Thermal Performance and Reliability of Bonded Interfaces for Power Electronics Packaging Applications

ASTR 2011 Workshop

Douglas DeVoto
Douglas.DeVoto@nrel.gov
Phone: 303-275-4256

Friday, September 30, 2011

NREL/PR-5400-52468
Outline

• Program Overview
• Background and Objectives
• Experimental Approach and Results
• Modeling Approach and Results
• Summary and Future Direction
Advanced Power Electronics and Electric Motors (APEEM) Research Targets, Challenges, and Research Areas

Reduce Dependence on Oil
Via Electrification of Vehicle Drives

Requirements: 55 kW peak for 18 sec; 30 kW continuous; 15-year life

Technical Targets

<table>
<thead>
<tr>
<th>Year</th>
<th>Traction Drive System</th>
<th>Power Electronics</th>
<th>Motors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>($/kW) (kW/kg) (kW/l)</td>
<td>($/kW) (kW/kg) (kW/l)</td>
<td>($/kW) (kW/kg) (kW/l)</td>
</tr>
<tr>
<td>2010</td>
<td>19 1.06 2.6</td>
<td>7.9 10.8 8.7</td>
<td>11.1 1.2 3.7</td>
</tr>
<tr>
<td>2015</td>
<td>12 1.2 3.5</td>
<td>5 12 12</td>
<td>7 1.3 5</td>
</tr>
<tr>
<td>2020</td>
<td>8 1.4 4</td>
<td>3.3 14.1 13.4</td>
<td>4.7 1.6 5.7</td>
</tr>
</tbody>
</table>

Challenges

- Reduce Dependence on Oil
- Via Electrification of Vehicle Drives

Research Areas

- **Traction Drive System**
 - Benchmarking technologies
 - Innovative system designs

- **Power Electronics**
 - Innovative topologies
 - Temperature-tolerant devices
 - Packaging
 - Capacitors
 - Vehicle charging

- **Electric Machines**
 - Permanent magnet (PM) motors
 - Magnetic materials
 - High-performance non-PM motors
 - New materials

- **PEEM Thermal Management**
 - Thermal system integration
 - Heat transfer technologies
 - Thermal stress and reliability
NREL APEEM Research Focus Areas

Advanced Heat Transfer
- Enable increased power density at lower cost

Thermal Systems Integration
- Achieve technology integration at a lower system cost

Thermal Stress and Reliability
- Improve reliability of new technologies

Credit: Mark Mihalic, NREL
Credit: Ken Kelly, NREL
Background

- Power electronics are essential in an electric vehicle drive train for controlling the output of the electric motor
- Excessive temperature (>150°C for silicon [Si] devices) can degrade the performance, life, and reliability of power electronics components
- Interfaces in the package can pose a major bottleneck to heat removal
- Conventional thermal interface materials (TIMs) do not meet thermal performance and reliability targets—the industry trend is towards bonded interface materials (BIMs)
- Bonded interfaces, such as solder, degrade at higher temperatures and are prone to thermomechanical failure under large temperature cycling.

Credit: Mark Mihalic, NREL
Objectives

• **Overall Objective**
 - Investigate thermal performance and reliability of novel bonded interface materials (such as sintered silver and thermoplastics with embedded carbon fibers) for power electronics applications to meet the following specific objectives:
 - Thermal resistance of 5 mm2K/W
 - Thermal resistance maintenance of 5 mm2K/W after 2,000 thermal cycles from -40°C to 150°C.

• **Benefits**
 - High-performance, reliable, low-cost bonded interfaces enable:
 - Compact, light-weight, low-cost packaging
 - High-temperature coolant and/or air cooling.
Failure Mechanisms

Bonded Interface Materials
- Voids
- Cohesive Fracture
- Adhesive Fracture

Credit: G.Q. Lu, Virginia Tech

Direct-Bond-Copper (DBC)
- Aluminum Nitride (AlN) Cracks
- Copper (Cu) to AlN Delamination

Credit: Doug DeVoto, NREL (all remaining photos)
NREL Reliability Capabilities

Thermal Cycling

- Graph: Temperature (°C) vs. Time (minutes)
- Equipment: Thermal cycling chamber

Ceramic Electrical Failure (High-potential [hi-pot] tester)

- Equipment: High voltage tester
- Images: 0 Cycles and 40 Cycles

Non-Destructive Imaging (C-mode scanning acoustic microscope [C-SAM])

- Equipment: C-SAM machine
- Images: 0 Cycles and 40 Cycles

Thermal Resistance (ASTM stand)

- Equipment: ASTM stand

Sample Synthesis (Hot press)

- Equipment: Hot press machine

Sample Deformation (Laser profilometer)

- Equipment: Laser profilometer

Finite Element Analysis (FEA) Modeling

- Diagram: FEA model

Credit: Doug DeVoto, NREL (all photos)
Sample Synthesis

- Synthesis of samples using stencil printer and hot press

Thermal Testing/Characterization

- Cycling of samples in a thermal shock chamber
- Characterization of samples via steady-state thermal resistance tester, hipot tester, C-SAM, and X-ray imaging

BIM Mechanical Characterization

- Shear tests to extract mechanical characteristics of BIMs
- Extraction of Anand model parameters

Reliability Calculation

- Strain energy density per cycle
- Number of cycles to crack initiation/delamination
- Fatigue life prediction

Experimental Approach

Numerical Approach - FEA/Calculations

NATIONAL RENEWABLE ENERGY LABORATORY
Sample Assembly

- Five samples of each BIM (between DBC/copper baseplate) were synthesized for testing and included:
 - Silver coating on the DBC and baseplate
 - DBC base on an AlN substrate
 - An interface between 50.8 mm x 50.8 mm footprint
- Samples followed manufacturer-specified reflow profiles, and bonds were inspected for quality.

Table: Solder and Adhesive Types

<table>
<thead>
<tr>
<th>Material</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solder</td>
<td>Sn63Pb37</td>
<td>Baseline (lead-based solder)</td>
</tr>
<tr>
<td>Solder</td>
<td>SAC305</td>
<td>Lead-free solder</td>
</tr>
<tr>
<td>Sintered silver</td>
<td>Heraeus C1075A</td>
<td>Based on micron-size silver particles</td>
</tr>
<tr>
<td>Sintered silver</td>
<td>nanoTach®</td>
<td>Based on nanoscale silver particles</td>
</tr>
<tr>
<td>Adhesive</td>
<td>Btech HM-2</td>
<td>Thermoplastic (polyamide) film with embedded carbon fibers</td>
</tr>
</tbody>
</table>

Credit: Doug DeVoto, NREL
Thermal Resistance Measurements

- Each sample was tested for thermal resistance before the temperature cycling was initiated.
- Resistance values included package resistance and two layers of 25µm Dow TC 5022 interfacing between a sample and the test stand blocks.

Test Resistance before Cycling

*DBC of samples 2 and 5 delaminated from baseplate after ASTM test.

Credit: Doug DeVoto, NREL
Thermal Cycling

- **Cycle Profile**
 - Thermal extremes from -40°C to 150°C
 - Ramp rate of 10°C/minute, with a dwell/soak time of 10 minutes
 - Adherence to JEDEC Standard 22-A104D for temperature cycling.
Bonded Interface Materials Testing

- **Failure Mechanisms:**
 - BIM, including voids and adhesive/cohesive fractures
 - DBC, including Cu-to-AIN delamination and AIN cracks.

<table>
<thead>
<tr>
<th>Material</th>
<th>0 cycles</th>
<th>20 cycles</th>
<th>40 cycles</th>
<th>100 cycles</th>
<th>200 cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>PbSn</td>
<td>2%–10% voiding</td>
<td></td>
<td></td>
<td>DBC delamination</td>
<td>Additional DBC delamination</td>
</tr>
<tr>
<td>Tin-silver-copper (Sn-Ag-Cu or SAC)</td>
<td>19%–33% voiding</td>
<td>Minor DBC delamination</td>
<td></td>
<td>-</td>
<td>Additional DBC delamination</td>
</tr>
<tr>
<td>Silver (Ag) Sinter (µm)</td>
<td>Poor adhesion, AIN cracking</td>
<td>Minor DBC delamination</td>
<td>Additional DBC delamination</td>
<td>Testing ended</td>
<td></td>
</tr>
<tr>
<td>Ag Sinter (nm)</td>
<td>BIM cohesive fracturing in two of five samples</td>
<td>BIM fracturing in three remaining samples</td>
<td>Testing ended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Btech HM-2</td>
<td>Successful bond</td>
<td>Bond quality maintained</td>
<td></td>
<td>Excessive DBC delamination</td>
<td>Testing ended</td>
</tr>
</tbody>
</table>

PbSn

- Kester Sn63/Pb37 256HA
 - Printing
 - A 50.8 µm (2-mil) stainless-steel stencil was raised to 101.6 µm (4 mil) with Kapton tape and placed over the baseplate. The stencil pattern has 9 mm x 9 mm square openings with 1 mm separations. The solder material was applied to the top of the stencil and a squeegee was used to ensure uniform application.
 - Reflow
 - The assembled sample passed through a Sikama reflow oven following the recommended profile
 - Initial Results
 - Low percentage of voiding (2%–10%), solder thickness of 50 to 75 µm
 - Cycling Results
 - Two samples show large liftoff of the top Cu layer, with the remaining three samples revealing minor liftoff.

The top Cu layer delaminating from AlN is shown after 100 cycles (left) and 200 cycles (right).

Credit: Doug DeVoto, NREL (all photos)
Ag Sinter (µm)

• Heraeus C1075A (silver conductor paste)
 – Printing
 o Two layers of paste were applied with a 50.8 µm stencil, and each layer was dried after application at 80°C for 30 minutes
 – Sintering
 o Binder was burned off for 2 hours at 250°C, and then the assembly was heated to 280°C and underwent 30 MPa of pressure for 30 minutes
 – Initial Results
 o High-bonding temperatures caused cracking within the AlN layer and poor adhesion at the edges was revealed in the C-SAM images
 – Cycling Results
 o Together, top Cu and AlN warp and delaminate from the lower Cu layer. Cycling of samples will not continue.

Credit: Doug DeVoto, NREL (all photos)
Thermally Conductive Adhesive Film

- Btech HM-2 (Carbon Fibers within Polymer Matrix)
 - Bonding
 - HM-2 was cut to the baseplate dimensions. The sample assembly was placed in the hot press and raised to 190°C, and then 0.689 MPa (100 psi) of pressure was applied.
 - Initial Results
 - C-SAM images showed less contrast with thermoplastics, but uniform bonds were obtained.
 - Cycling Results
 - After 100 cycles, excessive DBC delaminations were present. Delaminations occurred both between the AlN and lower Cu as well as the AlN and top Cu.
BIM Mechanical Characterization

- Shear testing fixture was designed for BIM specimens. The fixture will allow for sample testing at various strain rates and temperatures.
- Script developed to derive Anand viscoplastic parameters from strain rate test data. This will allow the behavior of new solder and sinter materials to be modeled in FEA simulations.
- Template established for performing FEA simulations of the sample geometry to determine the strain energy density per thermal cycle. This will be used as a fatigue-life indicator.
FEA Modeling

Parameters

- Reflow temperature = 125°C
- Room temperature = 22°C
- Ramp rate = 10°C/minute

Anand’s viscoplastic material model for the solder/sintered material

Temperature-dependent material properties for Cu and AlN

Courtesy: Andreas Vlahinos, AES (all graphics)
Stress Distribution

- Equivalent stress distribution in the upper/top and middle layer of the bonded joint
- Stresses are higher in the layer adjoining the DBC and higher in the corner regions.

Courtesy: Andreas Vlahinos, AES (all graphics)
Plastic Work Density Distribution

- Plastic work density distribution in the bonded joint region
- Work density higher in the corner regions—failures likely to originate here
- Plastic work density/strain energy density versus cycles-to-failure correlation is the new contribution of this effort.

Quarter Symmetry Model

Courtesy: Andreas Vlahinos, AES (all graphics)
Collaborations

<table>
<thead>
<tr>
<th>Collaborator</th>
<th>Nature of Interaction/Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical and Electronics Technical Team, GM, GM, Delphi</td>
<td>• Technical guidance</td>
</tr>
<tr>
<td>Oak Ridge National Laboratory</td>
<td>• Packaging</td>
</tr>
<tr>
<td>National Institute of Standards and Technology</td>
<td>• Electrothermal modeling of power modules</td>
</tr>
<tr>
<td>Virginia Tech</td>
<td>• Synthesis of soldered and sintered joints</td>
</tr>
<tr>
<td></td>
<td>• X-ray imaging</td>
</tr>
<tr>
<td></td>
<td>• Provider of nanosilver paste</td>
</tr>
<tr>
<td>Btech</td>
<td>• Provider of HM-2 thermoplastic (polyamide) with embedded carbon fibers</td>
</tr>
<tr>
<td>Atmospheric Environment Service</td>
<td>• Finite element modeling support</td>
</tr>
</tbody>
</table>
Summary

• **Approach**
 - Synthesis of various joints between DBA/DBC and baseplate (Cu/Al), thermal shock/temperature cycling, thermal resistance measurements, high-potential test and joint inspection (X-ray, C-SAM), and strain energy density versus cycles-to-failure models

• **Current Work**
 - Synthesized a number of bonded interfaces between the DBC/Cu base plate based on different BIM technologies, including lead-based and lead-free solder, sintered silver (micron-size and nanosilver), and thermoplastic
 - Initiated FEA for bonded interface geometries
 - Initiated thermal resistance measurement and quality characterization for the different bonded interfaces prior to thermal shock/cycling.

• **Future Work**
 - For bonded interface between the DBC/Cu baseplate:
 - Refine the bond synthesis process
 - Continue thermal cycling of the bonded samples
 - Characterize thermal resistance and bond quality
 - Characterize BIM to obtain stress-versus-strain mechanical constitutive relationships
 - Perform FEA modeling to infer strain energy density, defect initiation, and propagation
 - Correlate strain energy density to cycles-to-failure.
 - Investigate the thermal performance and reliability of the bonded interfaces between DBA/aluminum as well as alternatives to AlN, such as Si₃N₄.
Acknowledgements:

Susan Rogers, U.S. Department of Energy

Team Members:

Doug DeVoto
Mark Mihalic
Tim Popp

For more information, contact:

Principal Investigator
Sreekant Narumanchi
Sreekant.Narumanchi@nrel.gov
Phone: 303-275-4062

APEEM Task Leader
F. Patrick McCluskey
Patrick.McCluskey@nrel.gov
Phone: 303-275-3653