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Nomenclature 
𝑦� Arithmetic mean of the reference utility data vector components 

𝜷 Matrix whose columns contain 𝜁𝑘 polynomial term regression coefficients 

𝜒𝑖2 Chi-squared value corresponding to input 𝑖 for sensitivity analysis in 
Procedure 3.1 

𝛥𝐸 Objective function value difference between successive perturbations 

𝛿𝑇𝑂𝑇𝐴𝐿 Consolidated index for measuring overall goodness-of-fit 

𝜂 Number of random samples from each triangular probability distribution 
in the sensitivity analysis for Section 2.4 and Procedures 3.2–3.3 

Г𝑟𝑒𝑓 Pre-retrofit annual energy use (synthetic billing data from reference 
model) 

Г𝑢𝑛𝑐𝑎𝑙 Predicted pre-retrofit annual energy use from uncalibrated model 

𝜆 Number of approximate inputs considered in the study 

𝜇𝑗 Mean of the 𝜂 annual output values corresponding to input 𝑗 in the 
sensitivity analysis for Section 2.4 and Procedures 3.2–3.3 

𝜈𝑖 Explicit input value randomly selected from triangular probability 
distribution for approximate input 𝑖 

𝜑𝑐 Annual calibrated model predicted savings as a percent of the pre-retrofit 
reference utility data 

𝜑𝑟 Annual reference savings as a percent of the pre-retrofit reference utility 
data 

𝜓𝑐 Calibrated model’s post-retrofit annual energy savings prediction 

𝜓𝑟 Reference model’s post-retrofit annual energy savings prediction 

𝜓𝑢 Uncalibrated model’s post-retrofit annual energy savings prediction 

𝜌𝑒𝑥𝑝 Expected number of occurrences on levels 𝑥𝑖𝑙𝑜𝑤, 𝑥𝑖𝑚𝑖𝑑, 𝑥𝑖
ℎ𝑖𝑔ℎ for sensitivity 

analysis in Procedure 3.1 

𝜌𝑜𝑏𝑠,𝑠,𝑖 Observed number of occurrences on levels 𝑥𝑖𝑙𝑜𝑤, 𝑥𝑖𝑚𝑖𝑑 , 𝑥𝑖
ℎ𝑖𝑔ℎ for sensitivity 

analysis in Procedure 3.1 

𝜎𝑗 Standard deviation of the 𝜂 annual output values corresponding to input 𝑗 
in the sensitivity analysis for Section 2.4 and Procedures 3.2–3.3 

𝜏 Number of strong parameters identified from sensitivity analyses 
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X Design matrix used in central composite design 

Y Response matrix used in central composite design 

𝜀(𝜓𝑐) Absolute error in savings predictions for the calibrated model 

𝜀(𝜓𝑢) Absolute error in savings predictions for the uncalibrated model 

𝜉𝑗 Sensitivity analysis coefficient corresponding to input 𝑗 for Section 2.4 
and Procedures 3.2–3.3 

𝜁𝑘 Quadratic polynomials that best fit each of the sets of simulation data in 
the least squares sense 

𝐵𝑜𝐶 Difference in absolute error of savings predictions between calibrated and 
uncalibrated models 

𝐸𝑛𝑒𝑤 Objective function value of new (successive) perturbations 

𝐸𝑜𝑙𝑑 Objective function value of old (previous) perturbations 

𝑁 Number of iterations per parameter for simulated annealing algorithm 

𝑛 Number of utility data points used in calibration (12, 365, or 8760) 

𝑝 Number of parameters in the model 

𝑇0 Initial temperature for simulated annealing algorithm 

𝑇𝐵𝑜𝐶 Sum of the 𝐵𝑜𝐶 across all retrofit measures 

𝑥𝑖
ℎ𝑖𝑔ℎ High level median value in LHMC discretization corresponding to input 𝑖 

𝑥𝑖𝑙𝑜𝑤 Low level median value in LHMC discretization corresponding to input 𝑖 

𝑥𝑖𝑚𝑎𝑥 Triangular probability distribution’s maximum value corresponding to 
input 𝑖 

𝑥𝑖𝑚𝑖𝑑 Middle level median value in LHMC discretization corresponding to input 
𝑖 

𝑥𝑖𝑚𝑖𝑛 Triangular probability distribution’s minimum value corresponding to 
input 𝑖 

𝑥𝑖𝑛𝑜𝑚 Triangular probability distribution’s nominal value corresponding to input 
𝑖 

𝒚� Vector of simulation-predicted utility data 

𝒚 Vector of reference utility data 
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Acronyms 
 

AC Air conditioner 

ACH Air changes per hour 

AH Air handler 

BEopt Building Energy Optimization program 

BESTEST-EX Building Energy Simulation Test for Existing Homes  

CV Coefficient of variation 

ELA Effective leakage area 

LHMC Latin Hypercube Monte Carlo 

MEL Miscellaneous electric loads 

MGL Miscellaneous gas loads 

NMBE Normalized mean base error 

OSB Oriented strand board 

RA Return air 

RMSE Root mean square error 

SA Supply air 

SEER Seasonal energy efficiency ratio 

SHGC Solar heat gain coefficient 

SLA Specific leakage area 

UA Unfinished attic 

XML Extensible markup language 
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Executive Summary 
This simulation study adapts and applies the general framework described in Building Energy 
Simulation Test for Existing Homes (Judkoff et al. 2010) for self-testing residential building 
energy model calibration methods. BEopt™/DOE-2.21 is used to evaluate four mathematical 
calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 
1960s-era existing home in a cooling-dominated climate. The home’s model inputs are assigned 
probability distributions representing uncertainty ranges, pseudo-random selections are made 
from the uncertainty ranges to define “explicit” input values, and synthetic utility billing data are 
generated using the explicit input values. The four calibration methods evaluated in this study 
are: (1) an ASHRAE 1051-RP-based approach (Reddy and Maor 2006); (2) a simplified 
simulated annealing optimization approach; (3) a regression metamodeling optimization 
approach; and (4) a simple output ratio calibration approach. The calibration methods are 
evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the 
calibrated models and the methods are evaluated based on the accuracy of predicted savings, 
computational cost, repeatability, automation, and ease of implementation. 

Two utility billing scenarios were investigated: one in which the uncalibrated model overpredicts 
(“Scenario 1”) the reference billing data and another in which the uncalibrated model 
underpredicts (“Scenario 2”) the reference billing data. Figure ES1 and Figure ES2 illustrate the 
differences in annual energy savings prediction accuracy for retrofit measures when using the 
calibrated versus uncalibrated building models. The various retrofit measures considered in this 
study were first applied to the reference models (models with “explicit” input values) to develop 
reference energy savings. The retrofit measures were then applied to the uncalibrated model 
(“best-guess” building model composed of nominal input values) and each calibrated model 
obtained by performing the three input calibration methods. Annual energy savings predictions 
using the uncalibrated and calibrated models are displayed in the figures as percent errors in 
savings predictions relative to the reference energy savings; values appearing closer to the red 
vertical dashed line represent better agreement with reference savings than values farther from 
the red vertical dashed line.2 

 

                                                            
1 Throughout the document, both “BEopt” and “BEopt/DOE-2.2” refer to the Building Energy Optimization 
software BEopt used in conjunction with the DOE-2.2 simulation engine. 
2 Relative errors may be high because reference energy savings for some retrofit measures are low; e.g., the Low 
Solar Absorptance Roof measure reduces reference energy use by 65 kWh (0.3%) for Scenario 1 and 302 kWh 
(1.1%) for Scenario 2. 
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Figure ES1. Predicted annual percent energy savings error relative to  

reference savings for each retrofit measure, Scenario 1 

 

Figure ES2. Predicted annual percent energy savings error relative to  
reference savings for each retrofit measure, Scenario 2 

 

These figures, as well as results shown throughout the report, demonstrate that calibration 
generally improves the accuracy of savings predictions, but that significant errors in calibrated 
models can exist even when pre-retrofit model predictions match well with the billing data (i.e., 
billing data can be matched for the wrong reasons). In terms of accurately predicting retrofit 
energy savings, the most computationally expensive method investigated in this study (ASHRAE 
1051-RP based) performed slightly better than the two other less expensive input calibration 
methods. The ASHRAE 1051-RP-based method required additional simulations to develop 
“uncertainty” ranges for savings predictions, but for most predictions in this study the ranges did 
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not contain the “true” savings value. Calibrations to the hourly and daily billing data generally 
produced more accurate savings predictions than calibrations to monthly data. The added benefit 
of higher frequency data was more apparent for the calibration scenario (Scenario 2) where the 
uncalibrated model annual energy use prediction was fairly close (–5%) to the billing data (due 
to compensating errors) than for the scenario (Scenario 1) where the uncalibrated model 
significantly overpredicted the billing data (+26%).  

Overall, the results suggest that: 

1. The optimization problem is still significantly underdetermined when calibrating to 
monthly, daily, and hourly data using the approaches investigated in this study, which are 
largely based on previous studies performed mostly in the context of commercial 
buildings. 

2. Additional research is needed to develop improved or alternate approaches that take full 
advantage of the additional informational content contained in the high-frequency 
residential billing data. 

In the nearer term, calibration methods similar to those described in this study could be 
implemented in residential simulation tools and tested in the field for automated calibrations to 
monthly billing data. They could be implemented in the context of emerging industry standards 
for residential model calibration (such as Building Performance Institute Standard 2400 [BPI 
2011]). Software developers who have the capability to run batch simulations in parallel (e.g., 
through cloud-computing) could employ methods similar to the regression metamodeling 
optimization approach to reduce the time required for automated calibration. 
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1 Introduction 
Building energy simulation programs are often used to model the thermal performance of 
commercial and residential buildings, and more specifically to recommend energy efficiency 
upgrade packages and operational strategies for existing buildings. These simulation programs 
may require hundreds of model inputs, many of which have high levels of uncertainty because 
they rely on software default assumptions and imperfect field data collection procedures. 
Therefore, accurate model predictions are not guaranteed, even if the underlying physical 
algorithms are accurate, because uncertainty in model inputs propagates uncertainty in model 
output. That is, perfect agreement between model predictions and measured output data cannot 
be expected if the input parameter values have significant errors. Modelers often employ 
calibration procedures for pre-retrofit building models to reconcile software predictions and 
measured energy uses. The building model is said to be “calibrated” once a specified level of 
agreement is achieved between model-predicted and measured data. The general assumption is 
that calibrating the building model increases the accuracy of energy savings predictions for 
retrofit measures. 

Model calibration methods reported in the literature range in complexity from manual calibration 
based on user judgment to automated calibration based on analytical, numerical, and statistical 
methods (Kissock et al. 2003; Lee and Claridge 2002; New et al. 2012; “Treat: high-performance 
software for building energy analysis” 2010; Subbarao et al. 1988; Sun and Reddy 2006). Most 
methods pertain to commercial buildings with high-stake retrofit measure considerations 
(Bertagnolio et al. 2010; Carroll and Hitchcock 1993; Norford et al. 1994; Pappas and Reilly 
2011; Pedrini et al. 2002; Raftery et al. 2009, 2011; Westphal and Lamberts 2005; Yoon et al. 
2003). ASHRAE 1051-RP (Reddy and Maor 2006) recognized the need for consistency in model 
calibration techniques, stating that model calibration generally has been regarded as more of an 
art than a science. They established detailed guidelines for calibrating commercial building 
models. Specifically, ASHRAE 1051-RP investigates systematic and mathematical approaches 
for commercial building model calibration that incorporate ASHRAE Guideline 14 (ASHRAE 
2002) calibrated-simulation criteria. Posing the search for a calibrated model as an 
underdetermined optimization problem, the methodology uses multiple calibration solutions to 
encourage an automated calibration and a consideration of uncertainty in retrofit savings 
predictions. ASHRAE 1051-RP states that its methodology may not be cost effective for 
residential buildings. 

Residential building modelers are currently employing calibration techniques in the field. The 
National Renewable Energy Laboratory, along with a working group of industry experts and 
residential audit tool providers, developed the Building Energy Simulation Test for Existing 
Homes (BESTEST-EX) to provide a method for software developers to test the accuracy of 
building energy audit software and calibration procedures (Judkoff et al. 2010). The BESTEST-
EX Working Group field trials of preliminary test cases showed a variety of model calibration 
methods and a general benefit to calibrating residential building models. Although emerging 
standards (BPI 2011) are attempting to define calibration requirements for residential buildings 
(e.g., goodness-of-fit acceptance criteria for pre-retrofit predicted and measured energy uses and 
upper and lower bounds for input parameter adjustments), no widely accepted systematic 
calibration guidelines are available for residential building applications. Research is needed to 
explore automated calibration approaches in the context of residential buildings; methods 
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developed primarily for commercial buildings (such as those described in ASHRAE 1051-RP) 
may serve as a starting point, but modified and alternative methods tailored to the informational 
content of residential billing data may be needed. 

When developing guidelines for residential model calibration, it is important to consider the 
specific needs of the residential sector. To achieve the national energy savings goals set forth by 
the U.S. Department of Energy for the residential sector, millions of homes must be retrofitted. 
The time and training required for analysts to perform accurate manual calibrations could be 
barriers to achieving retrofits at this scale. Allowing manual adjustments also makes it difficult 
to certify analysis software and procedures because human judgment reduces transparency and 
repeatability. Thus, the residential sector needs repeatable and automated model calibration 
techniques. To be cost effective, these techniques must be computationally less expensive than 
those used for commercial buildings. Furthermore, “smart-meters,” which typically collect 
subhourly electricity use data, are becoming more common in residential buildings. Research is 
needed to understand and evaluate repeatable and automated residential building calibration 
methods in the context of higher frequency, smart-meter data. 

BESTEST-EX uses a single software tool3 to define a general framework for testing calibration 
methods; that framework is adapted and applied for this simulation study. BEopt/DOE-2.2 is 
used to evaluate four mathematical calibration methods in the context of monthly, daily, and 
hourly utility data for a 1960s-era ranch-style home in a cooling-dominated climate.4 The four 
calibration methods implemented in this study are:  

• An ASHRAE 1051-RP-based approach 

• A simplified simulated annealing optimization approach  

• A regression metamodeling optimization approach  

• A simple output ratio calibration approach.  

The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit 
measures defined in BESTEST-EX are applied to the calibrated models and the methods are 
evaluated based on the accuracy of predicted savings, computational cost, repeatability, 
automation, and ease of implementation. The purpose of this study is to investigate whether 
current automated calibration methods can be adapted, applied, and streamlined for residential 
building applications. This represents an initial step in the overall effort to develop optimized, 
automated calibration procedures for residential buildings. 

  

                                                            
3 See “Performing Calibration Tests Without Using Reference Programs” (Appendix B) of Judkoff et al. 2011. 
4 See beopt.nrel.gov and Christensen et al. 2006 for more information on BEopt. 
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2 Approach for Comparing Calibration Techniques 
The following sections describe the approach used to evaluate model calibration techniques. The 
approach is based on the self-testing procedure described in BESTEST-EX (Judkoff et al. 2010). 

2.1 Define the House 
One 1960s-era all-electric ranch-style home, partly based on BESTEST-EX (Judkoff et al. 2010) 
Case L200EX-P, is considered in the analysis.5 The key pre-retrofit characteristics of the 
modeled house are given in Table 1. 

Table 1. Characteristics of the Modeled House 

Category Pre-Retrofit Characteristics 
Location Las Vegas, Nevada 

Orientation Front of house faces south 

Dimensions 
North/south = 57 ft 
East/west = 27 ft 
1 story (8 ft) 

Garage None 

Neighbors At 15 ft east/west 

Eave Depth 2 ft 

Vented Crawlspace 2.0 ACH, R-19 between joists 

Exterior Walls 2 × 4, 16 in. on center, wood siding, no cavity 
insulation (R-1 air gap) 

Unfinished Attic 2 × 6 joists, R-11 insulation, 3.5 in. thickness 

Window Type 

Single pane 
Aluminum frame with thermal break 
National Fenestration Research Council ratings 
for standard-size: U = 0.774 Btu/h·ft2·°F, solar 
heat gain coefficient (SHGC) = 0.679 

Window Area/Distribution 
20% of exterior wall area 
33.3% of window area each on north/south 
16.7% of window area each on east/west 

Furnace Electric 

Air Conditioner (AC) Seasonal energy efficiency ratio (SEER) 10 

Ducts Uninsulated, in crawlspace, leakage fraction = 
0.30 

Living Space Specific Leakage 
Area (SLA) Ratio = 0.000886 

Mechanical Ventilation Spot vent only (bathroom, kitchen) 

Water Heater Electric, energy factor = 0.92, in living space 

Major Appliances Refrigerator, electric range, dishwasher, clothes 
washer, electric clothes dryer 

Thermostat Set Points Heating 68°F 
Cooling 78°F 

                                                            
5 Including detailed heating and cooling systems (which were not considered in BESTEST-EX) not only allowed 
easier modeling with BEopt but permitted the testing of equipment-related retrofits. 
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2.2 Define Approximate Inputs 
Probability distributions were assigned for each of 𝜆 approximate BEopt inputs to model the 
uncertainty in these inputs. Probability distributions describe the likelihood of random variables 
taking certain values. Triangular probability distributions were used for this analysis. This type 
of distribution is characterized by having the greatest probability of selection at the “best-guess,” 
or nominal, value, with linearly decreasing probability to zero at the range extrema (Judkoff et al. 
2010; Kotz and van Dorp 2004; Reddy and Maor 2006). An asymmetric triangular probability 
distribution is shown in Figure 1, where “Nominal” refers to the nominal (“best-guess”) value, 
“Min” the minimum value, and “Max” the maximum value. 

 
Figure 1. Triangular probability distribution 

 

Table 9 of Appendix A lists the approximate inputs primarily related to the operation of the 
modeled home (“operational inputs”), including minimum, maximum, and nominal values, as 
well as units of measure. Table 10 of Appendix A lists the approximate inputs primarily related 
to the physical features of the modeled home (“asset inputs”), including minimum, maximum, 
and nominal values, as well as units of measure. Some ranges were specified based on 
BESTEST-EX (Judkoff et al. 2010) and limits set forth in Building Performance Institute 
Standard 2400 (BPI 2011). Other ranges were estimated using engineering judgment.6 Appendix 
G compares the ranges for wall and ceiling assembly R-values in this study to those in 
BESTEST-EX. 

2.3 Generate Utility Data 
The first step in generating synthetic electric utility data7 (kWh) was to randomly select an 
explicit input value 𝜈𝑖 from each approximate input’s triangular probability distribution. Each 
probability distribution function is continuous, so randomly selected values could fall anywhere 
between the minimum and maximum values shown in Table 9 and Table 10. Equations for this 
selection scheme are shown in Appendix A. Explicit input values were then substituted into the 
model’s building description file to create the reference model, and the reference model was 
simulated in BEopt/DOE-2.2 for one year using Typical Meteorological Year 3 weather data for 
Las Vegas, Nevada (“National Solar Radiation Data Base” 2008). The set of n = 8,760 hourly 
total site electricity use data points were extracted from the simulation output. This set of hourly 
data became the reference utility data for hourly calibrations; reference utility data for monthly 

                                                            
6 More research is needed to characterize uncertainty ranges for building input parameters. 
7 This study considers only electric utility data since the modeled home consumes no other fuel type. 
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and daily calibrations were obtained by summing the appropriate hourly reference data into n = 
12 monthly and n = 365 daily data points, respectively.  

To obtain two distinct calibration scenarios, this process was performed for 100 sets of randomly 
selected explicit input values 𝜈𝑖 (reference models) to generate 100 sets of reference utility data. 
The 100 sets of reference utility data were sorted on increasing annual cooling electricity, and the 
scenarios corresponding to the 5th and 95th sets of reference utility data were chosen as the 
overprediction and underprediction calibration scenarios investigated in this study. The 
uncalibrated model (based on the nominal inputs) that overpredicted the reference utility data (5th 
set) is referred to as “Scenario 1” and the uncalibrated model that underpredicted the reference 
utility data (95th set) is referred to as “Scenario 2.” Scenario 1 and Scenario 2 are such that the 
uncalibrated model overpredicts and underpredicts the reference electricity consumption data by 
+ 25.6% and – 4.7%, respectively.8 See Table 2 for a summary of this synthetic utility bill data 
selection. The selected sets of  𝜈𝑖 are given in Table 11 and Table 12. 

Table 2. Reference Utility Data 

 Cooling 
Electricity (kWh) 

Percent 
Difference 

Electricity 
Consumption 

(kWh) 
Percent 

Difference 

Uncalibrated 6,145  25,710  

Scenario 1 4,619 +33.1% 20,473 +25.6% 

Scenario 2 9,225 –33.4% 26,965 –4.7%* 
* Scenario 2 had compensating errors in which the uncalibrated model overpredicted heating energy but 
underpredicted cooling energy, which resulted in better agreement with annual reference electricity consumption 
compared to Scenario 1. 

2.4 Identify the Most Influential Inputs 
We performed a preliminary sensitivity analysis to compare calibration methods and to identify 
the 24 most influential inputs from the approximate inputs listed in Table 9 and Table 10. These 
inputs were considered as starting points for each applicable calibration procedure.9 The 
sensitivity analysis was a Monte Carlo procedure in which 𝜂 = 100 random samples were made 
from each approximate input’s triangular probability distribution; the selected input values were 
substituted into the building description file one at a time (holding the other inputs at their 
nominal values), and then all files were simulated in automated batch mode (2,400 total 
simulations). A dimensionless sensitivity coefficient, 𝜉𝑗, was calculated for each of the 𝜆 
approximate inputs perturbed in the analysis according to:  

𝜉𝑗 =
𝜎𝑗
𝜇𝑗

, (1)  

                                                            
8 Although the calibration scenarios are characterized in terms of direction (i.e., overprediction and underprediction), 
the relative degree of difference between the uncalibrated and reference models may be a more influential factor for 
calibration success. 
9 ASHRAE 1051-RP suggests that 20–24 influential inputs be identified using walk-through audits and heuristics 
(Reddy and Maor 2006). To allow for fair comparison across calibration procedures, the same set of 24 influential 
inputs was considered for each applicable calibration procedure. 
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where: 
𝜎𝑗 , 𝜇𝑗 = the standard deviation and mean of the 𝜂 annual output values corresponding to each 
input 𝑗 (Hamby 1994). 
 
Each 𝜉𝑗, therefore, is the output coefficient of variation. A descending sort of the 𝜉𝑗  values 
revealed the 24 most sensitive parameters, which we call “influential inputs.” The sensitivity 
coefficients of the influential inputs are graphically displayed in Figure 2. See Table 13 for these 
coefficients. Also, Figure 52 in Appendix C shows the process flow for developing approximate 
input ranges and identifying influential inputs. 

 

Figure 2. The 24 influential inputs 

 

2.5 Perform Calibrations 
Four calibration techniques were implemented and compared for this analysis: 

1. An ASHRAE 1051-RP-based approach 

2. A simplified simulated annealing optimization approach 

3. A regression metamodeling optimization approach 

4. A simple output ratio calibration approach. 

The first three of these techniques require sensitivity analyses to reduce the dimensionality of the 
search space. These analyses were performed on the subset of 24 influential inputs shown in 
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Figure 2. Detailed descriptions and results for the four calibration techniques are presented in 
Section 3. 

2.6 Apply Retrofit Measures 
After the four calibration techniques listed in Section 2.5 were performed and their calibrated 
models recovered (if applicable), they were evaluated based on their ability to recover the 
reference input values (explicit input values) and improve the accuracy of energy savings 
predictions for retrofit measures. The four techniques, along with various retrofit measure 
applications, will be referred to as Procedure 3.1, Procedure 3.2, Procedure 3.3, and Procedure 
3.4, respectively. Table 3 describes various retrofit measures, most of which are based on 
BESTEST-EX (Judkoff et al. 2010) that were applied to: 

• The reference model (applying the explicit inputs) 

• The nominal (“best-guess”) model, called the uncalibrated model 

• Each calibrated model. 
Table 3. Retrofit Measures Applied in the Analysis 

Retrofit Measure BEopt Input Changea Units 

Air-Seal LivingSpaceSLA – 0.000451 in.2/ft2 

Attic Insulation 
UACeilingInsRvalue 

UACeilingInsThickness 
+ 28.9 
+ 8.0 

h·ft2·°F/Btu 
in 

Wall Insulation CavityInsRvalue1 13.0 h·ft2·°F/Btu 

Programmable Thermostat 
heating_set_point 
cooling_set_point 

– 6.0 (10PM–6AM) 
+ 6.0 (8AM–5PM) 

°F 
°F 

Low-e Windows 
WindowUvalue 
WindowSHGC 

0.279 
0.346 

Btu/h·ft2·°F 
– 

Low Solar Absorptance 
Roof RoofingMaterialAbsorptivity 0.2 – 

Duct Sealing and Insulation 

UnconditionedDuctRvalue 
ReturnLeak 
SupplyLeak 
AHLeakRA 
AHLeakSA 

8.0 
0.01 
0.09 
0.04 
0.01 

h·ft2·°F/Btu 
frac of AHb fan flow 
frac of AH fan flow 
frac of AH fan flow 
frac of AH fan flow 

AC Replacement 
AC_CoolingSEER 

HeatingSizeMethod 
CoolingSizeMethod 

16.0 
autosize 
autosize 

kBtu/kWh 
kBtu/kWh 

tons 

Combined … … … 
a Leading +/− denotes a change relative to the pre-retrofit building; all other values are absolute (replace the value 
for the pre-retrofit building). Pre-retrofit values can be found in Table 1. 
b Air handler. 
 

After each retrofit measure was applied, we labeled post-retrofit annual results: 
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• 𝜓𝑟 for the reference model energy savings prediction 

• 𝜓𝑢 for the uncalibrated model energy savings prediction 

• 𝜓𝑐 for the calibrated model energy savings prediction. 

2.7 Compare Calibration Procedures 
The absolute errors 𝜀(𝜓𝑐) and 𝜀(𝜓𝑢) were then calculated for the calibrated and uncalibrated 
model energy savings predictions using: 

𝜀(𝜓𝑐) = |𝜓𝑐 − 𝜓𝑟|, (2)  

𝜀(𝜓𝑢) = |𝜓𝑢 − 𝜓𝑟|, (3)  

and the benefit of calibration (BoC) (Judkoff et al. 2010) was calculated using: 

𝐵𝑜𝐶 = 𝜀(𝜓𝑢) − 𝜀(𝜓𝑐). (4)  

If BoC  >  0, then energy savings predictions are improved by calibration. The BoC has the same 
units as the energy savings predictions (kWh) and therefore can be compared across retrofit 
measures. BoC can also be converted to monetary values by assuming average utility prices 
(Judkoff et al. 2010), which clarifies the BoC with respect to the overall cost of the audit and 
home improvements. 

We can express the annual calibrated model predicted energy savings, 𝜓𝑐, as a percent of the 
pre-retrofit reference utility data, Г𝑟𝑒𝑓, using: 

𝜑𝑐 =
𝜓𝑐

Г𝑟𝑒𝑓
 ×  100%, (5)  

and the annual reference energy savings, 𝜓𝑟, as a percent of the pre-retrofit reference utility data 
using: 

𝜑𝑟 =
𝜓𝑟

Г𝑟𝑒𝑓
 ×  100%. (6)  

Equations (5) and (6) are used in Sections 3.1.4 and 4.1 to produce graphical representations of 
energy savings prediction accuracy for the calibration cases. 
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3 Calibration Techniques 
This section describes the application of Procedures 3.1–3.4 to the over- and underprediction 
calibration scenarios presented in Section 2.3. Overall results comparisons between procedures 
are presented in Section 4. Procedures 3.1–3.3 each contain steps selecting adjusted inputs and 
inverting to recover calibrated inputs. Figure 52 of Appendix C shows the process flow for these 
steps. 

3.1 ASHRAE 1051-RP-Based Approach 
The calibration procedure applied in this section (Procedure 3.1) is based on the four-step 
methodology described in ASHRAE 1051-RP (Reddy and Maor 2006). The four general steps 
are:  

1. Define influential parameters.  

2. Perform a coarse grid calibration.  

3. Perform a refined grid calibration.  

4. Predict ranges of energy savings for retrofit measures. 

A unique feature of this calibration procedure is that it considers multiple calibration “solutions” 
for each calibration scenario (because there are multiple ways to “match” utility billing data by 
adjusting input values). Each calibration solution leads to a separate “calibrated” pre-retrofit 
model; these models are used to predict a range of potential energy savings for each retrofit. The 
steps of Procedure 3.1 are described in Sections 3.1.1–3.1.4. 

 Define Influential Input Parameters 3.1.1
This initial stage includes gathering and quality checking energy use data and building 
specifications, as well as defining a heuristic template containing the building’s most influential 
input parameters. The building’s heuristic template isolates influential parameters from non-
influential parameters. Included in the heuristic template are the influential parameters’ assigned 
“best-guess” estimates and ranges of variation characterized by minimum and maximum values; 
ASHRAE 1051-RP suggests that 20–24 influential parameters be identified and assembled into 
the building’s heuristic template. Influential parameter identifications and ranges of variation 
assignments are made by building professionals with extensive field experience using a walk-
thru audit and practical past experience (Reddy and Maor 2006). For this analysis, we considered 
the 24 influential inputs based on parametric sensitivity tests as identified in Section 2.4 and 
presented in Figure 2. 

 Perform a Coarse Grid Calibration 3.1.2
This step of the methodology identifies feasible combinations of input parameters by employing 
a Latin Hypercube Monte Carlo (LHMC) stratified sampling procedure. ASHRAE 1051-RP 
suggests that 5,000–10,000 three-level LHMC realizations are adequate for actual buildings, and 
that substantially fewer realizations are adequate for synthetic buildings. For this study, 2,500 
LHMC realizations were simulated to limit computational cost. The procedure for performing a 
three-level LHMC is described in Appendix D. 
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See Eqs. (18) and (19) of Appendix F for coefficient of variation (CV) root mean square error 
(RSME) and nominal mean base error (NMBE) goodness-of-fit index definitions. ASHRAE 
1051-RP adopts ASHRAE Guideline 14 “calibrated-simulation” criteria and refers to calibration 
solutions that meet these criteria as feasible calibration solutions. See criteria in Section 5.3.2.4 
of (ASHRAE 2002) for acceptable calibration solutions: 

1. Monthly (𝑛 =  12) utility data: CV(RMSE) ≤ 15%  and –5% ≤ NMBE ≤ 5%, or 

2. Hourly (n = 8,760) utility data: CV(RMSE) ≤ 30% and –10% ≤ NMBE ≤ 10%.10 

In this analysis, for Scenario 1, the monthly calibration case identified 73 feasible calibration 
solutions, the daily calibration case identified 147 feasible calibration solutions, and the hourly 
calibration case identified 245 feasible calibration solutions. For Scenario 2, the monthly 
calibration case identified 142 feasible calibration solutions, the daily calibration case identified 
185 feasible calibration solutions, and the hourly calibration case identified 478 feasible 
calibration solutions. 

Next, ASHRAE 1051-RP employs a sensitivity analysis to help “alleviate the curse of 
dimensionality” (Reddy and Maor 2006). Specifically, it describes a 𝜒2 application for 
determining parameter sensitivity. The 𝜒2 formula for three-level sampling of each influential 
parameter’s probability distribution is given by 

𝜒𝑖2 = �
�𝜌𝑜𝑏𝑠,𝑠,𝑖 − 𝜌𝑒𝑥𝑝�

2

𝜌𝑒𝑥𝑝

3

𝑠=1

, (7)  

for 𝑖 = 1, … , 24, where: 
𝜌𝑜𝑏𝑠,𝑠,𝑖 = observed number of occurrences on level 𝑠 (i.e., number of samples from one of 
𝑥𝑖𝑙𝑜𝑤, 𝑥𝑖𝑚𝑖𝑑, 𝑥𝑖

ℎ𝑖𝑔ℎ), and 
𝜌𝑒𝑥𝑝 = expected number of occurrences on each of the three levels (i.e., total feasible solutions 
divided by three). 
 
Equation (7) was applied to the subset of realizations resulting in feasible calibration solutions, 
which were sorted in descending order of 𝜒𝑖2. In ASHRAE 1051-RP, parameters with a 𝜒𝑖2 value 
of at least 9.21 are considered strong (𝛼 = 0.01); all other parameters are considered weak. In 
this analysis, we investigated a streamlined approach of using a constant number of strong 
parameters across calibration Procedures 3.1–3.3 and across monthly, daily, and hourly cases.11 
Preliminary results showed that the six greatest 𝜒𝑖2 values were approximately equal to or greater 
than ASHRAE 1051-RP’s prescribed 9.21 for the daily calibration scenario (the middle of the 
three frequency levels investigated). Therefore, the top 𝜏 = 6 parameters of the sorted 𝜒𝑖2 were 
considered strong parameters and are included in Section 3.1.3 as adjustable parameters for the 
refined grid calibration. Results for the sensitivity analyses are given in Table 4 and Table 5. 

                                                            
10 ASHRAE Guideline 14 does not report criteria for acceptable calibration solutions using daily utility data; for 
daily utility data, this analysis assumes CV(RSME) ≤ 18% and –6% ≤ NMBE ≤ 6% (obtained by interpolating 
monthly and hourly criteria). 
11 𝜒2 tests are not performed in Procedures 3.2 and 3.3, so the streamlined approach was necessary for these two 
procedures and therefore was also used for Procedure 3.1 to enable simpler comparisons across all procedures. 
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Table 4. Procedure 3.1 Results of 𝝌𝟐 Sensitivity Analysis, Scenario 1 

𝒏 Strong Parameter 
 
𝒙𝒊𝒍𝒐𝒘 

Level 
Frequency 

𝒙𝒊𝒎𝒊𝒅 

 

𝒙𝒊
𝒉𝒊𝒈𝒉 

𝝌𝒊𝟐 

12 

heating_set_point 
cooling_set_point 
MELmultiplier 
misc_hot_water_loads 
LivingSpaceSLA 
gypsum_conductivity 

72 
0 

48 
31 
33 
17 

1 
2 

22 
33 
15 
33 

0 
71 
3 
9 

25 
23 

140.1 
134.3 

42.0 
14.6 
6.7 
5.4 

365 

heating_set_point 
cooling_set_point 
MELmultiplier 
misc_hot_water_loads 
AC_CoolingSEER 
LivingSpaceSLA 

146 
0 

89 
73 
28 
67 

1 
11 
50 
53 
56 
38 

0 
136 

8 
21 
63 
42 

288.0 
232.9 

67.0 
28.1 
14.0 
10.1 

8,760 

heating_set_point 
cooling_set_point 
MELmultiplier 
ClothesWashMultiplier 
misc_hot_water_loads 
UACeilingInsRvalue 

231 
4 

140 
108 
107 

55 

14 
53 
79 
89 
85 
85 

0 
188 

26 
48 
53 

105 

410.8 
222.4 

79.7 
23.0 
18.1 
15.5 
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Table 5. Procedure 3.1 Results of 𝝌𝟐 Sensitivity Analysis, Scenario 2 

𝒏 Strong Parameter 
 

𝒙𝒊𝒍𝒐𝒘 

Level 
Frequency 

𝒙𝒊𝒎𝒊𝒅 

 

𝒙𝒊
𝒉𝒊𝒈𝒉 

𝝌𝒊𝟐 

12 

cooling_set_point 
heating_set_point 
MELmultiplier 
AC_CoolingSEER 
interior_shading 
ClothesWashMultiplier 

130 
115 

17 
68 
42 
35 

11 
27 
37 
46 
36 
44 

1 
0 

88 
28 
64 
63 

217.6 
152.8 

56.6 
17.0 
9.2 
8.6 

365 

cooling_set_point 
heating_set_point 
MELmultiplier 
interior_shading 
misc_hot_water_loads 
gypsum_conductivity 

158 
132 

28 
32 
55 
43 

26 
53 
49 
70 
41 
69 

1 
0 

108 
83 
89 
73 

230.8 
143.1 

55.8 
22.8 
19.8 
8.6 

8,760 

heating_set_point 
cooling_set_point 
MELmultiplier 
interior_shading 
misc_hot_water_loads 
AnnualInteriorLightingEnergy 

310 
315 

76 
133 
121 
135 

168 
133 
154 
131 
146 
137 

0 
30 

248 
214 
211 
206 

302.3 
261.4 

93.1 
28.1 
27.1 
20.5 

 

Another objective of Section 3.1.2 is to determine the top 10 feasible calibration solutions. These 
are determined by sorting in ascending order the “total goodness-of-fit” values, 𝛿𝑇𝑂𝑇𝐴𝐿, of 
feasible calibration solutions and subsequently selecting the corresponding top 10 calibration 
solutions. The formula for “total goodness-of-fit” is given by Eq. (21) of Appendix F. 

 Perform a Refined Grid Calibration 3.1.3
For this step, ASHRAE 1051-RP suggests a manual or mathematical optimization approach. The 
latter is adopted in this study, specifically a gradient-based nonlinear optimization technique. We 
chose to apply a simulated annealing algorithm, using Eq. (18) from Appendix F as its objective 
function. A detailed description of the simulated annealing algorithm is provided in Section 
3.2.2. A separate optimization was performed for each of the top 10 feasible calibration 
solutions. For each optimization, the values of the strong parameters identified in Section 3.1.2 
were the initial guesses for the simulated annealing algorithm. All other weak inputs were 
initially set at their uncalibrated (nominal) values and were not adjusted during the optimization. 
Some optimization algorithm parameters must be prescribed before executing the calibration; we 
chose an initial simulated annealing temperature T0 = 10 and the number of iterations per 
parameter N = 100.12 The main objective was to refine the top 10 feasible calibration solutions to 
recover 10 refined calibration solutions. The 10 refined calibration solutions are referred to as 
                                                            
12 Simulated annealing algorithm parameter values for T0 and N were chosen based on the authors’ experience and 
the convergence observed during preliminary simulations; algorithm performance depends on these chosen values. 
More information describing the simulated annealing implementation is provided in Section 3.2.2. 
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calibrated models. The results of the refined grid calibrations are given in Figure 3 through 
Figure 8. Recovered values are the averages across the 10 refined calibration solutions. 

 

Figure 3. Procedure 3.1 refined grid results for calibration to monthly data, Scenario 1 

 

Figure 4. Procedure 3.1 refined grid results for calibration to daily data, Scenario 1 

 

Figure 5. Procedure 3.1 refined grid results for calibration to hourly data, Scenario 1 
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Figure 6. Procedure 3.1 refined grid results for calibration to monthly data, Scenario 2 

 

Figure 7. Procedure 3.1 refined grid results for calibration to daily data, Scenario 2 

 

Figure 8. Procedure 3.1 refined grid results for calibration to hourly data, Scenario 2 

 

 Predict Ranges of Energy Savings for Retrofit Measures 3.1.4
Using the 10 calibrated models, this step attempts to predict ranges of energy savings for the 
retrofit measures defined in Table 3. Each retrofit measure was individually applied to each of 
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the 10 calibrated models identified in Section 3.1.3, and calibrated model energy savings 
predictions were calculated. The mean savings across the calibrated model energy savings 
predictions were calculated and used to compute the BoC. These results are summarized in 
Figure 9 and Figure 10. 

 

Figure 9. Procedure 3.1 BoC, Scenario 1 

 

Figure 10. Procedure 3.1 BoC, Scenario 2 

 

Equations (5), (6), and (21) were used to produce graphical representations (see Figure 11 and 
Figure 12) for the accuracy of Procedure 3.1 in predicting energy savings for the retrofit 
measures. For visual clarity, energy savings predicted by the uncalibrated model are not plotted 
but are noted in the top right of each figure. The scale varies on each figure so that the 
distribution of savings predictions can be seen, even if they occur over a narrow range of 
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savings. Additional plots are given in Appendix H. For each plot, 𝛿𝑇𝑂𝑇𝐴𝐿 on the y-axis represents 
the “total-goodness-of-fit” calculated using Eq. (21) of Appendix F. Smaller 𝛿𝑇𝑂𝑇𝐴𝐿 values 
represent “better” agreement (according to Eq. (21)) between predicted pre-retrofit energy use 
and synthetic utility billing data. In Figure 11, the reference savings line covers the line 
representing savings using the hourly calibrated model. 

 

Figure 11. Procedure 3.1 energy savings predictions for combined retrofit, Scenario 1 

 

 

Figure 12. Procedure 3.1 energy savings predictions for combined retrofit, Scenario 2 

 

To estimate ranges of energy savings, we used the 10 predicted savings values to calculate the 
99% tolerance limits (𝛾 = 0.01) between which 95% (𝛼 = 0.05) of the energy savings 
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predictions would fall, assuming an approximate normal distribution (Walpole and Myers 1989). 
These tolerance intervals are shown in Figure 13 and Figure 14. 

 

Figure 13. Estimated ranges for energy savings predictions using Procedure 3.1, Scenario 1 

 

 

Figure 14. Estimated ranges for energy savings predictions using Procedure 3.1, Scenario 2 

 

3.2 Simplified Simulated Annealing Optimization Approach 
Simulated annealing is an efficient optimization algorithm for nonlinear inversion (Kirkpatrick et 
al. 1983; Kuperman et al. 1990). The steps of the simulated annealing algorithm include initial 
gradient calculations, randomly perturbing the parameters, evaluating the change 𝛥𝐸 in the 
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objective function, deciding whether to accept perturbations resulting in positive 𝛥𝐸, and 
lowering the simulated annealing temperature T (Collins et al. 1992). For this calibration 
technique, the simulated annealing implementation follows an initial sensitivity analysis for 
reducing parameter search space dimensionality. 

 Sensitivity Analysis 3.2.1
The sensitivity analysis for this procedure follows the method described in Section 2.4, except 
that we assume the analyst preselects 24 influential inputs to be considered in the analysis. To 
provide a fair comparison across calibration procedures, we began with 24 influential inputs 
from Figure 2. The most sensitive 𝜏 = 6 of these were selected as strong parameters to be 
adjusted in the simulated annealing algorithm.13 All other input parameters were frozen at their 
uncalibrated (nominal) values during the optimization. The results for the top 𝜏 = 6 parameters 
of this sensitivity analysis, with 𝜂 = 100 random samples, are shown in Figure 15. Note that we 
expect the results to be very similar to those shown in Figure 2, but not necessarily identical, 
because the analyses are based on different sets of randomly selected values. See Table 14 for 
these coefficients in tabular form. 

 

Figure 15. Procedure 3.2 𝝃 sensitivity analysis results 

 

 Iterative Search 3.2.2
We made the strong parameters listed in Table 14 adjustable parameters for the simulated 
annealing algorithm and began the iterative search at nominal values, choosing the initial system 
temperature T0 = 10  and the number of iterations per parameter N = 100,  as in Procedure 3.1. 
Each adjusted parameter was bounded by the minimum and maximum values of its probability 
distribution. We defined the probability 𝑃(𝛥𝐸) that a perturbation results in an acceptable energy 
increase (i.e., objective function value increase) by the commonly used Boltzmann probability 
factor (Kirkpatrick et al. 1983): 

𝑃(𝛥𝐸) = exp �
−𝛥𝐸
𝑇 �, (8)  

where: 
𝛥𝐸 = 𝐸𝑛𝑒𝑤 − 𝐸𝑜𝑙𝑑 , 
𝐸𝑛𝑒𝑤 = objective function value of perturbed guess, 
𝐸𝑜𝑙𝑑 = objective function value of previous guess, and 
𝑇 = simulated annealing temperature. 

                                                            
13 This number of adjustable parameters was chosen to be equal to that in Section 3.1.3. 
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The temperature parameter 𝑇 decreases after each iteration according to a “fast simulated 
annealing cooling schedule,” given by: 

𝑇 =
𝑇0
𝑖

, (9)  

for i = 1, …, N (Collins et al. 1992; Szu and Hartley 1987). For larger values of T, the algorithm 
is more likely to accept perturbations that have caused energy use to increase (less agreement 
between predicted energy use and billing data). The iterative search is thus permitted to escape 
local minima as it investigates the parameter space (Kirkpatrick et al. 1983). Figure 16 and 
Figure 17 give the results of the simulated annealing optimization in terms of the calibrated input 
values. 

 

Figure 16. Procedure 3.2 optimization results, Scenario 1 

 

Figure 17. Procedure 3.2 optimization results, Scenario 2 

 

Figure 18 through Figure 29 show the iterative search convergence processes for parameters 
relative to reference input values and for the objective function value (red lines are explicit 
reference values and dashed lines represent the number of function evaluations required to obtain 
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the residual minimum). The convergence plots for the objective function value depict that at 
higher temperatures T the algorithm allows more energy increases and eventually, as T cools 
according to the schedule, convergences on a least objective function value. 

 

Figure 18. Procedure 3.2 parameter convergence for calibrations to monthly data, Scenario 1 

 

Figure 19. Procedure 3.2 residual convergence for calibrations to monthly data, Scenario 1 
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Figure 20. Procedure 3.2 parameter convergence for calibrations to daily data, Scenario 1 

 

Figure 21. Procedure 3.2 residual convergence for calibrations to daily data, Scenario 1 
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Figure 22. Procedure 3.2 parameter convergence for calibrations to hourly data, Scenario 1 

 

Figure 23. Procedure 3.2 residual convergence for calibrations to hourly data, Scenario 1 
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Figure 24. Procedure 3.2 parameter convergence for calibrations to monthly data, Scenario 2 

 

Figure 25. Procedure 3.2 residual convergence for calibrations to monthly data, Scenario 2 
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Figure 26. Procedure 3.2 parameter convergence for calibrations to daily data, Scenario 2 

 

Figure 27. Procedure 3.2 residual convergence for calibrations to daily data, Scenario 2 
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Figure 28. Procedure 3.2 parameter convergence for calibrations to hourly data, Scenario 2 

 

Figure 29. Procedure 3.2 residual convergence for calibrations to hourly data, Scenario 2 

 

A graphical representation of output agreement is shown in Figure 73 through Figure 78 of 
Appendix H. The daily and hourly output was summed into monthly output so that a meaningful 
comparison between errors for the monthly, daily, and hourly calibrated models can be made. 

Each retrofit measure described in Table 3 was applied to the calibrated model, and calibrated 
model energy savings predictions were calculated. Resulting BoC values were then calculated 
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using Eq. (4) to assess the benefit of calibration. These results are summarized in Figure 30 and 
Figure 31. 

 

Figure 30. Procedure 3.2 BoC, Scenario 1 

 

Figure 31. Procedure 3.2 BoC, Scenario 2 

 

3.3 Regression Metamodeling Optimization Approach 
This approach uses a central composite design and results from BEopt/DOE-2.2 simulations to 
build a statistical model. The reduced-order statistical model is then calibrated using the 
simulated annealing algorithm as described in Section 3.2.2. By using the simple approximation 
instead of the detailed model, it is easier to perform the analysis since computational effort is 
reduced (Manfren et al. 2013). 
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 Sensitivity Analysis 3.3.1
The sensitivity analysis for this procedure is identical to that of Procedure 3.2 (see Section 3.2.1). 
Therefore, we considered the same parameters for adjustment as in Procedure 3.2 (see Figure 
15). 

 Central Composite Design 3.3.2
This procedure uses a response surface methodology. We used a central composite design for the 
strong parameters identified in Section 3.3.1 to construct matrix X. Central composite design 
matrix X is given in Appendix E along with a description of the response matrix Y and brief 
concept overview. We then performed a multiple linear regression by solving the system of 
normal equations, using the unique QR factorization14 of X (Trefethen and Bau 1997), given in 
matrix-vector form by: 

XTX𝜷 = XTY, (10)  

to obtain regression coefficient 𝛽0, linear regression coefficients 𝛽1, … ,𝛽𝜏, first-order interaction 
regression coefficients 𝛽12, … ,𝛽𝜏−1𝜏, and quadratic regression coefficients 𝛽11, … ,𝛽𝜏𝜏 of second-
order polynomial functions: 

𝜁𝑘(𝑥1, … , 𝑥𝜏) = 𝛽0 + �𝛽𝑖𝑥𝑖

𝜏

𝑖=1

+ ��𝛽𝑖𝑗𝑥𝑖𝑥𝑗
𝑗
𝑖<𝑗

𝑖

+ �𝛽𝑖𝑖𝑥𝑖2
𝜏

𝑖=1

, (11)  

for 𝑘 = 1, … ,𝑛, where: 
𝑛 = number of utility data points used in the calibration (12, 365, or 8,760), 
𝜏 = 6 parameters, and 
𝑥𝑖 = simulation input variables. 
 
The resulting 𝜁𝑘 provide the best fit to each of the sets of simulation data in the least squares 
sense, thereby attempting to predict response values (i.e., electricity consumption levels) at 
points other than those previously simulated according to the central composite design. 

 Optimization 3.3.3
Substituting the 𝜁𝑘 for actual building simulations, we ran the simulated annealing algorithm as 
described in Section 3.2.2 with a starting temperature T0 = 10 and the number of iterations per 
parameter N = 100. Figure 32 and Figure 33 give the results of the simulated annealing 
optimization in terms of the calibrated input values. 

                                                            
14 This factorization is the decomposition of X into the product X = QR. 
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Figure 32. Procedure 3.3 optimization results, Scenario 1 

 

Figure 33. Procedure 3.3 optimization results, Scenario 2 

 

Figure 34 through Figure 45 show the iterative search convergence processes for parameters 
relative to reference input values and for the objective function value (red lines are explicit 
reference values and dashed lines represent the number of function evaluations required to obtain 
the residual minimum). The convergence plots for the objective function value depict that at 
higher temperatures T  the algorithm allows more energy increases and eventually, as T cools 
according to the schedule, convergences on a least objective function value. 
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Figure 34. Procedure 3.3 parameter convergence for calibrations to monthly data, Scenario 1 

 

Figure 35. Procedure 3.3 residual convergence for calibrations to monthly data, Scenario 1 



30 
This report is available at no cost from the 
National Renewable Energy Laboratory (NREL) 
at www.nrel.gov/publications. 

 

Figure 36. Procedure 3.3 parameter convergence for calibrations to daily data, Scenario 1 

 

Figure 37. Procedure 3.3 residual convergence for calibrations to daily data, Scenario 1 
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Figure 38. Procedure 3.3 parameter convergence for calibrations to hourly data, Scenario 1 

 

Figure 39. Procedure 3.3 residual convergence for calibrations to hourly data, Scenario 1 
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Figure 40. Procedure 3.3 parameter convergence for calibrations to monthly data, Scenario 2 

 

Figure 41. Procedure 3.3 residual convergence for calibrations to monthly data, Scenario 2 
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Figure 42. Procedure 3.3 parameter convergence for calibrations to daily data, Scenario 2 

 

Figure 43. Procedure 3.3 residual convergence for calibrations to daily data, Scenario 2 
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Figure 44. Procedure 3.3 parameter convergence for calibrations to hourly data, Scenario 2 

 

Figure 45. Procedure 3.3 residual convergence for calibrations to hourly data, Scenario 2 

 

Graphical representations of output agreements are shown in Figure 79 through Figure 84 of 
Appendix H. Again, the daily and hourly output was summed into monthly output so that a 
meaningful comparison between errors for the monthly, daily, and hourly calibrated models can 
be made. 
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Each retrofit measure given in Table 3 was applied to the calibrated model, and calibrated model 
energy savings predictions were calculated. Resulting BoC values were then calculated using Eq. 
(4) to assess the BoC. These results are summarized in Figure 46 and Figure 47. 

 

Figure 46. Procedure 3.3 BoC, Scenario 1 

 

Figure 47. Procedure 3.3 BoC, Scenario 2 

 

3.4 Simple Output Ratio Calibration Approach 
Whereas Procedures 3.1–3.3 involve the adjustment of input parameters, this approach applies a 
simple output correction factor to uncalibrated energy savings predictions. Its results serve as a 
baseline of comparison for the more complex and computationally intensive input calibration 
methods. We denote the predicted pre-retrofit annual energy use from the uncalibrated model 
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Г𝑢𝑛𝑐𝑎𝑙. This output calibration method simply assumes that the calibrated model energy savings 
𝜓𝑐 is given by: 

𝜓𝑐 =
Г𝑟𝑒𝑓
Г𝑢𝑛𝑐𝑎𝑙

𝜓𝑢, (12)  

where 𝜓𝑢 is defined as in Section 2.6 and Г𝑟𝑒𝑓 is defined as in Section 2.7. The benefit of 
calibration results are summarized in Figure 48 and Figure 49. 

 

Figure 48. Procedure 3.4 BoC, Scenario 1 

 

Figure 49. Procedure 3.4 BoC, Scenario 2  
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4 Discussion 
Procedures 3.1–3.4 were evaluated based on the accuracy of predicted energy savings, 
computational cost, repeatability, automation, and ease of implementation. These evaluations are 
summarized in Sections 4.1–4.5. 

4.1 Accuracy of Predicted Energy Savings 
The calibration techniques were evaluated based on their ability to improve the accuracy of 
energy savings predictions for retrofit measures by tabulating and comparing the total benefit of 
calibration TBoC. Table 6 and Table 7 report TBoC, which is calculated as the sum of the BoC 
(kWh) across all retrofit measures listed in Table 3 (including the combined retrofit measure). 

Table 6. TBoC, Scenario 1 

Technique 
 
𝒏 = 𝟏𝟐 

𝑻𝑩𝒐𝑪 
𝒏 = 𝟑𝟔𝟓 

 
𝒏 = 𝟖𝟕𝟔𝟎 

ASHRAE 1051-RP-based 7,182.5 7,117.7 7,431.7 

Simplified simulated annealing 6,580.7 6,457.4 7,184.4 

Regression metamodeling 6,915.3 6,338.2 7,148.1 

Simple output ratio 6,671.5 6,671.5 6,671.5 
 

Table 7. TBoC, Scenario 2 

Technique 
 
𝒏 = 𝟏𝟐 

𝑻𝑩𝒐𝑪 
𝒏 = 𝟑𝟔𝟓 

 
𝒏 = 𝟖𝟕𝟔𝟎 

ASHRAE 1051-RP-based –257.5 2,322.9 2,426.7 

Simplified simulated annealing 467.0 2,198.1 2,186.0 

Regression metamodeling 277.4 1,990.6 1,329.6 

Simple output ratio –1,206.1 –1,206.1 –1,206.1 

 

Comparisons of each calibrated savings prediction to the uncalibrated savings prediction and to 
the reference savings are also given; Eq. (5) and (6) were used to produce graphical 
representations of energy savings prediction accuracy (see Figure 50 and Figure 51) for monthly, 
daily, and hourly data calibration cases. For “ASHRAE 1051-RP-based,” the value represents the 
mean savings prediction for the 10 calibration solutions. 
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Figure 50. Predicted annual percent energy savings error relative to  
reference savings for each retrofit measure, Scenario 1 

 

Figure 51. Predicted annual percent energy savings error relative to  
reference savings for each retrofit measure, Scenario 2 

 

Based on the results summarized in Table 6 and Table 7 and in Figure 50 and Figure 51, the 
following observations can be made: 

• With the exception of Procedure 3.4 for Scenario 2, calibration generally improved the 
accuracy of energy savings predictions relative to reference energy savings. 

• Procedures 3.1–3.3 (input calibration approaches) performed considerably better than 
Procedure 3.4 (output calibration approach) for Scenario 2. 
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• For Scenario 1, Procedure 3.1 provided the highest TBoC of any calibration procedure 
for all utility data frequency cases; for Scenario 2, this was true for the daily and hourly 
cases, but not for the monthly case. 

• For Scenario 1, Procedures 3.1–3.3 produced higher TBoC for hourly calibrations than 
for daily calibrations; surprisingly for Scenario 2, this was not always the case. 

• For Scenario 2, Procedures 3.1–3.3 produced higher TBoC for daily calibrations than for 
monthly calibrations; surprisingly for Scenario 1, this was not the case. 

• Calibration provided more benefit for Scenario 1 than for Scenario 2; for Scenario 1, the 
uncalibrated model overpredicts reference utility data (e.g., see energy use data in Figure 
73), whereas for Scenario 2, the uncalibrated model overpredicts heating energy but 
underpredicts cooling energy (e.g., see energy use data in Figure 76). 

• For the Combined retrofit measure in Scenario 1, the approximately 40% overprediction 
with the uncalibrated model was eliminated by applying Procedures 3.1–3.4. 

• The tolerance intervals for Procedure 3.1 did not always contain the reference savings 
values (see Figure 13 and Figure 14). For both scenarios, the intervals for monthly 
calibrations contained the reference savings less often than for daily and hourly 
calibrations.  

• For Scenario 1, tolerance intervals for Procedure 3.1 for monthly calibrations were 
narrower than for daily and hourly calibrations; for Scenario 2, tolerance intervals for 
monthly calibrations were narrower than for daily calibrations, and tolerance intervals  
for hourly calibrations were narrower than for monthly calibrations (see Figure 13 and 
Figure 14). 

• For Scenario 2 the total benefit of calibration TBoC is small compared to Scenario 1, but 
calibration removed large discrepancies for individual measures (e.g., attic insulation, 
low solar absorptance roof, AC replacement). 

4.2 Computational Cost 
Table 8 gives a breakdown of computational costs by calibration procedure component; the table 
also shows calibration procedure equivalent computational costs when parallel computing 
resources are maximized.  
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Table 8. Computational Cost 

Proc. Component Total 
Simulations1 

Minimum 
Series2 Notes 

3.1 

Sensitivity analysis 
Central composite design 
Gradient calculations 
Simulated annealing 
Retrofit measures 
Total 

2,500a 

N/A 
350 

6,010b 

90 
8,950 

1 
N/A 

1 
601 

1 
604 

 
 
 
Each optimization may be parallelized. 
Measures applied to each model. 

3.2 

Sensitivity analysis 
Central composite design 
Gradient calculations 
Simulated annealing 
Retrofit measures 
Total 

2,400 
N/A 
350 
601b 

9 
3,360 

1 
N/A 

1 
601 

1 
604 

100 samples for each of the 24 inputs. 

3.3 

Sensitivity analysis 
Central composite design 
Gradient calculations 
Simulated annealing 
Retrofit measures 
Total 

2,400 
77 
0 
0 
9 

2,486 

1 
1 
0 
0 
1 
3 

100 samples for each of the 24 inputs. 
 26 + (2)(6) + 1 = 77. 

3.4 

Sensitivity analysis 
Central composite design 
Gradient calculations 
Simulated annealing 
Retrofit measures 
Total 

N/A 
N/A 
N/A 
N/A 

9 
9 

N/A 
N/A 
N/A 
N/A 

1 
1 

 

1 Total number of BEopt/DOE-2.2 simulations. 
2 The equivalent computational time in terms of BEopt/DOE-2.2 simulations when parallel computing is maximized 
(note: this does not include the computational time that may be needed to initiate batch runs and process results). 
a As described in ASHRAE 1051-RP, more realizations may be needed when calibrating to empirical billing data 
(see Section 5.2 on future work for further discussion). 
b For this study, the total simulations performed during simulated annealing was predetermined; the number of 
simulations may be reduced (perhaps using a goodness-of-fit threshold value), but this may reduce method accuracy 
in some cases. 

 

Based on the information provided in Table 8, and considering the results summarized in Section 
4.1, the following observations can be made: 

• Generally, the more computationally expensive calibration procedures produced more 
accurate energy savings predictions for retrofit measures (see TBoC values in Table 6 
and Table 7, and savings prediction errors in Figure 50 and Figure 51). 

• Simulations for the sensitivity analysis approaches for Procedures 3.1–3.3 may all be run 
in parallel. 
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• If parallelized, Procedures 3.1–3.2 have equivalent overall procedure runtime. 

• Simulations within each component of Procedures 3.3 and 3.4 may be parallelized; 
simulations for Procedure 3.3 can be parallelized such that the calibration procedure 
includes the equivalent of three simulations in series. 

4.3 Automation 
Procedures 3.1–3.3 require that the analyst begin the calibration process by selecting the set of 
24 influential model inputs. Sensitivity analysis and optimization portions of these calibration 
procedures are then fully automated from start to finish, requiring no further manual adjustments 
or intervention. Procedure 3.4 is completely automated once the uncalibrated model and 
corresponding savings predictions are developed. 

4.4 Repeatability 
Procedures 3.1–3.4 are much more repeatable than manual calibrations since they are automated 
and require limited assessor decision-making and input. Specifically, Procedure 3.4 is 
deterministic once an uncalibrated model and corresponding savings predictions are developed, 
so results are fully repeatable. On the other hand, Procedures 3.1–3.3 each contain some 
subjective elements in their methodologies: 

• The analyst’s initial selection of the 24 most influential model inputs may vary. 

o Repeatability across calibrations may not be guaranteed if this initial set differs. 

• Randomly selected values are determined by pseudo-random number generators.15 

o The LHMC sensitivity analysis in Procedure 3.1 simulates a random subset of 324 
total factor combinations; therefore, 𝜒2 values may fluctuate slightly if the overall 
process is repeated. 

o The sensitivity analysis method used in Procedures 3.2 and 3.3 include random 
selections from triangular distributions; sensitivity rankings from analysis to 
analysis become more stable as the number of samples increases. 

o The simulated annealing algorithm uses random selections to calculate gradients 
and also to determine perturbation vector scaling (i.e., there are random elements 
to the search path). 

• The number of adjustable input parameters considered for optimization may vary. 

o We fixed the number of adjustable inputs during calibration for this study to allow 
easier comparison across calibration methods. This allows the analyst to decide 
how many adjustable inputs to include; however, it may not guarantee 
repeatability of results, because agreement between predicted and utility billing 
data may vary. 

4.5 Ease of Implementation 
This section provides a brief summary of the scripting processes for implementing Procedures 
3.1–3.4. Procedures 3.1–3.3 require adjustments to nominal input values; Procedure 3.4 requires 
calculating a correction factor, minimal text file input/output, one nominal building simulation, 
                                                            
15 Randomly selected values may be stored for later use so that procedure results may be reproduced and verified. 
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one simulation per retrofit measure considered, and only few additional arithmetic calculations 
only. Procedures 3.1–3.3 are more involved as they incorporate more text file input/output, 
algorithms for discretizations and probability distribution selections, statistical procedures, 
inversion algorithms, etc. Specifically, the following computer software programs and scripting 
languages were used to implement these procedures: 

• BEopt/DOE-2.2: 

o Developing nominal pre- and post-retrofit input files (XML format). 

o Simulating input files in batch mode using the BEopt Run Manager to produce 
simulation output files. 

• Custom Python 2.7 (Rossum and Drake 2012) scripts for: 

o Conducting Monte Carlo-based sensitivity analyses. 

o Implementing the simulated annealing algorithm. 

o Replacing XML input file element values. 

o Parsing and composing simulation output data. 

o Managing files of various types. 

o Performing arithmetic calculations. 

o Executing external commands (such as calling the BEopt Run Manager). 

• Custom R 2.12.2 (R 2012) scripts for: 

o Plotting and graphing. 

o Statistical procedures and intervals. 

o Arithmetic calculations. 

o Experimental designs. 

o Multiple linear regression (i.e., solving normal equations using QR factorization). 
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5 Conclusions and Future Work 
Section 5.1 provides conclusions drawn from results reported in Section 3 and observations made 
in Section 4. Section 5.2 provides ideas for further developing automated residential calibration 
techniques. 

5.1 Conclusions 
For this study, four mathematical calibration methods were implemented using BEopt/DOE-2.2 
and tested using monthly, daily, and hourly synthetic utility data, for scenarios in which the 
uncalibrated model overpredicts (Scenario 1) and underpredicts (Scenario 2) the reference utility 
data. The four methods implemented were an ASHRAE 1051-RP-based approach (Procedure 
3.1), a simplified simulated annealing optimization approach (Procedure 3.2), a regression 
metamodeling optimization approach (Procedure 3.3), and a simple output ratio approach 
(Procedure 3.4). Various retrofit measures were applied to the models obtained using the 
calibration methods and the methods were evaluated based on the accuracy of predicted savings, 
computational cost, repeatability, automation, and ease of implementation. This study led to the 
following primary conclusions: 

• Generally, the more computationally expensive calibration procedures led to more 
accurate energy savings predictions. 

• Procedure 3.1 used multiple calibration solutions to estimate ranges for predicted savings. 
These ranges did not always contain the reference savings value, especially for 
calibrations to monthly data. Reducing the number of calibration solutions investigated 
may streamline the approach without much loss of accuracy. 

• Scenario 1 had consistent overprediction (i.e., uncalibrated model overpredicted reference 
billing data the entire season), whereas Scenario 2 had compensating errors (i.e., 
uncalibrated model overpredicted heating energy but underpredicted cooling energy); 
compensating errors created a more difficult calibration problem, as the procedures 
generally performed better for Scenario 1 than for Scenario 2. 

• Generally, calibrations to higher frequency data produced more accurate energy savings 
predictions, and the improvement for daily and hourly calibrations over monthly 
calibrations was greatest in the presence of compensating errors (for example, the 
average 𝑇𝐵𝑜𝐶 values across Procedures 3.1–3.3 for Scenario 2 were 1,981 kWh [hourly], 
2,171 kWh [daily], and 162.3 kWh [monthly]). 

• Procedure 3.3 performed similarly to the more computationally expensive Procedures 
3.1–3.2 for Scenario 1, but did not for Scenario 2; Procedure 3.3 could be drastically 
streamlined using parallel computing, but more scenarios are needed to evaluate and 
understand its performance across a range of conditions. 

• Across sensitivity analysis methods used in this study, a subset of strong inputs (i.e., 
“heating_set_point,” “cooling_set_point”) had considerably higher sensitivity analysis 
coefficients than the other strong inputs, and calibrated values for this subset generally 
agreed much better with reference values than the other adjusted values. 
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Overall, the results suggest that: 

1. The optimization problem is still significantly underdetermined when calibrating to 
monthly, daily, and hourly data using the approaches investigated in this study, which are 
largely based on previous studies performed mostly in the context of commercial 
buildings. 

2. Additional research is needed to develop improved or alternate approaches that take full 
advantage of the additional information content contained in the high-frequency 
residential billing data. 

In the nearer term, calibration methods similar to those described in this study could be 
implemented in residential simulation tools and tested in the field for automated calibrations to 
monthly billing data. They could be implemented in the context of emerging industry standards 
for residential model calibration (such as Building Performance Institute Standard 2400 [BPI 
2011]). Software developers who have the capability to run batch simulations in parallel (e.g., 
through cloud-computing) could employ methods similar to the regression metamodeling 
optimization approach to reduce the time required for automated calibration. 

5.2 Future Work 
This study was an initial step in investigating four automated residential calibration techniques 
over monthly, daily, and hourly synthetic utility data. Further research is needed to evaluate 
residential calibration techniques in the following areas: 

• More scenarios and house types: Two calibration scenarios were investigated in this 
study: scenarios in which the uncalibrated model overpredicts and underpredicts the 
utility billing data for a 1960s-era ranch-style home. More scenarios (e.g., the 
uncalibrated model underpredicts heating energy but overpredicts cooling energy) and 
house types (e.g., different vintages and energy efficiency features) should be 
investigated in future studies as they may provide more information about the strengths 
and limitations of the calibration techniques (i.e., whether positive BoC can be expected 
for other scenarios or house types). 

• Calibration to submetered/disaggregated smart-meter utility data: Researchers are 
developing techniques for disaggregating smart-meter data by device (Kolter and 
Jaakkola 2012). Future work is needed to develop and evaluate residential calibration 
methods in the context of disaggregated utility data. 

• Calibration to mixed-fuel utility data: This study considered an all-electric home, 
which presented more difficulties than mixed-fuel calibrations in that there was no 
disaggregation by fuel type, but fewer difficulties in that all energy consumption was 
measured at higher frequency in the daily and hourly cases (for mixed fuel, gas data are 
typically available at a monthly frequency). Future studies should develop and evaluate 
calibration methods in the context of mixed-fuel scenarios. 

• Alternative sensitivity analyses: The sensitivity analysis used in this study to identify 
the adjustable inputs considers only annual energy totals and not seasonal energy totals. 
Future studies should consider designating more adjustable inputs related to heating and 
cooling as opposed to baseload consumption. Adjusting inputs dominated by baseload 
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inputs may encourage matching utility billing data for the wrong reasons and has 
negligible impact on retrofits that are not baseload related. 

• Alternative objective functions: For this study, we used Eq. (18) as our optimization 
objective function. This objective function characterizes the variability of the errors 
between model-predicted and measured utility data (ASHRAE 2002). Alternative 
objective functions should be investigated (e.g., a penalty approach in which statistically 
unlikely calibration solutions are penalized [Carroll and Hitchcock 1993]), as they impact 
how well optimizations minimize residuals, avoid local minima, and recover better 
estimates of reference values. 

• Validation using high-quality empirical data: After calibration methods are further 
evaluated and refined using synthetic utility data, they should be tested using high-
quality, empirical audit and utility data. For example, it will be important to investigate 
whether 2,500 LHMC realizations are sufficient for Procedure 3.1. 

• Schedules: Similar to BESTEST-EX, this study used multipliers to vary some schedules 
in magnitude. Future studies could use probabilistic techniques to generate unique hourly 
schedules for lighting, occupancy, etc.  
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Glossary 
2-level full factorial 
design 

An experimental design taking on all possible 2-level combinations of 
factors included. 

Adjustable 
parameters 

Model inputs whose values are allowed to change during the 
calibration process. 

Approximate inputs Building model inputs with assigned triangular probability 
distributions. 

Benefit of 
calibration 

Difference in absolute error of savings predictions between calibrated 
and uncalibrated models. 

Calibrated model The model whose inputs have been adjusted through calibration. 

Explicit input value Value randomly selected from the triangular probability distribution of 
approximate inputs; used in the reference model. 

Feasible calibration 
solutions 

A term used in ASHRAE 1051-RP denoting calibration solutions 
satisfying ASHRAE Guideline 14 criteria. 

Heuristic template Database consisting of 20–24 influential input parameters with 
assigned best-guess, minimum, and maximum values. 

Influential inputs Those 24 inputs identified heuristically by an expert in a walk-through 
audit. 

Reference model Model consisting of randomly selected explicit input values. 

Reference utility 
data 

Utility data generated from BEopt/DOE-2.2 output from the reference 
model. 

Response surface 
methodology 

SLA (specific 
leakage area) 

The study of relationships between several explanatory variables and 
one or more response variables. 

Ratio of the effective leakage area of the living space to the floor area 
of the space. 

Strong parameters Top influential parameters identified from each procedure’s sensitivity 
analysis. 

Triangular 
probability 
distribution 

Probability distribution type assigned to approximate inputs; 
characterized by minimum, nominal, and maximum values. 

Uncalibrated model 

Weak parameters 

The model consisting of “best-guess” or nominal input values. 

Influential parameters not identified as strong parameters. 
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Appendix A  Approximate Inputs, Uncertainty 
Ranges, and Explicit Input Values 
 

Table 9. Operational Inputs and Uncertainty Ranges 

Approximate Input1 Minimum Nominal Maximum Units 

AnnualExteriorLightingEnergy 45.0 179.0 446.0 kWh/yr 

AnnualInteriorLightingEnergy 234.0 935.0 2336.0 kWh/yr 

cooling_set_point 71.0 78.0 86.0 °F 

ClothesWashMultiplier2 0.2 0.8 2.0 - 

FractionWindowAreaOpen 0.000 0.133 0.467 frac 

FurnitureAreaFraction 0.3 0.4 0.5 frac 

FurnitureConductivity 0.5603 0.8004 1.0405 Btu·in./h·ft2·°F 

FurnitureSolarAbsorptance 0.4 0.6 0.8 frac 

FurnitureSpecHeat 0.261 0.290 0.319 Btu/lb·°F 

FurnitureWeight 2.0 8.0 14.0 lb/ft2 

heating_set_point 60.0 68.0 75.0 °F 

interior_shading 0.5 0.6 1.0 frac 

KitchenAppliancesMultiplier3 0.2 0.8 2.0 - 

misc_hot_water_loads 0.2 0.8 2.0 - 

MELmultiplier 0.2 0.8 2.0 - 

MGLmultiplier 0.2 0.8 2.0 - 

RangeHoodExhaust 80.0 100.0 120.0 cfm 

RefrigeratorAnnualEnergy 303.8 434.0 564.2 kWh/yr 

WaterHeaterSetpoint 110.0 125.0 140.0 °F 
1 Bolded inputs are influential inputs. 
2 Values selected from this range are used for the following BEopt inputs: CWBABMultiplierElec, 
CWBABMultiplierHotWater, DryerBABMultiplierElec. 
3 Values selected from this range are used for the following BEopt inputs: DWBABMultiplierElec, 
DWBABMultiplierHotWater, CookingRangeBABMultiplierElec.  
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Table 10. Asset Inputs and Uncertainty Ranges 

Approximate Input1 Minimum Nominal Maximum Units 

AC_CoolingSEER 9.0 10.0 10.5 kBtu/kWh 

CarpetPadRValue 1.456 2.080 2.704 h·ft2·°F/Btu 

CavityDepth1 3.325 3.500 3.675 In. 

CavityInsRvalue1 0.80 1.01 1.80 h·ft2·°F/Btu 

CrawlACH 1.0 2.0 4.0 air changes/h 

CrawlCeilingFramingFactor 0.08 0.10 0.12 frac 

CrawlCeilingRcavity 13.3 19.0 24.7 h·ft2·°F/Btu 

DuctLeakage2 0.24 0.30 0.36 frac of AH fan flow 

FinishAbsorptivity 0.5 0.6 0.8 frac 

FinishConductivity 0.4570 0.6528 0.8486 Btu·in./h·ft2·°F 

FinishDensity 36.0 40.0 44.0 lb/ft3 

FinishEmissivity 0.87 0.90 0.93 frac 

FinishSpecificHeat 0.252 0.280 0.308 Btu/lb·°F 

FinishThickness 0.418 0.440 0.462 in 

FramingFactor1 0.20 0.25 0.30 frac 

GypsumThicknessCeiling 0.4754 0.5004 0.5254 in 

GypsumThicknessExtWall 0.4754 0.5004 0.5254 in 

gypsum_conductivity 0.7778 1.1112 1.446 Btu·in./h·ft2·°F 

gypsum_density 45.0 50.0 55.0 lb/ft3 

gypsum_specific_heat 0.234 0.260 0.286 Btu/lb·°F 

LivingSpaceSLA 0.000619 0.000886 0.000974 in2/ft2 

PartitionWallMassConductivity 0.7778 1.1112 1.4446 Btu·in./h·ft2·°F 

PartitionWallMassDensity 45.0 50.0 55.0 lb/ft3 

PartitionWallMassFractionOfFloorArea 1.064 1.330 1.596 frac 

PartitionWallMassSpecificHeat 0.234 0.260 0.286 Btu/lb·°F 

PartitionWallMassThickness 0.4754 0.5004 0.5254 in 

RoofingMaterialAbsorptivity 0.5 0.6 0.8 frac 

RoofingMaterialEmissivity 0.87 0.90 0.93 frac 

ShelterCoefficient 0.4 0.5 0.7 frac 

UACeilingFramingFactor 0.08 0.10 0.12 frac 

UACeilingInsRvalue3 5.0 11.0 16.0 h·ft2·°F/Btu 

UARoofFramingFactor 0.08 0.10 0.12 frac 

UARoofFramingThickness 5.225 5.500 5.775 in 

UnfinishedAtticSLA 0.00167 0.00333 0.00667 in.2/ft2 



52 
This report is available at no cost from the 
National Renewable Energy Laboratory (NREL) 
at www.nrel.gov/publications. 

Approximate Input1 Minimum Nominal Maximum Units 

WaterHeaterEnergyFactor 0.86 0.92 0.93 frac 

WindowSHGC 0.645 0.679 0.713 coefficient 

WindowUvalue 0.619 0.774 0.833 Btu/h·ft2·°F 

wood_conductivity 0.5603 0.8004 1.0405 Btu·in./h·ft2·°F 

wood_density 28.8 32.0 35.2 lb/ft3 

wood_specific_heat 0.261 0.290 0.319 Btu/lb·°F 
1 Bolded inputs are influential inputs. 
2 Values selected for this range are implemented by proportionally scaling the following BEopt inputs: AHLeakSA, 
AHLeakRA, ReturnLeak, SupplyLeak. 
3 After the value was selected from this range, the nominal insulation conductivity value was used to calculate the 
value of UACeilingJoistThickness, which was then also used for the value of UACeilingInsThickness. 

Random numbers 𝛼1, … ,𝛼𝜆 were generated from a uniform distribution on the interval (0,1). 
Then, the set of explicit values 𝜈𝑖 were calculated as: 

𝜈𝑖 =

⎩
⎪
⎨

⎪
⎧ 𝑥𝑖𝑚𝑖𝑛 + �𝛼𝑖�𝑥𝑖𝑛𝑜𝑚 − 𝑥𝑖𝑚𝑖𝑛��𝑥𝑖𝑚𝑎𝑥 − 𝑥𝑖𝑚𝑖𝑛�, if 𝛼𝑖 ≤

𝑥𝑖𝑛𝑜𝑚 − 𝑥𝑖𝑚𝑖𝑛

𝑥𝑖𝑚𝑎𝑥 − 𝑥𝑖𝑚𝑖𝑛
,

𝑥𝑖𝑚𝑎𝑥 − �(1 − 𝛼𝑖)(𝑥𝑖𝑚𝑎𝑥 − 𝑥𝑖𝑛𝑜𝑚)�𝑥𝑖𝑚𝑎𝑥 − 𝑥𝑖𝑚𝑖𝑛�, if 𝛼𝑖 >
𝑥𝑖𝑛𝑜𝑚 − 𝑥𝑖𝑚𝑖𝑛

𝑥𝑖𝑚𝑎𝑥 − 𝑥𝑖𝑚𝑖𝑛
,
 (13)  

for 𝑖 = 1, … , 𝜆, the number of approximate inputs perturbed to generate the synthetic utility data: 
𝑥𝑖𝑚𝑖𝑛, 𝑥𝑖𝑛𝑜𝑚, 𝑥𝑖𝑚𝑎𝑥 are the probability distribution’s minimum, nominal, and maximum values, 
respectively (Kotz and van Dorp 2004). 
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Table 11. Reference Model Input Values for Scenario 116 

Approximate Input 𝝂𝒊 Approximate Input 𝝂𝒊 

AC_CoolingSEER 10.12 heating_set_point 65.47 

AnnualInteriorLightingEnergy 574.46 interior_shading 0.74 

AnnualExteriorLightingEnergy 270.57 KitchenAppliancesMultiplier 1.20 

CarpetPadRValue 2.01 LivingSpaceSLA 0.00085 

CavityDepth1 3.51 MELmultiplier 0.55 

CavityInsRvalue1 1.37 MGLmultiplier 0.95 

ClothesWashMultiplier 0.64 misc_hot_water_loads 0.87 

cooling_set_point 82.01 PartitionWallMassConductivity 0.94 

CrawlACH 3.05 PartitionWallMassDensity 49.18 

CrawlCeilingFramingFactor 0.11 PartitionWallMassFractionOfFloorArea 1.36 

CrawlCeilingRcavity 21.81 PartitionWallMassSpecificHeat 0.26 

DuctLeakage 0.31 PartitionWallMassThickness 0.49 

FinishAbsorptivity 0.57 RangeHoodExhaust 110.49 

FinishConductivity 0.63 RefrigeratorAnnualEnergy 480.27 

FinishDensity 40.85 RoofingMaterialAbsorptivity 0.56 

FinishEmissivity 0.90 RoofingMaterialEmissivity 0.91 

FinishSpecificHeat 0.27 ShelterCoefficient 0.47 

FInishThickness 0.43 UACeilingFramingFactor 0.10 

FractionWindowAreaOpen 0.16 UACeilingInsRvalue 12.90 

FramingFactor1 0.24 UARoofFramingFactor 0.11 

FurnitureAreaFraction 0.38 UARoofFramingThickness 5.56 

FurnitureConductivity 0.93 UnfinishedAtticSLA 0.0031 

FurnitureSolarAbsorptance 0.61 WaterHeaterEnergyFactor 0.87 

FurnitureSpecHeat 0.27 WaterHeaterSetpoint 138.37 

FurnitureWeight 8.20 WindowSHGC 0.66 

GypsumThicknessCeiling 0.49 WindowUvalue 0.70 

GypsumThicknessExtWall 0.49 wood_conductivity 0.79 

gypsum_conductivity 1.29 wood_specific_heat 0.29 

gypsum_specific_heat 0.26 wood_density 29.58 

gypsum_density 45.73   

  

                                                            
16 Units for these approximate inputs are found in Tables 9 and 10. 
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Table 12. Reference Model Input Values for Scenario 217 

Approximate Input 𝝂𝒊 Approximate Input 𝝂𝒊 

AC_CoolingSEER 9.70 heating_set_point 66.65 

AnnualInteriorLightingEnergy 1703.27 interior_shading 0.88 

AnnualExteriorLightingEnergy 272.04 KitchenAppliancesMultiplier 0.73 

CarpetPadRValue 2.19 LivingSpaceSLA 0.00079 

CavityDepth1 3.42 MELmultiplier 0.93 

CavityInsRvalue1 0.99 MGLmultiplier 1.00 

ClothesWashMultiplier 0.92 misc_hot_water_loads 0.96 

cooling_set_point 73.69 PartitionWallMassConductivity 1.19 

CrawlACH 2.74 PartitionWallMassDensity 53.03 

CrawlCeilingFramingFactor 0.10 PartitionWallMassFractionOfFloorArea 1.30 

CrawlCeilingRcavity 19.69 PartitionWallMassSpecificHeat 0.25 

DuctLeakage 0.29 PartitionWallMassThickness 0.49 

FinishAbsorptivity 0.74 RangeHoodExhaust 103.64 

FinishConductivity 0.63 RefrigeratorAnnualEnergy 494.23 

FinishDensity 39.64 RoofMaterialAbsorptivity 0.71 

FinishEmissivity 0.93 RoofingMaterialEmissivity 0.92 

FinishSpecificHeat 0.27 ShelterCoefficient 0.52 

FInishThickness 0.44 UACeilingFramingFactor 0.098 

FractionWindowAreaOpen 0.19 UACeilingInsRvalue 15.25 

FramingFactor1 0.26 UARoofFramingFactor 0.09 

FurnitureAreaFraction 0.43 UARoofFramingThickness 5.69 

FurnitureConductivity 0.65 UnfinishedAtticSLA 0.0031 

FurnitureSolarAbsorptance 0.71 WaterHeaterEnergyFactor 0.89 

FurnitureSpecHeat 0.51 WaterHeaterSetpoint 122.91 

FurnitureWeight 7.11 WindowSHGC 0.69 

GypsumThicknessCeiling 0.51 WindowUvalue 0.76 

GypsumThicknessExtWall 0.51 wood_conductivity 0.68 

gypsum_conductivity 1.24 wood_specific_heat 0.28 

gypsum_specific_heat 0.28 wood_density 31.01 

gypsum_density 53.15   

  

                                                            
17 Units for these approximate inputs are found in Tables 9 and 10. 
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Appendix B  Sensitivity Analysis Results 
 

Table 13. The 24 Influential Inputs 

Influential Input 𝝃𝒋 

heating_set_point 0.135 

cooling_set_point 0.063 

MELmultiplier 0.031 

misc_hot_water_loads 0.028 

UACeilingInsRvalue 0.026 

CrawlACH 0.019 

ClothesWashMultiplier 0.018 

DuctLeakage 0.017 

wood_conductivity 0.013 

WindowUvalue 0.012 

KitchenAppliancesMultiplier 0.011 

AC_CoolingSEER 0.009 

AnnualInteriorLightingEnergy 0.009 

LivingSpaceSLA 0.009 

CavityInsRvalue1 0.008 

interior_shading 0.008 

FurnitureWeight 0.005 

ShelterCoefficient 0.004 

FinishConductivity 0.004 

gypsum_conductivity 0.003 

AnnualExteriorLightingEnergy 0.003 

WaterHeaterSetpoint 0.003 

FramingFactor1 0.003 

FinishAbsorptivity 0.002 
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Table 14. Procedure 3.2 and 3.3 Results of 𝝃 Sensitivity Analysis 

Strong Parameter 𝝃𝒋 

heating_set_point 0.126 

cooling_set_point 0.064 

MELmultiplier 0.032 

misc_hot_water_loads 0.027 

UACeilingInsRvalue 0.021 

ClothesWashMultiplier 0.020 
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Appendix C  Process Flow 
Figure 52 shows the process flow for developing approximate input ranges, identifying 
influential inputs, selecting adjustable inputs, and finally, adjusting these select inputs to recover 
the calibrated inputs. The steps in the “Initial Assumptions” process are performed for the 
purpose of comparing calibration procedures; the steps in the “Calibration” are performed as a 
part of each calibration procedure. 

 

Figure 52. Process flow for input calibration methods 
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Appendix D  Latin Hypercube Monte Carlo 
This appendix presents the steps for performing a three-level Latin Hypercube Monte Carlo 
(LHMC) (Reddy and Maor 2006). These steps were followed for the implementation of 
Procedure 3.1 (see Section 3.1.2). 

1. Discretize each of the 24 influential parameters’ triangular probability distributions into 
three ranges of equal probability (i.e., areas of one-third). Determine the median values 
(levels), 𝑥𝑖𝑙𝑜𝑤, 𝑥𝑖

ℎ𝑖𝑔ℎ, 𝑥𝑖𝑚𝑖𝑑, of each of these three ranges as follows: 

𝑥𝑖𝑙𝑜𝑤 = 𝑥𝑖𝑚𝑖𝑛 + ��𝑥𝑖
𝑛𝑜𝑚 − 𝑥𝑖𝑚𝑖𝑛��𝑥𝑖𝑚𝑎𝑥 − 𝑥𝑖𝑚𝑖𝑛�

6
, (14)  

𝑥𝑖
ℎ𝑖𝑔ℎ = 𝑥𝑖𝑚𝑎𝑥 − �(𝑥𝑖𝑚𝑎𝑥 − 𝑥𝑖𝑛𝑜𝑚)�𝑥𝑖𝑚𝑎𝑥 − 𝑥𝑖𝑚𝑖𝑛�

6
, (15)  

𝑥𝑖𝑚𝑖𝑑 =

⎩
⎪
⎨

⎪
⎧
𝑥𝑖𝑚𝑖𝑛 + ��𝑥𝑖

𝑛𝑜𝑚 − 𝑥𝑖𝑚𝑖𝑛��𝑥𝑖𝑚𝑎𝑥 − 𝑥𝑖𝑚𝑖𝑛�
2 , if 𝑥𝑖𝑛𝑜𝑚 ≥

𝑥𝑖𝑚𝑎𝑥 + 𝑥𝑖𝑚𝑖𝑛

2

𝑥𝑖𝑚𝑎𝑥 − �(𝑥𝑖𝑚𝑎𝑥 − 𝑥𝑖𝑛𝑜𝑚)�𝑥𝑖𝑚𝑎𝑥 − 𝑥𝑖𝑚𝑖𝑛�
2 , if 𝑥𝑖𝑛𝑜𝑚 <

𝑥𝑖𝑚𝑎𝑥 + 𝑥𝑖𝑚𝑖𝑛

2

 (16)  

2. Generate LHMC combinations of all parameters. That is, use uniform sampling without 
replacement to randomly select a subset of the 324 total LHMC parameter combinations. 

3. Create realizations by replacing the influential input values of the base-case building 
description file with each LHMC parameter combination. 

4. Simulate in BEopt/DOE-2.2 all building description files in automated batch mode. 
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Appendix E  Central Composite Design 
Central composite design matrix X relies on a 2-level full factorial, axial points, and center run 
vertically concatenated design composite, and is given by: 

 

where 𝛼 = 2−
𝜏
4 and 𝜏 is the number of parameters considered in the design (i.e., number of 

‘Design’ columns). Each row of the submatrix whose columns are the 2nd through the (𝜏 + 1)th 
columns of X are coded realizations (corresponding to the 1st through 𝜏th parameter) which, when 
replaced in the base-case building description file and simulated in BEopt/DOE-2.2, produce 
response matrix Y whose dimensions are (2𝜏 + 2𝜏 + 1) x 𝑛, where 𝑛 is the number of data points 
to which we are calibrating. The coded values X𝑖,𝑗 linearly map to input values X𝑖,𝑗′  by: 

X𝑖,𝑗′ = X𝑖,𝑗 �
1
2
�𝑥𝑗𝑚𝑎𝑥 − 𝑥𝑗𝑚𝑖𝑛�� + �

1
2
�𝑥𝑗𝑚𝑎𝑥 + 𝑥𝑗𝑚𝑖𝑛��, (17)  

for 𝑗 = 1, … , 𝜏, where the X𝑖,𝑗 are elements from the ‘Design’ submatrix of X, and 𝑥𝑗𝑚𝑖𝑛 and 
𝑥𝑗𝑚𝑎𝑥 are the probability distribution's minimum and maximum values, respectively, from  
Table 9 and Table 10. There exist several alternative designs for constructing quadratic 
metamodels for use in response surface methodology. For this analysis, the central composite 
design was chosen and implemented due to its low cost and widespread use (Barton 2009; 
Batmaz and Tunali 2002). 
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Appendix F  Goodness-of-Fit Indices 
For assessing agreement between model-predicted and measured utility data, goodness-of-fit 
indices are defined. The “coefficient of variation of the root mean square error” CV(RMSE) 
characterizes the variability of the errors between model-predicted and measured utility data 
(ASHRAE 2002) and is given by: 

CV(RMSE) =
1
𝑦�
�
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=1
𝑛 − 𝑝

 x 100%. (18)  

The “normalized mean bias error” NMBE quantifies the percentage error between model-
predicted and measured utility data summed over the number of data points (ASHRAE 2002) 
and is given by: 

NMBE =
1
𝑦�
∑ (𝑦𝑖 − 𝑦�𝑖)𝑛
𝑖=1

𝑛 − 𝑝
 x 100%. (19)  

For Eqns. (18) and (19) the 𝑦𝑖 are measured utility data, the 𝑦�𝑖 are simulation-predicted data, 𝑦� is 
the measured utility data mean, 𝑛 is the number of measured utility data points used in 
calibration, and 𝑝 is the number of adjustable model parameters.18 
 
The goodness-of-fit indices given in Eqs. (18) and (19) can be consolidated into a single 
statistical index representing overall goodness-of-fit (Reddy and Maor 2006). For simultaneously 
considering both the CV(RMSE) and the NMBE, the “total goodness-of-fit” 𝛿𝑇𝑂𝑇𝐴𝐿 is defined 
as: 

𝛿𝑇𝑂𝑇𝐴𝐿 = �
𝑤CV(RMSE)
2 CV(RMSE)2 + 𝑤NMBE

2 NMBE2

𝑤CV(RMSE)
2 + 𝑤NMBE

2 , (20)  

where 𝑤CV(RMSE),𝑤NMBE are the weights of goodness-of-fit indices CV(RMSE), NMBE, 
respectively. For this analysis, we assume equal weight for CV(RMSE) and NMBE (i.e., 
𝑤CV(RMSE) = 𝑤NMBE = 0.5), and so Eq. (20) reduces to: 

𝛿𝑇𝑂𝑇𝐴𝐿 =
√2
2
�CV(RMSE)2 + NMBE2. (21)  

  

                                                            
18 Note that in accordance with suggestions from Reddy and Maor, 𝑝 = 1 for Eqn. (18) and 𝑝 = 0 for Eqn. (19). 
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Appendix G  Comparing Wall and Ceiling R-Values 
to BESTEST-EX 
For this study, BEopt inputs corresponding to wall and ceiling assemblies were perturbed at a 
detailed level (e.g., conductivity of framing members). For the study in BESTEST-EX, overall 
wall and ceiling R-values were perturbed. Therefore, a small study was conducted to verify that 
the perturbations at a detailed level resulted in wall and ceiling assembly R-value ranges similar 
to those in BESTEST-EX. Specifically, random selections for detailed inputs related to wall and 
ceiling assemblies were made and used to calculate overall R-values of the assemblies according 
to the steady-state, parallel-path method. This process was repeated multiple times to develop 
distributions of overall wall and ceiling R-values. Then, these distributions were compared to 
distributions resulting from selections from ranges specified in BESTEST-EX (see Figure 53 
through Figure 56). The comparisons revealed that the default, hard-wired OSB sheathing R-
value in BEopt/DOE-2.2 was R-0.69 less than the nominal wallboard R-value defined in 
BESTEST-EX. To correct for this, R-0.69 of insulated foam sheathing was modeled in BEopt 
and scaled appropriately for all simulations in which the wood conductivity values were 
randomly selected. After this correction, random selections from input ranges (specified in Table 
9 and Table 10) related to wall and ceiling assemblies resulted in very similar wall and ceiling 
assembly R-value ranges found in BESTEST-EX. 

 

Figure 53. Histogram of equivalent wall assembly R-values resulting from 50,000 sets of random 
input selections from ranges specified in this study 
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Figure 54. Histogram of equivalent wall assembly R-values resulting from 50,000 sets of random 
input selections from ranges specified in BESTEST-EX 

 

Figure 55. Histogram of equivalent ceiling assembly R-values resulting from 50,000 sets of 
random input selections from ranges specified in this study 
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Figure 56. Histogram of equivalent ceiling assembly R-values resulting from 50,000 sets of 
random input selections from ranges specified in BESTEST-EX  
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Appendix H  Additional Figures 

 

Figure 57. Procedure 3.1 energy savings predictions for air-seal retrofit, Scenario 1 

 

Figure 58. Procedure 3.1 energy savings predictions for air-seal retrofit, Scenario 2 
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Figure 59. Procedure 3.1 energy savings predictions for attic insulation retrofit, Scenario 1 

 

Figure 60. Procedure 3.1 energy savings predictions for attic insulation retrofit, Scenario 2 
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Figure 61. Procedure 3.1 energy savings predictions for wall insulation retrofit, Scenario 1 

 

Figure 62. Procedure 3.1 energy savings predictions for wall insulation retrofit, Scenario 2 
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Figure 63. Procedure 3.1 energy savings predictions for programmable thermostat retrofit, 
Scenario 1 

 

Figure 64. Procedure 3.1 energy savings predictions for programmable thermostat retrofit, 
Scenario 2 
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Figure 65. Procedure 3.1 energy savings predictions for low-e windows retrofit, Scenario 1 

 

Figure 66. Procedure 3.1 energy savings predictions for low-e windows retrofit, Scenario 2 
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Figure 67. Procedure 3.1 energy savings predictions for low solar absorptance roof retrofit, 
Scenario 1 

 

Figure 68. Procedure 3.1 energy savings predictions for low solar absorptance roof retrofit, 
Scenario 2 
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Figure 69. Procedure 3.1 energy savings predictions for duct sealing and insulation retrofit, 
Scenario 1 

 

Figure 70. Procedure 3.1 energy savings predictions for duct sealing and insulation retrofit, 
Scenario 2 
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Figure 71. Procedure 3.1 energy savings predictions for AC replacement retrofit, Scenario 1 

 

Figure 72. Procedure 3.1 energy savings predictions for AC replacement retrofit, Scenario 2 



72 
This report is available at no cost from the 
National Renewable Energy Laboratory (NREL) 
at www.nrel.gov/publications. 

 

Figure 73. Illustration of agreement between calibrated model predictions and reference utility 
data for calibration to monthly data using Procedure 3.2, Scenario 1. Percentages along top are 

percent errors of the calibrated model predictions relative to the reference utility data. 

 

Figure 74. Illustration of agreement between calibrated model predictions and reference utility 
data for calibration to daily data using Procedure 3.2, Scenario 1. Percentages along top are 

percent errors of the calibrated model predictions relative to the reference utility data. 
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Figure 75. Illustration of agreement between calibrated model predictions and reference utility 
data for calibration to hourly data using Procedure 3.2, Scenario 1. Percentages along top are 

percent errors of the calibrated model predictions relative to the reference utility data. 

 

Figure 76. Illustration of agreement between calibrated model predictions and reference utility 
data for calibration to monthly data using Procedure 3.2, Scenario 2. Percentages along top are 

percent errors of the calibrated model predictions relative to the reference utility data. 
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Figure 77. Illustration of agreement between calibrated model predictions and reference utility 
data for calibration to daily data using Procedure 3.2, Scenario 2. Percentages along top are 

percent errors of the calibrated model predictions relative to the reference utility data. 

 

Figure 78. Illustration of agreement between calibrated model predictions and reference utility 
data for calibration to hourly data using Procedure 3.2, Scenario 2. Percentages along top are 

percent errors of the calibrated model predictions relative to the reference utility data. 
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Figure 79. Illustration of agreement between calibrated model predictions and reference utility 
data for calibration to monthly data using Procedure 3.3, Scenario 1. Percentages along top are 

percent errors of the calibrated model predictions relative to the reference utility data. 

 

Figure 80. Illustration of agreement between calibrated model predictions and reference utility 
data for calibration to daily data using Procedure 3.3, Scenario 1. Percentages along top are 

percent errors of the calibrated model predictions relative to the reference utility data. 



76 
This report is available at no cost from the 
National Renewable Energy Laboratory (NREL) 
at www.nrel.gov/publications. 

 

Figure 81. Illustration of agreement between calibrated model predictions and reference utility 
data for calibration to hourly data using Procedure 3.3, Scenario 1. Percentages along top are 

percent errors of the calibrated model predictions relative to the reference utility data. 

 

Figure 82. Illustration of agreement between calibrated model predictions and reference utility 
data for calibration to monthly data using Procedure 3.3, Scenario 2. Percentages along top are 

percent errors of the calibrated model predictions relative to the reference utility data. 
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Figure 83. Illustration of agreement between calibrated model predictions and reference utility 
data for calibration to daily data using Procedure 3.3, Scenario 2. Percentages along top are 

percent errors of the calibrated model predictions relative to the reference utility data. 

 

Figure 84. Illustration of agreement between calibrated model predictions and reference utility 
data for calibration to hourly data using Procedure 3.3, Scenario 2. Percentages along top are 

percent errors of the calibrated model predictions relative to the reference utility data. 
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