the "Others (Carbon Neutral)" category
	Biomass	Electricity Shares and Efficiency				
		IGCC Share of Biomass Power Plants	1.0%		GREET default input	
		Combustion Share of Biomass Power Plants	99.0%		GREET default input	By difference from IGCC plants
		Biomass IGCC Efficiency	43.0%		GREET default input	
		Biomass Combustion Plant Efficiency	32.1%		GREET default input	
		Effective Efficiency of Biopower Plants	32.2%		GREET default input	
	Coal Elec	ctricity Shares and Efficiency				
		IGCC Share of Coal Power Plants	1.0%		GREET default input	
		Combustion Share of Coal Power Plants	99.0%		GREET default input	
		Coal IGCC Efficiency	47.0%		GREET default input	
		Coal Combustion Plant Efficiency	34.1%		GREET default input	
		Effective Efficiency of Coal-Electricity Plants	34.2%		GREET default input	
	Natural G	Sas Electricity Shares and Efficiency				
		Simple Cycle Gas Turbine Share of Natural Gas Power Plants	37.0%		GREET default input	
		Combined Cycle Gas Turbine Share of Natural Gas Power Plants	46.0%		GREET default input	
		Combustion Boiler Share of Natural Gas Power Plants	17.0%		GREET default input	
		Natural Gas Simple Cycle Gas Turbine Plant Efficiency	33.1%		GREET default input	
		Natural Gas Combined Cycle Efficiency	55.0%		GREET default input	
		Natural Gas Combustion Boiler Plant Efficiency	34.8%		GREET default input	
		Effective Efficiency of Natural Gas-Electricity Plants	40.9%		GREET default input	
	Residual	Oil Electricity Efficiency				
		Residual Oil Electricity Plant Efficiency	34.8%		GREET default input	
	Electicity	Transmission and Distribution Losses	8.0%		GREET default input	


Parameter		Value	Units	Reference	Comments
arameters for G	REET2				
Vehicle to	tal mass	3,020	lb	GREET2 Default Input	
Battery Ty	pe for Hybridization	NiMH		GREET2 Default Input	
	tion Battery Size in Peak Hybridization Battery Power	30	kW	GREET2 Default Input	
Hybridizat	tion Battery Specific Power	272	W / Ib	GREET2 Default Input	
Hybridizat	tion Battery Mass	110	lb	GREET2 Default Input	
Number o	f replacements of hybridization battery over lifetime	2		GREET2 Default Input	
Starter Ba	attery (Lead Acid) Mass	22	lb	GREET2 Default Input	
Mass of fl	uids on-board vehicle	56	lb	GREET2 Default Input	
Compone	nt mass (vehicles without batteries or fluids)	2,832	lb	GREET2 Calculation	
	Powertrain system percentage of component mass	8.0%		GREET2 Default Input	
	Transmission system percentage of component mass	2.6%		GREET2 Default Input	
	Chassis (without battery) percentage of component mass	23.0%		GREET2 Default Input	
	Traction motor percentage of component mass	3.8%		GREET2 Default Input	
	Generator percentage of component mass	0.0%		GREET2 Default Input	
	Electronic controller percentage of component mass	3.4%		GREET2 Default Input	
	Fuel Cell Auxiliary System percentage of component mass	19.3%		GREET2 Default Input	
	Body: including BIW, interior, exterior, and glass	39.9%		GREET2 Default Input	
	Stack Size		kW	GREET2 Default Input	
	uel Cell Stack - Powertrain System	226		GREET2 Calculation	
Mass of F	uel Cell Stack - Auxiliary Systems	546	lb	GREET2 Calculation	
Miles drive	en per vehicle over lifetime	160,000	miles in vehicle life	GREET2 Default Input	Current analysis assumes 5-year li 10-year analysis is available

Appendix J: Central Coal with Carbon Capture and Storage—Pipeline Delivery Supporting Tables and Figures

Hydrogen Produced In Central Plant and Transported as Gas via Pipeline

Inputs		Assumptio	ns	Outputs		
		Coal Production &		Coal price at H2 production Coal Share of Levelized Cost	\$34 2007 \$ / ton \$0.30 2007\$ / kg H2 dispensed	
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	116,400 Btu / 116000Btu to Pump 200 Btu / 116000Btu to Pump 700 Btu / 116000Btu to Pump	Energy Recovery Average distance from coal mine to H2 prod.	99.3% 65 miles	WTG CO2 Emissions WTG CH4 Emissions WTG N2O Emissions WTG GHG Emissions	110 g CO2 eq./ 116000 Btu 430 g CO2 eq./ 116000 Btu 1 g CO2 eq./ 116000 Btu 540 g CO2 eq./ 116000 Btu	
Coal consumption Natural gas consumption	7.8 kg (dry) / kg H2 produced 0.0 MMBtu/kg H2 produced	Hydrogen Production & Carbon Captu	re and Sequestration (CCS)	Hydrogen Output Pressure Hydrogen Outlet Quality	300 psi 99.9%	
Total Capital Investment	1.72 kWh / kg H2 2.91 gal / kg H2 produced 0.00 gal / kg H2 produced \$691,378,000 2005\$	Central plant design capacity Capacity factor Number of production facilities necessary Process energy efficiency Electricity Mix	307,700 kg / day 90% 0.44 56.8% US Mix	Total capital investment Levelized Cost of Capital Fixed O&M Costs Variable O&M Costs Total Levelized Cost	\$2,500 2005\$ / daily kg H2 (effective capacity) \$1.29 2005\$ / kg H2 dispensed \$0.30 2005\$ / kg H2 dispensed \$0.18 2005\$ / kg H2 dispensed \$2.06 2005\$ / kg H2 dispensed	
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	99,400 Btu / 116000Btu to Pump 7,200 Btu / 116000Btu to Pump 1,100 Btu / 116000Btu to Pump	After-tax IRR Assumed Plant Life CO2 Captured for Sequestration CO2 Captured for Sequestration	10% 40 90% 4,925,000 kg CO2 / day	Production CO2 Emissions Production CH4 Emissions ProductionN2O Emissions Production GHG Emissions	4,510 g CO2 eq./ 116000 Btu 440 g CO2 eq./ 116000 Btu 9 g CO2 eq./ 116000 Btu 4,960 g CO2 eq./ 116000 Btu	
		Pipelines for De	livery	Total capital investment	\$3,340 2007\$ / daily kg dispensed	
Electricity consumption for compressor Electricity consumption for geo storage Total electricity consumption Total Capital Investment Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	0.56 kWh / kg H2 dispensed 0.01 kWh / kg H2 dispensed 0.57 kWh / kg H2 dispensed \$404,341,000 2007\$ 3,700 Btu / 116000Btu to Pump 1,300 Btu / 116000Btu to Pump 100 Btu / 116000Btu to Pump	City Population Hydrogen Vehicle Penetration City hydrogen use Distance from City to Production Facility Geologic storage capacity Number of trunk pipelines Service-line length Number of service lines Hydrogen losses	1,247,000 people 15% 121,100 kg / day 62 miles 1,325,000 kg H2 3 1.5 miles / line 122 0,76%	Levelized Cost of Capital Energy & Fuel Other O&M Costs Levelized Cost of Delivery Delivery CO2 Emissions Delivery CH4 Emissions Delivery N2O Emissions Delivery GHG Emissions	\$1.71 2007\$ / kg H2 dispensed \$0.04 2007\$ / kg H2 dispensed \$0.40 2007\$ / kg H2 dispensed \$2.15 2007\$ / kg H2 dispensed 300 g CO2 eq / 116000 Btu 24 g CO2 eq / 116000 Btu 2 g CO2 eq / 116000 Btu 420 g CO2 eq / 116000 Btu	
Electricity consumption	4.4 kWh / kg H2	Forecourt Dispe	nsing	Hydrogen outlet pressure Basis Hydrogen Quantity	12,700 psi 116,000 Btu (116,000 Btu/gal non-oxygenated	
Total Capital Investment per Station Total Capital Investment Inlet pressure of hydrogen at stations	\$2,629,000 2007\$ / station \$320,679,000 2007\$ / all stations 300 psi	Average Dispensing Rate per Station Number of Dispensing Stations Number of Compression Steps Usable Low Pressure Storage per Station Usable Cascade Storage per Station	1,000 kg/day 122 5 370 kg H2 130 kg H2	Total capital investment Levelized Cost of Capital Energy & Fuel Other O&M Costs Levelized Cost of Dispensing	conventional unleaded gasoline) \$2,650 2007\$ / daily kg H2 (effective capacity) \$1.08 2007\$ / kg H2 dispensed \$0.41 2007\$ / kg H2 dispensed \$0.43 2007\$ / kg H2 dispensed \$1.93 2007\$ / kg H2 dispensed	
Coal Input (including upstream) Natural Gas Input (including upstream) Petroleum Input (including upstream)	24,400 Btu / 116000Btu to Pump 10,800 Btu / 116000Btu to Pump 900 Btu / 116000Btu to Pump	Site storage # of 2-hose Dispensers per Station Hydrogen Losses	42% % of design capacity 2 0.50%	CSD CO2 Emissions CSD CH4 Emissions CSD N2O Emissions CSD GHG Emissions	3,370 g CO2 eq./ 116000 Btu 210 g CO2 eq./ 116000 Btu 14 g CO2 eq./ 116000 Btu 3,590 g CO2 eq./ 116000 Btu	
Vehicle Mass Fuel cell size Size of hybridization battery Coal Input (including upstream)	3,020 lb 70 kW 30 kW 2,300 Btu / gge fuel consumed	Vehicle Fuel Economy Vehicle Miles Traveled Vehicle Lifetime Purchase Year Vehicle Purchase Cost Fuel Cell System Cost	48.0 mi / gge 15,000 mi / yr 160,000 mi 2015 \$33,700 2007\$ \$4,500 2007\$	Cost Per Mile Fuel Share Maintenance, Tires, Repairs Insurance & Registration Depreciation Financing Vehicle Cycle CO2 Emissions	\$0.69 2007\$ / mi \$0.13 2007\$ / mi \$0.07 2007\$ / mi \$0.12 2007\$ / mi \$0.27 2007\$ / mi \$0.10 2007\$ / mi \$0.10 2007\$ / mi 1,670 g CO2 eq / gge fuel consumed	
Natural Gas Input (including upstream) Petroleum Input (including upstream)	12,100 Btu / gge fuel consumed 6,900 Btu / gge fuel consumed	Hydrogen Storage System Cost Tax Credit	\$2,400 2007\$ \$0 2007\$	Vehicle Cycle CH4 Emissions Vehicle Cycle N2O Emissions Vehicle Cycle GHG Emissions	170 g CO2 eq / gge fuel consumed 6 g CO2 eq / gge fuel consumed 1,850 g CO2 eq / gge fuel consumed	

Parameter	Value	Units	Reference	Comments
Case Definition				
	00.15			
Startup Year	2015		Input	Default for this study's current cases
Reference Year Dollars	2007		Input	Default for this study's current cases
Production Technology	COAL		Input	Case definition
Form of H2 During Delivery	Gas		Input	Case definition
Delivery Mode	Pipeline		Input	Case definition
Dispensing Mode Forecourt Station Size	CASCADE_700_BAR		Input	Case definition Case definition
		kg/day	Input	
Vehicle Type	passenger cars		Input	Case definition
Vehicle materials (conventional or lightweight)	Conventional		Input	Case definition; lightweight materials not current an MSM option
Vehicles' Fuel Economy	48.0	mile / gge	Input	Default assumption for this study's current cases
Market Definition				
City Population	1,247,364	people	Input	Case Definition: Indianapolis, IN
Market penetration	15%	(% vehicles in city)	Input	Case definition: Basis for Program Plan
Number of H2 vehicles in city	138,832	H2 vehicles / city	HDSAM Result	
Miles driven per vehicle	15,000	mile / vehicle year	Input	CPM only allows for 10K, 15K, and 20K/yr.
Miles driven per vehicle	160,000	miles in vehicle life	Input - GREET2 default	
City hydrogen use	121,096	kg / d	HDSAM Result	
Number of H2 refueling stations in city	122		HDSAM Result	
Number of H2 stations/Number of gasoline stations	19%		HDSAM Result	
Average distance between stations (mi)	2.17	miles	HDSAM Result	
Other Assumptions for WTW Calculations				
Share of RFG in Total Gasoline Use	100%	1	Input: GREET default	Case definition: Basis for Program Plan
Type of Oxygenate in RFG	None		Input: GREET default	Case definition: Basis for Program Plan
O2 Content in RFG	0%	wt %	Input: GREET default	Case definition: Basis for Program Plan
Ratio of FCEV VOCs (emissions) to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV VOCs (evaporative) to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV CO emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV NOx emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV Exhaust PM10 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV Brake & Tire Wear PM10 emissions to GVs fueled with CG & RFG	100%		Input: GREET default	
Ratio of FCEV Exhaust PM2.5 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV Brake & Tire Wear PM2.5 emissions to GVs fueled with CG & RFG	100%		Input: GREET default	
Ratio of FCEV CH4 emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Ratio of FCEV N2O emissions to GVs fueled with CG & RFG	0%		Input: GREET default	
Marginal Electricity Generation Mix for Transportation Use	US Mix		Input	Case definition: Basis for Program Plan

Parameter		Value	Units	Reference	Comments
Coal					
Ene	rgy efficiency of coal mining and cleaning	99.3%			2009 reported value was wrong, should have be
Ene	rgy requirement for coal mining and cleaning	10,513	Btu/MMBtu Del. Coal		~10513
Ene	rgy requirement for coal transport to H2 plant	1,096	Btu/MMBtu Del. Coal		
	rage distance from coal mine to hydrogen production facility		miles		
	I energy requirement for coal mining, cleaning & delivery		Btu/MMBtu Del. Coal		
	re of Resid Oil for coal mining & cleaning	7.0%	Blannin Bla Bei. Odar		
	re of Diesel for coal mining & cleaning	56.0%			
	re of Gasoline for coal mining & cleaning	3.0%			
	re of Natural Gas for coal mining & cleaning	1.0%		1	
	re of Coal for coal mining & cleaning	9.0%		1	
	re of Electricity for coal mining & cleaning	24.0%			
	id Oil requirement for coal mining and cleaning		Btu/MMBtu Del. Coal	-	
	sel requirement for coal mining and cleaning		Btu/MMBtu Del. Coal		
	oline requirement for coal mining and cleaning		Btu/MMBtu Del. Coal		
	ural Gas requirement for coal mining and cleaning		Btu/MMBtu Del. Coal		
	I requirement for coal mining and cleaning		Btu/MMBtu Del. Coal		
Elec	ctricity requirement for coal mining and cleaning	1,692	Btu/MMBtu Del. Coal		
ectricity	I miv for production	US Mix		GREET input	Default
Giù	I mix for production	-		· · ·	Default
	Biomass Fraction	0.5%		Definition of US Mix	Energy Information Administration (2007
	Coal Fraction	44.2%		Definition of US Mix	Energy Information Administration. (2007, February). Annual Energy Outlook 2007 with Projections to 2030. DOE/EIA-0383(2007).
	Natural Gas Fraction	21.5%		Definition of US Mix	Washington, D.C. Retreived from www.eia.doe.gov/oiaf/archive/aeo07/index.html
	Nuclear Fraction	21.0%		Definition of US Mix	National electricity generation data from tables & D-8 using the 2005 timeframe. Percentages
	Residual Oil Fraction	0.9%		Definition of US Mix	calculated from total generation values reported with all renewables except biomass aggregated
	Others (Carbon Neutral - Hydroelectric, Wind, Geothermal, Solar PV, etc)	11.8%		Definition of US Mix	into the "Others (Carbon Neutral)" category
Bion	nass Electricity Shares and Efficiency				
	IGCC Share of Biomass Power Plants	1.0%		GREET default input	
	Combustion Share of Biomass Power Plants	99.0%		GREET default input	By difference from IGCC plants
	Biomass IGCC Efficiency	43.0%		GREET default input	
	Biomass Combustion Plant Efficiency	32.1%		GREET default input	
	Effective Efficiency of Biopower Plants	32.2%		GREET default input	
Coa	I Electricity Shares and Efficiency IGCC Share of Coal Power Plants	1.0%		GREET default input	
	Combustion Share of Coal Power Plants	99.0%		GREET default input	
	Coal IGCC Efficiency	47.0%		GREET default input	
	Coal Combustion Plant Efficiency	34.1%		GREET default input	
	Effective Efficiency of Coal-Electricity Plants	34.2%		GREET default input	
Nati	ural Gas Electricity Shares and Efficiency	0 1.2 /0			
	Simple Cycle Gas Turbine Share of Natural Gas Power Plants	37.0%		GREET default input	
	Combined Cycle Gas Turbine Share of Natural Gas Power Plants	46.0%		GREET default input	
	Combustion Boiler Share of Natural Gas Power Plants	17.0%		GREET default input	
	Natural Gas Simple Cycle Gas Turbine Plant Efficiency	33.1%		GREET default input	
	Natural Gas Combined Cycle Efficiency	55.0%		GREET default input	
	Natural Gas Combustion Boiler Plant Efficiency	34.8%		GREET default input	
	Effective Efficiency of Natural Gas-Electricity Plants	40.9%		GREET default input	
Res	idual Oil Electricity Efficiency				
	Residual Oil Electricity Plant Efficiency	34.8%		GREET default input	
Flec	ticity Transmission and Distribution Losses	8.0%		GREET default input	

Parameter		Value	Units	Reference	Comments
Parameters for G	REET2				
Vehicle to	tal mass	3,020 lb)	GREET2 Default Input	
Battery Ty	rpe for Hybridization	NiMH		GREET2 Default Input	
	tion Battery Size in Peak Hybridization Battery Power	30 k	W	GREET2 Default Input	
	tion Battery Specific Power	272 W	/ / lb	GREET2 Default Input	
Hybridizat	tion Battery Mass	110 lb)	GREET2 Default Input	
Number o	f replacements of hybridization battery over lifetime	2		GREET2 Default Input	
Starter Ba	attery (Lead Acid) Mass	22 lb)	GREET2 Default Input	
Mass of flu	uids on-board vehicle	56 lb)	GREET2 Default Input	
Compone	nt mass (vehicles without batteries or fluids)	2,832 lb)	GREET2 Calculation	
	Powertrain system percentage of component mass	8.0%		GREET2 Default Input	
	Transmission system percentage of component mass	2.6%		GREET2 Default Input	
	Chassis (without battery) percentage of component mass	23.0%		GREET2 Default Input	
	Traction motor percentage of component mass	3.8%		GREET2 Default Input	
	Generator percentage of component mass	0.0%		GREET2 Default Input	
	Electronic controller percentage of component mass	3.4%		GREET2 Default Input	
	Fuel Cell Auxiliary System percentage of component mass	19.3%		GREET2 Default Input	
	Body: including BIW, interior, exterior, and glass	39.9%		GREET2 Default Input	
Fuel Cell S	Stack Size	70 k		GREET2 Default Input	
	uel Cell Stack - Powertrain System	226 lb		GREET2 Calculation	
Mass of F	uel Cell Stack - Auxiliary Systems	546 lb)	GREET2 Calculation	
Miles drive	en per vehicle over lifetime	160,000 m	niles in vehicle life	GREET2 Default Input	Current analysis assumes 5-year life 10-year analysis is available