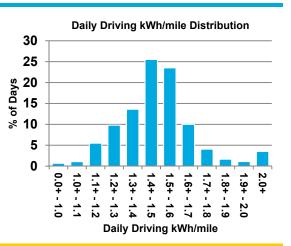
Smith Newton Vehicle Performance Evaluation - 3rd Quarter 2012

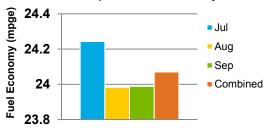
The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

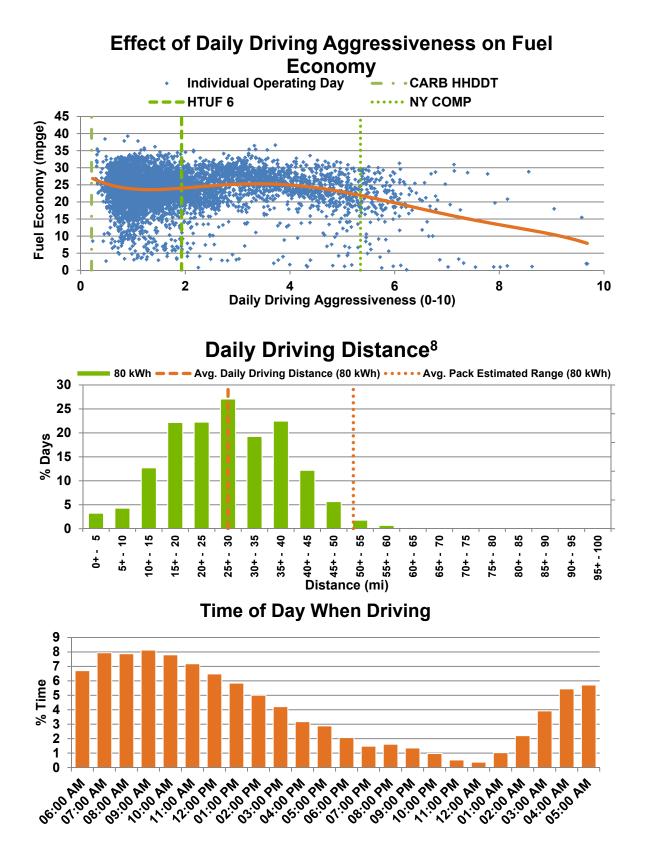

Number of vehicles:	219	Number of vehicle days driven:	9,425
Reporting period:	7/1/2012 to 9/30/2012	Number of operating cities:	63

Project Vehicle Specifications¹

· · · · · · · · · · · · · · · · · · ·				
Curb Weight	9,700-10,200 pounds	Electric Top Speed	50 mph	
Overall Length	268-368 inches	Battery Capacity	80 or 120 kWh	
Overall Width	87 inches	Battery Voltage	~ 350 V	
Overall Height	94-99 inches	Charging Standards	SAE J1772	
Peak Motor Power	134 kW	Transmission	Single Speed Reduction Gear	
Motor Location	Front, Behind Cab	Drive	Rear Wheel Drive	
Advertised Range ²	Up to 150 miles	Drag Coefficient	~0.5	
Seating	3	Wheelbase	153-220 in.	
Payload	12,324-16,200 pounds			

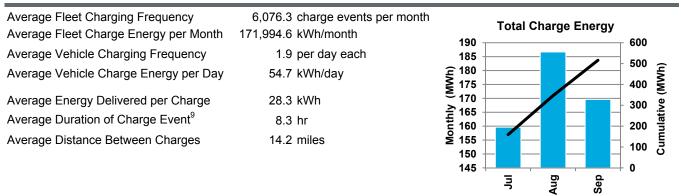
Trip Data

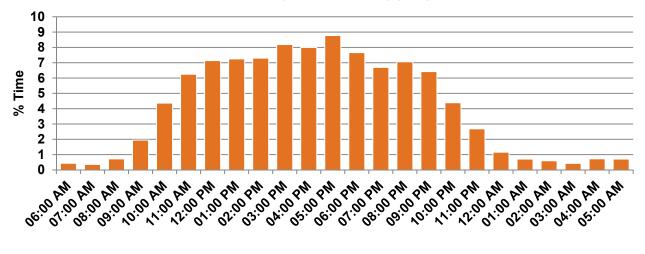

Overall Diesel Equivalent Fuel Economy	y ³ 24.1 mpge
Overall AC Energy ⁴	2,208.2 Wh/mi
Overall DC Electrical Energy Charged	1,987.4 Wh/mi
Overall DC Electrical Energy Discharge	d 1,562.1 Wh/mi
Driving DC Electrical Energy Consumpt	ion ⁵ 1,464.4 Wh/mi
Total Number of Charges	18,229.0
Total Charge Energy Delivered	515,983.7 kWh
Total Distance Traveled	259,632.6 miles
City Highway Distance ⁶	190,116.7 69,515.8 miles
City Highway Distance ⁶	73.2 26.8 %

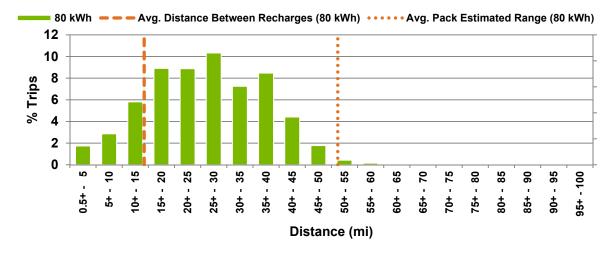


Route Information

Average Distance Traveled Per Day	27.5 miles
Median Daily Driving Aggressiveness ⁷	1.1 [0-10]
Average Number of Stops Per Day Per Mile	51.2 2.4
Average Brake (Regen) Events	11.6 per mile
Average Maximum Acceleration	0.3 g
Average Daily Maximum Driving Speed	48.4 mph
Average Daily Driving Speed	21.5 mph


Diesel Equivalent Fuel Economy


Energy — Cumulative


Plug-in Charging

Time of Day When Charging 7 6 5 % Time 4 3 2 1 0 1.00 AM 07:00 AM 10:00 AM 12:00 AM 02:00 AM 08:00 AM 09:00 AM 06:00 AM 09.00.00.00.00.00.00 09.00.00.00.00.00.00 VI: 04:00 1:00 00:00 00 00:000

Time of Day When Plugging In

Distance Between Recharges^{8,10}

1. Vehicle specifications provided by Smith Electric Vehicles.

2. Actual electric range will vary based on drive cycle and vehicle configuration.

3. Miles per gallon diesel equivalent (mpge) is calculated based on a 128,450 BTU/gallon energy density provided by U.S. Department of Energy's Alternative Fuels Data Center. Using this information diesel fuel mpge equates to 37.6 kWh.

4. Assumed charger efficiency of 90%.

5. Total in-motion energy consumption averaged per mile. These figures cover multiple vehicle configurations, in multiple cities, with multiple environments, topologies and load profiles. These numbers are averages of a diverse fleet of vehicles and can not be used to predict the efficiency of any particular Smith vehicle.

6. City and highway distance classification is distinguished by a 35-mph trip speed limit. Trips classified as "highway" achieved a maximum driving speed in excess of 35 mph while trips classified as "city" do not.

7. Daily driving aggressiveness is kinetic intensity scaled by a factor of two. Kinetic intensity measures hybrid advantage. For more information on kinetic intensity please refer to the SAE paper in which it is defined (O'Keefe, M., Simpson, A., Kelly, K., and Pedersen, D., "Duty Cycle Characterization and Evaluation Towards Heavy Hybrid Vehicle Applications," SAE Technical Paper 2007-01-0302, 2007, doi:10.4271/2007-01-0302).

8. Average pack estimated range calculated based on battery energy storage capacity (80 or 120 kWh) and average overall DC electrical energy consumption. Data is being collected for both 80 and 120 kWh battery capacity vehicle configurations. Previous data collected from 120 kWh configurations are unusable.

9. Current charge time information is calculated based on time spent while energy is being delivered to battery.

10. All recharges occurring with less than 0.5 mile traveled were excluded from the chart for visual clarity.

Energy Efficiency & Renewable Energy For more information, visit: vehicles.energy.gov

DOE/GO-102013-3916 • March 2013

Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste.

Prepared by the National Renewable Energy Laboratory (NREL), a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; NREL is operated by the Alliance for Sustainable Energy, LLC.