
ABSTRACT
Hybrid electric vehicles, plug-in hybrid electric vehicles, and
battery electric vehicles offer the potential to reduce both oil
imports and greenhouse gases, as well as to offer a financial
benefit to the driver. However, assessing these potential
benefits is complicated by several factors, including the
driving habits of the operator. We focus on driver aggression,
i.e., the level of acceleration and velocity characteristic of
travel, to (1) assess its variation within large, real-world drive
datasets, (2) quantify its effect on both vehicle efficiency and
economics for multiple vehicle types, (3) compare these
results to those of standard drive cycles commonly used in
the industry, and (4) create a representative drive cycle for
future analyses where standard drive cycles are lacking.

INTRODUCTION
Hybrid electric vehicles (HEVs), plug-in hybrid electric
vehicles (PHEVs), and battery electric vehicles (BEVs) offer
the potential to reduce both oil imports and greenhouse gases,
as well as to offer a financial benefit to the driver. However,
assessing these potential benefits is complicated by several
factors, including the local climate, the cleanliness of the grid
supplying electricity (for PHEVs and BEVs), and the driving
habits of the operator, among many other things. Driving
habits can be divided into two topics for consideration: (1)
trip patterns, i.e., the distribution of trip times and distances,
and (2) aggression, i.e., the level of acceleration and the
velocity characteristics of travel. Investigation of trip patterns
in [1] and [2] found that the variation in the distribution of
daily miles traveled observed in real-world, multi-day drive
data [3] produces significant variation in gasoline savings and
total cost of ownership.

Herein, we focus on driver aggression to (1) assess its
variation within large, real-world drive datasets, (2) quantify
its effect on both vehicle efficiency and economics for
multiple vehicle types, (3) compare these results to those of
standard drive cycles commonly used in the industry, and (4)
create a representative drive cycle for future analyses where
standard drive cycles are lacking. By doing so, we aim to
supply an approach for vehicle performance simulation and
testing that accurately captures the variation between
different drivers, in particular for high-level techno-economic
analyses performed using the National Renewable Energy
Laboratory's (NREL's) Battery Ownership Model. This work
is supported by the U.S. Department of Energy's Vehicle
Technologies Program.

ANALYSIS
In this study, we apply a high-resolution vehicle simulator to
real-world drive data to calculate a distribution of vehicle
efficiencies for multiple vehicle types and operational modes.
We then analyze these distributions and compare them to
standard drive cycles commonly employed in the industry.
From there, we synthesize and validate an artificial drive
cycle that characterizes the average of the complete set of
real-world drive data. We also describe in detail a set of
associated scaling factors valid for computing the observed
variation in vehicle efficiency.

Real-World Drive Data
Real-world, high-accuracy, and high-resolution vehicular
velocity histories are needed to predict the actual on-road
variation in vehicle efficiencies of different driver and
powertrain combinations. For this purpose, 2,154 unique
vehicle records (spanning 1-2 days each) were sourced from
the NREL Secure Transportation Data Center: a composite of
data from Los Angeles, CA; Austin, TX; San Antonio, TX;
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and Houston, TX travel studies [4]. The data were recorded
using on-board global positioning system data acquisition
systems filtered down to second-by-second acceleration and
velocity histories per the methods described in [5].

The box charts in Figures 1,2,3 show a statistical summary of
this composite vehicle record data set broken out by city for
vehicular speed, acceleration, and kinetic intensity [6]. Note
that both speed and acceleration are averaged over time for
each individual vehicle record. For reference, these same
statistics are included for four industry-standard drive cycles:
(1) Highway Fuel Economy Driving Schedule (HWFET), (2)
Urban Dynamometer Driving Schedule (UDDS), (3) Air
Resources Board Dynamometer Driving Schedule (LA92),
and (4) Supplemental Federal Test Procedure (US06). The
median, 25th percentile, and 75th percentile values for speed
and kinetic intensity are fairly consistent among all four
cities. Acceleration statistics are visibly larger for Los
Angeles, but they are consistent for the three Texas cities.

Vehicle Simulation
Vehicle simulation is conducted to achieve two goals: (1) to
generate powertrain specifications for models of comparable
conventional vehicles (CVs), HEVs, PHEVs, and BEVs; and
(2) to simulate the fuel consumption of these different
powertrains when subjected to the driving requirements of
real-world operators (as defined by the real-world drive data
discussed previously).

For both tasks, we employ the NREL-developed ADVISOR
vehicle simulator to calculate the energy consumption of
different powertrains under both industry-standard and real-
world drive cycles [7]. Operating in the MATLAB/Simulink
environment, ADVISOR employs a hybrid backward/
forward-facing approach to evaluate system interactions and
performance relative to individual component limitations.

To calculate the powertrain specifications of comparable
CVs, HEVs, PHEVs, and BEVs, we simulate each
architecture iteratively with different combustion engines,
electric motors, and battery sizes until a 0-60 mph
acceleration time of 9 seconds and a 40- or 75-mile all-
electric range (AER) for the PHEV and BEV, respectively,
are achieved simultaneously. Note that the range is
determined via the usable energy of the battery and the
calculated vehicle efficiency of the UDDS and HWFET
cycles combined and adjusted in a manner representative of
the two-cycle approximation to the U.S. Environmental
Protection Agency's combined city and highway window-
sticker rating per [8]. A midsize sedan with a coefficient of
drag of 0.3 and a frontal area of 2.27 m2 is assumed in all
cases, as is a 136 kg cargo mass. The HEV and PHEV are
modeled with a parallel engine/motor configuration, and are
held to a 40% degree of hybridization. The HEV battery was

sized to approximate existing commercial HEVs [9].
Additional inputs and results are presented in Table 1.

Subsequently, we apply these models to calculate the vehicle
efficiency of each powertrain for four industry-standard drive
cycles (HWFET, UDDS, LA92, and US06), as well as each
of the processed real-world drive days discussed above. For
vehicle record simulations, we lock the PHEV in charge
depleting (CD) and charge sustaining (CS) modes separately;
in doing so, we ignore the AER limitations of the PHEV and
allow it to operate in CD mode indefinitely.

Figure 1. Speed statistics for four real-world drive data
sets

Figure 2. Acceleration statistics for four real-world drive
data sets

We approach the BEV the same by ignoring AER limitations.
This approach is used so that the entire vehicle record may be
simulated regardless of distance travelled. We further assume
that initial engine coolant is at operational temperature at the
beginning of each trip. We recognize that such assumptions
are not realistic of actual vehicle use, but they are important
to ensure the impact of local climate and that the timing of
trips may be separated from kinetic intensity. The effect of
AER, climate, and cold starts will be addressed in a future
publication as the appropriate level of consideration of multi-
day driving patterns, thermal effects, and battery/engine



control strategy is beyond the scope of this paper. The effects
of grade, wind, and cornering are also neglected.

Figure 3. Kinetic intensity statistics for four real-world
drive data sets

It is worth noting that the driving data employed herein were
collected from an array of vehicle makes, models, years, and
body styles from the existing local fleet of personal-use
vehicles. The authors acknowledge that some drive data
evaluated herein were likely collected from vehicles with
greater performance capabilities than the employed models
(namely maximum acceleration, where our simulated
vehicles are capable of a 9-second 0-60-mph sprint).
Accordingly, we checked all simulated trips to evaluate the
occurrence of speed trace errors where our simulated vehicle
was incapable of matching the original recorded speed
history. We found that of the 13,622 real-world trips
simulated across five powertrains, 95.9% of all trips exhibited
a maximum error of less than 1 mph, while 99.5% achieved a
maximum error of less than 5 mph. As the occurrence of
speed trace error is small, we conclude that the discrepancies
between the performance capability of our simulated vehicle
and that of the vehicles behind the data will have a negligible
impact on our results. Thus, we do not down-select vehicle
records for analysis based on performance criteria.

Effect of Driver and Vehicle
Variation of vehicle efficiency across individual vehicle
records by powertrain (and operational mode, for the PHEV)
is presented in Figure 4. Values on the y-axis have been
nondimensionalized relative to the average vehicle efficiency
for each case, such that values less than one indicate superior
efficiency relative to the mean and vice-versa. PHEV
efficiency in CD mode is captured by converting any fuel use
by the internal combustion engine (occurring in
approximately half the data) to an equivalent amount of
electrical energy, using the lower heating value for gasoline,
and summing with electric motor energy consumption on a
per-distance basis. Several important points become clearly
evident from this graph. First, we see that the median vehicle
efficiency from the data set is relatively close to the mean.
Second, the distribution is asymmetric around the mean-
variations in aggression have a significantly greater capability
to increase fuel consumption from the mean than to decrease
it.

Figure 4. Normalized vehicle efficiency vs. percentile of
vehicle records for different powertrains

Finally, we find that the powertrain type has minimal
influence on the distribution of vehicle efficiency as a

Table 1. Vehicle Specifications



function of population percentile. It is important to highlight,
though, that this may not be true for different vehicle
platforms (e.g., compact cars or large SUVs), those with
different 0-60 mph acceleration targets, or hybrids of
different architectures (e.g., serial hybrids).

Comparison to Standard Drive Cycles
Figures 5,6,7,8,9 compare the distribution of vehicle
efficiency computed from real-world vehicle records to that
calculated for four industry-standard drive cycles (HWFET,
UDDS, LA92, and US06) for four vehicle types (CV, HEV,
PHEV, and BEV). Two plots are shown for the PHEV, one
for CS operation and one for CD, split for the reasons noted
above.

Figure 5. Comparison of vehicle record and standard
cycle CV efficiency

Figure 6. Comparison of vehicle record and standard
cycle HEV efficiency

Figure 7. Comparison of vehicle record and standard
cycle PHEV efficiency in charge sustaining mode

Figure 8. Comparison of vehicle record and standard
cycle PHEV efficiency in charge depleting mode

Figure 9. Comparison of vehicle record and standard
cycle BEV efficiency

These plots show distinct differences between operational
modes (combustion-only, hybrid operation, and electricity-
only) with respect to how the standard drive cycles compare



to the distribution of vehicle record results. When operating
only under the power of combustion (CV), we find that
simulation of the HWFET cycle significantly underpredicts
vehicle record fuel consumption calculations, whereas the
UDDS is representative of the mean, and the US06 and LA92
cycles slightly overpredict average vehicle record fuel
consumption. For the CV, LA92 predicts the highest fuel
consumption, but it is relatively close to that predicted by
US06. When operating in hybrid mode (HEV, PHEV-CS),
we find that the HWFET still predicts the lowest fuel
consumption, but it is now within the tail end of the vehicle
record data. The UDDS now slightly underestimates average
vehicle record simulations, but it represents reasonably well
the mode thereof. Further, the differences between UDDS,
LA92, and US06 predictions are more exaggerated than in the
combustion-only case, and US06 becomes the least fuel-
efficient standard drive cycle. These trends continue when
advancing to all-electric mode (PHEV-CD, BEV). The
UDDS cycle falls further down in relative fuel consumption
when compared to the mode value of vehicle record data, and
the difference between UDDS, LA92, and US06 predictions
increases even further. Here we find that the LA92 cycle is
the best indicator of average vehicle record predictions
among the four standard cycles we examined.

It is important to note that this latter trend of increasing
variation in efficiency predictions between standard drive
cycles as the degree of electrification increases is not
indicative of increasing sensitivity to real-world drivers.
Recall that the results in the previous section showed that the
variation in fuel efficiency across real-world drive data is
fairly consistent across powertrains (see Figure 3). Rather,
these data imply that the response of these powertrains to
different drive cycles is varied and complex, as will be
discussed below.

Creating a Representative Drive Cycle
A set of drive cycles representative of specific percentiles of
the recorded real-world drive data is desired for future
simulation. Doing so will greatly speed computational time
by reducing the information of thousands of 24-hour or
longer drive cycles to a single ∼15-minute drive cycle that
can be quickly simulated. However, the complex interplay of
powertrain and drive cycle makes it impractical to create such
a set, as discussed below. However, we do find it possible to
design one drive cycle indicative of the average of all
computed vehicle record efficiencies, which then allows the
application of scaling factors from Figure 3 to estimate that of
a specific population percentile. Herein, we apply the NREL-
developed DRIVE [10] software package to synthesize this
single drive cycle.

DRIVE employs a deterministic multivariate hierarchical
clustering method to generate representative drive cycles
from source data. It first concatenates our 2,154 vehicle
records into a single “super” cycle, which is characterized for

more than 170 drive-cycle metrics. The tool then decomposes
the cycle into its component microtrips, which are
individually analyzed over the same set of operational
metrics. This set of statistics includes well-known metrics
such as average driving speed, stops per mile, and zero-speed
time as a percentage of cycle operation. Other specialized
metrics include kinetic intensity, aerodynamic speed, and
characteristic acceleration, which are used to characterize
energy consumption [6]. Afterwards, the individual
microtrips are grouped into clusters and ranked based on a set
of performance metrics. Upon ranking, the ideal microtrip
from each cluster is selected and concatenated to form a
representative cycle. This clustering process is iterated over
the number of clusters chosen for the data as well as the
performance metrics chosen for ranking. It is based on a
maximum number of clusters, which is calculated as the
product of the desired representative cycle duration, the
number of stops per mile for the “super” cycle, and the
average speed over the “super” cycle. As a final step in the
generation of a representative drive cycle, zero-speed time is
either added or removed from the final drive cycle output to
match the percentage found in the original data “super” cycle.

The resultant drive pattern is shown in Figure 10. It has an
average speed of 30.5 mph, an average positive acceleration
of 0.960 mph/s, and a kinetic intensity of 0.577 mi−1.
Simulation of this drive cycle in ADVISOR for all four
powertrains shows a good agreement of average predicted
vehicle efficiency when compared to that observed from the
simulation of all 2,154 vehicles, as shown in Table 2.
Accordingly, this drive cycle can be used to quickly compute
average vehicle efficiency, which can then be expanded to
represent different population percentile vehicle efficiencies
using the correction factors of Table 3 (computed from the
dataset used to prepare Figure 4).

Figure 10. Representative drive cycle produced from
2,154 vehicles using DRIVE



Table 2. Comparison of Average Predicted Vehicle
Efficiency Between Synthesized Drive Cycle and Vehicle

Record Simulations

Table 3. Scaling Factors

Optimal Drive-Cycle Characteristics
Creation of a suite of drive cycles representative of arbitrary
percentile drivers was deemed infeasible. This outcome is the
result of individual drivetrains being particularly well-suited
to specific drive-cycle characteristics. This point is illustrated
in Figure 11, where the relative efficiency of the simulated
CV and HEV are plotted in 4D space. In this plot, the 2,154
vehicle records are segmented into 13,622 trips and plotted
with marker x-y coordinates relative to cycle speed and
acceleration statistics, marker size relative to trip length, and
marker color relative to percentile energy consumption rate
per the specified powertrain.

In terms of cycle statistics (speed, acceleration, distance), the
CV and HEV plots represent the same 13,622 data points.
This “point cloud” alone reveals interesting information
concerning real-world drive data. We see that low-speed trips
(approximately less than 15 mph) coincide with short-
distance travel, and thus account for relatively small amounts
of energy consumption. As travel speed increases, we see a
tendency for trip distances to increase while acceleration
metrics decrease. The observed inverse relationship between
driving speed and acceleration can be linked to both
behavioral norms (lack of driver-requested high-acceleration
events during high speed travel) and technical realities
(inability of most vehicles to deliver high acceleration at high
speed).

Concerning relative energy consumption rates, we see that
the optimal drive cycle for our CV occupies the intersection

of high-speed and low-acceleration travel. The industry-
standard HWFET cycle is an exemplar of such a drive cycle,
yielding energy consumption rates close to the lower bound.
Alternatively, the HEV exhibits optimal energy consumption
rates when driven over low speed, low acceleration cycles
(near 20 mph, 0.5 mph/s). The differences in gradients
between these two maps can be primarily attributed to the
effects of regenerative braking made possible through electric
hybridization. By recouping energy traditionally lost during
braking events, our HEV is not as heavily penalized by the
stop-and-go patterns characteristic of low-speed travel.
Instead, the HEV achieves its highest fuel consumption
values over cycles with high speed/acceleration metrics,
presumably as a result of the aerodynamic, rolling, and
inertial losses of the classical road load equation.

Figure 11. CV and HEV efficiency gradients: marker
location indicates the average speed and acceleration of

each vehicle record; marker size indicates distance
traveled in each vehicle record; and marker color

indicates the relative energy consumption rate for each
record. The locations of standard test cycles in this 2D

space (including the synthesized cycle built using
DRIVE) are also indicated.



These maps illustrate the challenge of synthesizing drive
cycles capable of capturing arbitrary percentile energy
consumption rates for disparate powertrains and underscore
the utility of the synthesized drive cycle (presented in the
previous section) in its ability to capture mean energy
consumption rate regardless of powertrain configuration.

Relative Efficiency across Powertrains
Having highlighted the discrepancy between optimal drive-
cycle characteristics for our CV and HEV, we now examine
the relative efficiency of each drive cycle to understand how
vehicle efficiency translates across powertrains.

The data on CV and HEV efficiency from Figure 11 are
repurposed for Figure 12 with percentile HEV fuel rate
plotted against percentile CV fuel rate. This representation
underscores the discrepancy in optimal drive-cycle
characteristics between the simulated CV and HEV
powertrains. For example, drive cycles falling in the 60th

percentile fuel rate when simulated under a CV powertrain
result in HEV fuel rates between the 10th and 90th percentiles.

Figure 12. Comparison of HEV and CV relative fuel
consumption rate for 13,622 simulated drive cycles

Coloring the data by average trip speed provides insight
concerning the nature of this discrepancy. This added
dimension shows that high-speed trips achieve lower relative
vehicle efficiencies in an HEV when compared to a CV,
presumably as a result of the diminishing returns encountered
in an HEV in the absence of stop-and-go conditions
indicative of low-speed travel. Alternatively, medium-to-low
speed trips achieve high relative vehicle efficiency under an
HEV powertrain when compared to a CV. We note, however,
that a subset of very low-speed trips exhibits a high relative
fuel rate (low relative efficiency). The result is due to a large
percentage of vehicle idle time relative to the number of
miles traveled.

Figure 13. Comparison of BEV and HEV relative fuel
consumption rate for 13,622 simulated drive cycles

We take this opportunity to underscore the difference
between absolute and relative vehicle efficiency. The HEV
powertrain resulted in greater absolute vehicle efficiency than
the CV for each simulated trip. However, specific drive-cycle
characteristics are best suited to individual powertrains (e.g.,
high-speed travel in CVs and low-speed travel in HEVs)
resulting in a discontinuity in the comparison of relative
efficiency.

Fortunately, this discontinuity in relative efficiency appears
unique to comparisons involving the CV. Figure 13 shows a
comparison of the HEV and BEV relative efficiencies
exhibiting a strong linear relationship between percentile
rankings of drive cycles when simulated under distinct
powertrains. This linear correlation is representative of the
relationship between all combinations of the HEV, PHEV,
and BEV powertrains. The CV is believed to be the outlier in
this analysis due to its lack of regenerative braking, favoring
cycles where high average speed is presumably an indicator
of infrequent stop-and-go conditions.

CONCLUSIONS
In this study, we investigated the variation of driver
aggression to assess its variation within large, real-world
drive datasets, and quantify its effect on vehicle efficiency for
multiple vehicle types. We have found that aggression
variation between drivers can decrease fuel efficiency by
more than 50% or increase it by more than 20% from
average. Interestingly, across the population we investigated,
the normalized efficiency deviation from average as a
function of population percentile was found to be largely
insensitive to powertrain. However, the specific high-
efficiency drivers did vary across the CV, HEV, PHEV, and
BEV powertrains, implying that ideal driving behavior varies
with respect to powertrain.



Accordingly, the relation of efficiency predicted from real-
world drive data to that predicted by the industry-standard
HWFET, UDDS, LA92, and US06 drive cycles was not
consistent across powertrains, either. Thus, we applied
NREL's DRIVE tool to synthesize a drive cycle that is
capable of reproducing the average vehicle efficiency
predicted from our sampling of real-world drive data. Our
results showed that the predicted vehicle efficiency from
simulation of this drive cycle agrees with that of simulations
of real-world data to within 0.7% for the four vehicles (five
operational modes) addressed herein. Along with the supplied
scaling factors, this drive cycle is, therefore, capable of
accurately representing the total variation in vehicle
efficiency we have observed in the employed vehicle records.

It is important to note that none of the simulated drive cycles
account for the effects of grade, wind, large vehicle auxiliary
loads (e.g., heating, ventilation, and air-conditioning) or other
more complex effects. Accounting for such factors will be the
subject of future work.
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DEFINITIONS
AER - all-electric range
BEV - battery electric vehicle
CD - charge depleting
CS - charge sustaining
CV - conventional vehicle
HEV - hybrid electric vehicle
HWFET - Highway Fuel Economy Driving Schedule
LA92 - Air Resources Board Dynamometer Driving
Schedule
NREL - National Renewable Energy Laboratory
PHEV - plug-in hybrid electric vehicle
UDDS - Urban Dynamometer Driving Schedule
US06 - Supplemental Federal Test Procedure
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