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Abstract—The total inertia stored in all rotating masses that 

are connected to power systems, such as synchronous generations 
and induction motors, is an essential force that keeps the system 
stable after disturbances. Typically, inertias respond to 
disturbances voluntarily, without any control actions; however, 
several types of renewable generation, particularly those with 
power electronic interfaces, have an inertial response governed 
by a control function. To ensure bulk power system stability, 
there is a need to estimate the equivalent inertia available from a 
renewable generation plant. An equivalent inertia constant 
analogous to that of conventional rotating machines can be used 
to provide a readily understandable metric. 

This paper explores a method that utilizes synchrophasor 
measurements to estimate the equivalent inertia that a wind plant 
provides to a system. 
 

Index Terms—inertia, inertia constant, phasor measurement 
unit 

I.  INTRODUCTION 
nertia decides a machine’s initial response after a mismatch 
occurs between the electrical torque and the mechanical 
torque. In the appearance of real power that has been 

released from kinetic energy, the system frequency deviation 
will be slowed and the initial frequency dip will be lifted. The 
characteristics of inertial response can be described by the 
swing equation (1), which is directly derived from the Newton 
Law of Motion on rotating objects [1]. 
 

2𝐻
𝜔0

𝜕2∆𝛿
𝜕𝑡2

= 𝑃𝑀 − 𝑃𝐸 − 𝐾𝐷∆𝜔 

where: 
𝐻    inertia constant 
𝜔0   rated speed 
𝛿    rotor angle 
𝑃𝑀   mechanical power 
𝑃𝐸   electrical power 
 

The inertia constant H is typically used as an index to describe 
the amount of kinetic energy that can be released by each 
individual machine; however, this concept faces challenges 
from different types of renewable generation, such as wind. 
The majority of wind turbines deployed in the U.S. power 
system are either partially synchronized with the grid (doubly-
fed) or completely desynchronized (full converter). Their 
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inertial responses are realized by control functions of the 
power electronic devices (such as inverters) that connect the 
wind generators to the grid. Thus, for most wind plants, the 
inertia constant cannot be calculated directly using the swing 
equation. Furthermore, wind plants typically consist of tens or 
hundreds of wind turbines. Depending on wind conditions, the 
number of turbines online at a given time can be completely 
random. It is more important to learn the aggregate inertia of a 
wind plant regarding its point of interconnection than to 
accurately calculate the inertia of each individual turbine. 
Therefore, it is beneficial to compare wind to other 
generations to find an equivalent inertia constant for a wind 
plant with respect to the point of interconnection.  
 The increasing wind penetration to the power grid is raising 
concerns about the decline of the inertial response within 
interconnections [1–2]. Thus, for operators to maintain the 
minimum level of frequency stability with unit commitments, 
it becomes more critical to be able to estimate the inertial 
response that wind plants can provide to the grid. 

Inertial response from synchronous generation provides real 
power support to the grid immediately after a disturbance. 
Most converter-based wind generators can achieve same 
functionality by utilizing wind turbine inertial controls [3–6]. 
The fast inertial control functions are imposed to fast power 
electronics to take advantage of the inertia in the rotor and 
temporally convert the energy into real power output. Thus, 
those control functions can be seen as virtual inertias of wind 
generators.  

Because of the correlation between the virtual inertias of the 
wind generators and the real inertias of the synchronous 
machines, it is feasible to develop a method that addresses 
inertias across conventional generators and wind generators. 
 Multiple research efforts are focused on developing 
measurement-based inertia-estimation methods. Some of these 
concentrate on total inertia of the entire interconnection 
following major frequency events [7–10]. These methods 
require measurements at each bus, and they assume the 
knowledge of the total MW change in the system. The study 
that focused on estimating wind generator inertias used the 
physical parameter of a single turbine, and assumed the 
knowledge of the turbines that are online, to match the wind 
farm performance with synchronous generators [11]. This 
method can be less practical because a wind plant can consist 
of different types of turbines and the number of turbines 
online can vary. 

In Section II, this paper develops mathematical algorithms 
to calculate inertias based on phasor measurement units 
(PMUs). Section III presents a variety of case studies, 
including a one-machine system simulation, a large 
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interconnection simulation, and by PMU data. Section IV 
presents conclusions.  

II.  MATHEMATICAL METHODS 
The swing equation defines the inertial response of a 

rotating machine or a group of machines to a power system 
disturbance.  

 
2𝐻
𝜔0

𝜕2∆𝛿
𝜕𝑡2

= 𝑃𝑀 − 𝑃𝐸 − 𝐾𝐷∆𝜔 

 
The rotor angle is an angular displacement of the rotor, so that 
by definition, the angular speed of the rotor equals the 
derivative of the rotor angle.  

 

𝜔 =
𝜕𝛿
𝜕𝑡

 
 
⇒  ∆𝜔 =

𝜕∆𝛿
𝜕𝑡

 
 
The rotor angle 𝛿  cannot be directly measured by 

synchrophasor measurements; however, the bus voltage angle 
𝜃 follows the rotor angle closely. 

The equation can be rewritten as 
 

2𝐻
𝜔0

𝜕2∆𝜃
𝜕𝑡2

= 𝑃𝑀 − 𝑃𝐸 − 𝐾𝐷
𝜕∆𝜃
𝜕𝑡

 

 
Obtaining mechanical power from real-time measurements 

could be difficult, especially when considering the aggregate 
mechanical power from each turbine of a wind farm. A further 
simplification can be made in the equation by assuming that 
the mechanical power input to the generator has a much 
slower time constant than the electrical power. Thus, the 
assumption that the mechanical power equals the 
predisturbance electrical power is relatively safe for a short 
timescale. During the initial swing of any disturbance, when 
the primary frequency controls are typically not yet active, it is 
safe to assume that the mechanical power output by the 
generator remains constant.  

Thus, the swing equation is finally developed into 

2𝐻
𝜔0

𝜕2∆𝜃(𝑡)
𝜕𝑡2

= 𝑃𝐸0 − 𝑃𝐸(𝑡) − 𝐾𝐷
𝜕∆𝜃(𝑡)
𝜕𝑡

 

 
rewritten as 

 

𝐻
2
𝜔0

𝜕2∆𝜃(𝑡)
𝜕𝑡2

+ 𝐾𝐷
𝜕∆𝜃(𝑡)
𝜕𝑡

= 𝑃𝐸0 − 𝑃𝐸(𝑡)  

 
in that 

 
𝜕∆𝜃(𝑡)
𝜕𝑡

= ∆
𝜕𝜃(𝑡)
𝜕𝑡

=
𝜕𝜃(𝑡 + 1)

𝜕𝑡
−
𝜕𝜃(𝑡)
𝜕𝑡

 
 

 
𝜕2∆𝜃(𝑡)
𝜕𝑡2

= ∆
𝜕2𝜃(𝑡)
𝜕𝑡

=
𝜕2𝜃(𝑡 + 1)

𝜕𝑡
−
𝜕2𝜃(𝑡)
𝜕𝑡

 
 

 Assuming the damping factor 𝐾𝐷  is zero during the short 
time window after a disturbance, the equation can be rewritten 
as 

𝐻
2
𝜔0

 �
𝜕2𝜃(𝑡 + 1)

𝜕𝑡
−
𝜕2𝜃(𝑡)
𝜕𝑡

� = 𝑃𝐸0 − 𝑃𝐸(𝑡) (1) 

 
Because the final goal of this development is to facilitate the 
discrete PMUs with a fairly small time interval, the equations 
should be represented in a discrete-time domain.  
From the fundamental calculus, if the time interval 𝑇𝑠 close  
to zero, the following equations stand: 
 

𝜕𝑦(𝑛)
𝜕𝑡

=
𝑦(𝑛 + 1) − 𝑦(𝑛)

𝑇𝑠
 

 
𝜕2𝑦(𝑛)
𝜕𝑡2

=
𝑦(𝑛 + 2) − 2𝑦(𝑛 + 1) + 𝑦(𝑛)

𝑇𝑠2
 

 
The time interval between each PMU point is very small, and 
equation (1) can be expressed as: 
 

𝐻
2
𝜔0

 �
𝜃(𝑛 + 3) − 3𝜃(𝑛 + 2) + 3𝜃(𝑛 + 1) − 𝜃(𝑛)

𝑇𝑠2
� 

 
= 𝑃𝐸0 − 𝑃𝐸(𝑛) 
 

In summary, this method can utilize the discrete PMUs (bus 
angles and real power) to estimate the generator inertia in a 
really short time window after a disturbance. For example, in 
case of loss of generation, as shown in Figure 1, the actual 
first angular swing lasts for a very short time period after the 
disturbance. Using the measurements prior to a disturbance 
and all the measurements during the first swing time window, 
inertia can be estimated in real time. 

The online implementation of this method needs two 
preexisting conditions: (1) detection of disturbances and (2) 
detection of the peak (bottom) of the first angular swing [13–
15]. The estimation of inertial response can be made using the 
data in between the start of a disturbance and the peak 
(bottom) of the first angular swing. However, for some fast 
events, the first swing can be short and the estimation 
accuracy suffers; thus, the actual calculation window can be 
expanded to the second or third swing. The assumptions of 
implementing this algorithm are still valid because the time 
window is still very small. 
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Figure 1 Time window for inertial estimation 

As mentioned, most wind generation is decoupled from the 
grid so that the spinning mass would not provide any direct 
inertial energy to the grid when the electric torque suffers a 
sudden change, thus a single turbine’s mechanical movement 
doesn’t really follow the definition of the swing equation after 
disturbances.  

 However, most contemporary wind turbine controllers are 
capable of providing a boost of real power to the grid after 
under-frequency disturbances. Thus, using the bus angle and 
the real power measured at the wind power plant’s point of 
interconnection, a “virtual” inertia of a wind plant can be 
calculated by the proposed algorithm. 

 To quantify the equivalent inertias of wind power plants, 
this algorithm essentially characterizes the energy that wind 
power plants provide to support the grid frequency right after 
disturbances to a similar format as that of conventional 
generators’ inertias. 

III.  CASE STUDIES 
This section presents the results of the proposed method 

tested in several cases that simulated small-scale to large-scale 
power systems, as well as by PMU data. All the simulations 
were performed using General Electric’s (GE) Positive 
Sequence Load Flow (PSLF) tool. For each test, the proposed 
method was first applied to conventional generators to decide 
the estimation accuracy, and then was used to decide the 
virtual inertias of wind plants in the same testing system to 
associate the wind virtual inertia with the system frequency 
response that can be driven by the same amount of 
conventional inertia.  

A.  Two-Machine Infinite Bus System 
The two-machine system used in this study is described in 

Figure 2. The generator Gen 2 was tripped offline 5 seconds 
into the dynamic simulation to evoke an inertial response of 
generator Gen 1. First, Gen 1 used synchronous generator 
dynamic models. The governor control function was disabled 
so that the test illustrated only the impact of inertia on the 
system frequency response. A group of the inertia constant H 
values were assigned to the Gen 1 dynamic model and the 
simulation was repeated for each H value. The measurements 
(real power and bus angle) at the generator (Gen 1) bus were 
recorded for each test.  

 
Figure 2 Two-machine infinite bus system diagram 

Applying the algorithm to each data set when different 
inertia constant values were assigned to Gen 1, the estimation 
results are listed in Table 1.  

The proposed algorithm was able to follow the trend of the 
inertial change at each case, and the average estimation error 
from the five testing cases was 0.178. Figure 3 shows the 
estimation error for each case.  

Table 1  Inertial Estimation Results for Conventional 
Generation 

H (Input) 2 4 6 8 10 

H (Calc) 2.33 3.84 5.99 7.92 9.67 
 

 
Figure 3 Inertial estimation errors 

Replacing the Gen 1 dynamic model with GE Type 3 wind 
turbine, generator, and exciter models, the simulation was 
conducted with the same generation trip scenario, the GE wind 
turbine control model (WindINERTIA, which can emulate 
inertial response) was enabled.  
 Unlike the conventional generators, whose exact inertia 
constant can be known from its model parameters, the wind 
generator inertias can’t be assigned simply to certain 
parameters. The correlation has to be drawn by comparing the 
system frequency response of the conventional generator and 
the wind generator.  

Figure 4 shows a comparison of the system frequency 
response (measured at the Gen 1 bus) between a synchronous 
generator and a wind generator from the same system. The 
blue line represents the frequency response when Gen 1 was a 
synchronous generator with inertia constant H=2, and the red 
line represents the frequency response when Gen 1 was a wind 
generator. The frequency responses were closely aligned, 
which indicates a similar inertial support that both generators 
provided to the system. Thus, the wind generator inertia 
constant H can be approximated to 2.  
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Applying the algorithm to the wind generator simulation 
measurement data, the equivalent inertia constant was 
calculated as 1.832. Compare with the desired value 2, the 
error is 0.178. 

 
Figure 4 Frequency response comparison between a 

synchronous generator and a wind generator 

B.  Interconnection-Wide System 
 

The one-machine system can provide a benchmark for the 
algorithm testing. However, to consider the interaction of the 
generators in an interconnected system as in reality, a large-
scale model—such as the Western Electricity Coordinating 
Council (WECC) system model—was used to validate the 
algorithm. As in Section A, this test was conducted by 
dropping a 440-MW generator, and measurements from 
randomly selected synchronous generator buses were 
recorded.  

 
Figure 5 Frequency responses at five synchronous generator 

buses 

 The primary movers of these generators varied from steam 
turbine to hydro turbine, so the sample group was not uniform. 

The frequency response at each of the selected generator bus 
is displayed in Figure 5. The inertia constants of the selected 
generators were known so that the estimation accuracy could 
be decided by comparing them with the calculation results. 

Table 2 presents the estimation results. In general, the 
algorithm could still recognize different inertias at random 
selected locations, with an average error of 0.215. The largest 
deviation was 0.56 at Bus 4. The estimation errors are shown 
in Figure 6. 

Table 2  Inertial Estimation Results at Five Randomly Selected 
Buses for Conventional Generators 

 
Bus H (Input) H (Calc) 

1 2.3 2.326217 

2 2.882 2.679543 

3 6.059 5.778752 

4 5.263 5.829989 

5 2.13 2.131842 
 

 
Figure 6 Inertial estimation errors 

The second part of the test was to estimate the wind generator 
inertias at randomly selected locations in the WECC system.  

 
Figure 7 Frequency responses at six wind generator buses 

 In Section A, a type of wind generator that considered 
having a virtual inertia constant approximate to 2 was 
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identified. The same GE Type 3 models were added at some 
random buses in the WECC system, and their responses to the 
same 440-MW generator trip disturbance were recorded. 
Figure 7 shows the frequency measured at the selected wind 
generator buses. The shapes of the frequency traces are 
different than those in Figure 5 because all the wind turbines 
in this case were providing inertial responses. That shifted the 
nadir as well as the initial slope. 

  Table 3  Inertial Estimation Results at Six Randomly 
Selected Buses for Wind Generators 

Bus H Input H (Calc) 

1 2 2.253811 

2 2 1.843323 

3 2 1.843323 

4 2 1.505539 

5 2 2.287092 

6 2 2.266912 
 

Because those wind generators were of the same size and 
used the same models, they all had virtual inertia constants 
approximate to 2. 

The calculation results are listed in Table 3. Compared to 
the results with the inertia constant 2, the average error of the 
estimation was 0.269, as displayed in Figure 8. 

 
Figure 8 Inertial estimation errors 

C.  PMU Data Testing 
 
The ultimate goal of this method was to utilize PMUs for 

inertial estimation. It is essential to find a PMU database with 
wind generator and synchronous generator recordings in the 
same interconnection. 

The Oklahoma Gas and Electric (OGE) Energy 
Corporation is among the utilities in United States that has 
required all their wind power plants to install PMUs at their 
points of interconnection. Additional PMUs are also installed 
at some conventional generator locations. The nondisclosure 
agreement between OGE Energy Corp. and the National 
Renewable Energy Laboratory (NREL) allows the authors to 
test the algorithm on real system PMU data. 

A frequency event that was picked up by the PMUs was 
selected for testing. As shown in Figure 9, four PMUs at 
conventional generator buses were selected. Their actual 
inertia constants could be derived from the system planning 

model that was also shared with NREL researchers by OGE 
Energy Corp. under the same nondisclosure agreement. 
Because there was only one generator at each of the four buses 
in the system model, if the measurements indicated they were 
in service, the online inertia should have been very close to the 
inertia constant that had been assigned to the model.  

 
Figure 9 Frequency responses at four buses from PMUs  

The actual inertia constants and the estimated results are 
listed in Table 4. The average estimation error was 0.105. The 
errors are illustrated by Figure 10. 

Table 4  Inertial Estimation Results 

Bus H Input H Calc 

1 2.13 1.9314 

2 2.41 2.5095 

3 2.417 2.5195 

4 2.38 2.4027 

 
Figure 10  Frequency response at four buses from PMUs  

 Similarly, the PMU installed at a wind power plant also 
picked up the frequency event, as shown in Figure 11. 
However, applying the algorithm to the wind plant PMU data, 
the result was close to 0, which indicated that under the 
disturbance, the wind plant didn’t provide any immediate real 
power support to the grid; thus, there was no virtual inertial 
response from the wind power plant. 
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Figure 11  Frequency response at a wind generator bus 

IV.  CONCLUSION 
This paper explored a mathematical algorithm to estimate 

generator inertias through PMUs. The algorithm was 
developed based on the swing equation. However, because it 
depends solely on real power injection and bus angle deviation 
at a generator bus, the inertias from different resources— 
weather that of a synchronous generator or the virtual inertia 
of a wind power plant—can be estimated at the same domain. 
Tests were done on different scale system simulations as well 
as PMU data. The results illustrated accurate performance of 
this algorithm.  

The future work of this study should be focus on improving 
the algorithm accuracy, for example, finding out the 
correlation between event location and estimation accuracy. 
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