Introduction

• Group 3 is chartered to develop accelerated stress tests that can be used as comparative predictors of module lifetime versus stresses associated with humidity, temperature and voltage.

• The tools we have to utilize are:
 – Outdoor test results
 – Accelerated stress tests results
 – Modeling
Where we stand today

• The module qualification test sequences IEC 61215 and IEC 61646 contain a 1000 damp heat test (85 °C at 85% RH).

• This stress test appears to do an excellent job of screening out module designs and materials that would fail in the field in short time periods.

• So Group 3 must look to find field failures that are not identified in the 1000 hour damp heat test, but are limiting the lifetime of PV modules.
Group 3 Efforts

• Making observations of field failures related to humidity
• PID Testing – Adding voltage to H and T
• Modeling to understand conditions within module
• Effectiveness of Qualification Test
• Look at results of testing beyond qualification
Thin Film Susceptibility to Humidity

Observed Field Failures

- If you don’t do something about it, the number one field failure mode for CdTe and CIGS appears to be due to moisture ingress.
- For a-Si humidity, temperature and voltage can lead to delamination of TCO from glass.
- Many of today’s most successful thin film products are designed to keep moisture out.

Observed Qualification Test Failures
Crystalline Silicon Findings

• At present time group 3 does not believe that damp heat testing beyond 1000 hours is justified.

• Looking for combined sets of stresses that can lead to delamination. Possibilities
 – UV and temperature
 – Dynamic mechanical loading/thermal cycling/humidity freeze.

• We are looking for:
 – Older arrays exposed in hot/humid environments to visit.
 – Reports on and samples of product returns that appear to be humidity and temperature related.
How do the cry-Si findings apply to Thin Films?

• Likely that the damp heat test results and field failures due to moisture are more closely related to the packaging than the technology that is inside.

• Lets look at 3 different cases:
 – Packages that keep moisture out.
 – Flexible package where device is exposed to moisture.
 – PID
Package that keeps moisture out

- A module that relies on sealing out the moisture (glass-glass with an edge seal) is not likely to fail an 85/85 test, but you are not likely to learn much about its long term durability from such a test either.
- What we should be developing are tests that stress the package before performing the 85/85 test.
- Kempe (2012 NREL PVMRW) reported that a combination of edge pinch and UV exposure resulted in loss of adhesion of the edge seal and subsequent ingress of moisture into the package.
Flexible PV Packages

- In flexible packages the moisture will reach equilibrium within the module in less time than in a package with one or more vapor barriers (glass, cells, etc.).
- For example modeling by Kempe shows that it takes about 1000 hours at 85/85 to mostly saturate the encapsulant between a cell and the glass.
- On the other hand with a flexible package it may only take a few hours for the humidity to reach equilibrium in the encapsulant.
- It is likely that for flexible packages 85/85 for 1000 hours is too much stress for evaluating a 25 year lifetime outdoor in most terrestrial environments.
- Can use modeling to determine a better combination of temperature and humidity where maybe using a longer (than 1000 hours) test will be a much better indicator of long term performance in most (if not all) terrestrial environments. (See Kempe paper from PVMRW 2013)
PID in Thin Films

- Remember PID was first reported in thin film products. (See Carlson et. al. PIP, 11, 2003)
- Changes to barrier layers slowed the process down considerably – it was no longer the squeaky wheel.
- However, even some a-Si modules built after the “fix” still suffer from some PID.
- PID tests developed for cry-Si modules may do a good job of identifying PID susceptible thin film product.

Electro-Chemical Corrosion of TF Module
From Neelkanth Dhere, FSEC
Summary

• Accelerated stress tests for moisture related failures need to address the package more than the package’s contents.
• Adding thin film specialists to work in group 3 will lead to development of better accelerated stress tests for temperature, humidity and voltage for both crystalline Silicon and thin film modules.
• Expanding the effort to increase focus on flexible packages may be useful.