

Metallic Inks for Solar Cells

Cooperative Research and Development Final Report

CRADA Number: CRD-10-370

NREL Technical Contact: Maikel van Hest

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

CRADA Report NREL/TP-7A10-57796 April 2013

Contract No. DE-AC36-08GO28308

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

U.S. Department of Energy Office of Scientific and Technical Information

P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: <u>mailto:reports@adonis.osti.gov</u>

Available for sale to the public, in paper, from:

U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: orders@ntis.fedworld.gov online ordering: http://www.ntis.gov/help/ordermethods.aspx

Cover Photos: (left to right) PIX 16416, PIX 17423, PIX 16560, PIX 17613, PIX 17436, PIX 17721 Printed on paper containing at least 50% wastepaper, including 10% post consumer waste.

Cooperative Research and Development Final Report

In accordance with Requirements set forth in Article XI.A(3) of the CRADA document, this document is the final CRADA report, including a list of Subject Inventions, to be forwarded to the Office of Science and Technical Information as part of the commitment to the public to demonstrate results of federally funded research.

CRADA Number:	CRD-10-370	
CRADA Title:	Metallic Inks for Solar Cells	

<u>CRADA Title</u>: Metallic Inks for Solar Ce

<u>Parties to the Agreement</u>: Applied Nanotech, Inc.

Joint Work Statement Funding Table showing DOE commitment:

Estimated Costs	NREL Shared Resources	
Year 1	\$	00.00
Year 2	\$	00.00
Year 3	\$	00.00
TOTALS	\$	00.00

Abstract of CRADA work:

This document describes the statement of work for National Renewable Energy Laboratory (NREL) as a subcontractor for Applied Nanotech, Inc. (ANI) for the Phase II SBIR contract with the Department of Energy to build silicon solar cells using non-contact printed, nanoparticle-based metallic inks. The conductive inks are based upon ANI's proprietary method for nanoparticle dispersion. The primary inks under development are aluminum for silicon solar cell back plane contacts and copper for top interdigitated contacts.

The current direction of silicon solar cell technology is to use thinner silicon wafers. The reduction in wafer thickness reduces overall material usage and can increase efficiency. These thin silicon wafers are often very brittle and normal methods used for conductive feed line application, such as screen-printing, are detrimental. The Phase II program will be focused on materials development for metallic inks that can be applied to a silicon solar cell using non-contact methods. Uniform BSF (Back Surface Field) formation will be obtained by optimizing ink formulation and curing conditions to improve cell efficiency.

Summary of Research Results:

The research has resulted in the optimization of ink for Aluminum back contacts. These inks have been tested using various contact configuration patterns. Tests were performed on various silicon solar cell materials. The metallization deposited using inks showed cell efficiencies similar to cells with screen printed contacts.

Subject Inventions Listing: N/A

Report Date:2/15/13Responsible Technical Contact at Alliance/NREL:Maikel van HestThis document contains NO confidential, protectable, or proprietary information.