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Abstract— Wind power forecasting is essential for greater 
penetration of wind power into electricity systems.  Since no 
wind forecasting system is perfect, a thorough understanding of 
the errors that may occur is a critical factor for system operation 
functions, such as the setting of operating reserve levels.  This 
paper provides an international comparison of the distribution 
of wind power forecasting errors from operational systems, 
based on real forecast data.  The paper concludes with an 
assessment of similarities and differences between the errors 
observed in different locations. 

Keywords-wind power forecasting; power system operation; 
power system reliability; power systems; wind power generation 

I.  INTRODUCTION 
The amount of wind power being incorporated into power 

systems worldwide has been increasing dramatically over the 
past decade. Wind power has no fuel costs and zero emissions, 
which means that its increased presence in power generation 
portfolios provides great benefits to society.  However, wind 
power is a variable and uncertain power resource, in contrast 
to traditional thermal power units.  This has led to concerns 
from utilities and system operators about how increasing 
amounts of wind power will be handled in system operations 
[1].  One way to reduce the uncertainty surrounding wind 
power output is through wind power forecasting systems.  
Typical systems used in operational forecasting consist of one 
or more Numerical Weather Prediction models (NWP) that 
provide forecasts of wind speed on a grid over a geographic 
area, coupled with statistical techniques that translate the 
forecasts to local wind plant conditions and convert forecasted 
wind speed to power [2].  While these forecasts provide 
system operators with an expected wind power output level at 
future times, they are not perfect forecasts.  Understanding the 

magnitude and frequency of the wind power forecasting errors 
can facilitate the integration of wind power through advanced 
operational techniques, for example, setting dynamic reserve 
levels [3, 4] or using stochastic unit commitment models [5, 
6], or through simply increasing operator awareness. Power 
system operations are already designed to handle a certain 
degree of variability and uncertainty since load is itself both 
variable and uncertain [7]. Therefore it is the large and 
infrequent wind power forecasting errors with which we are 
most concerned.  Large forecasting events can lead to major 
economic inefficiencies through non-optimal commitment 
schedules.  

Wind power forecast errors are often a concern in wind 
integration studies and stochastic unit commitment models.  
Many of these studies assume that the forecast error 
distribution follows a normal distribution [3, 8, 9]. However, 
this is an overly simplistic assumption for most forecasting 
methods and timescales examined [10, 11]. Other distributions 
have been examined, including the Weibull [12] and beta [13] 
distributions, however in this work we utilize the hyperbolic 
distribution [10].  We analyze the forecast error distributions 
observed in a number of different countries and electrical 
systems, and at two different timescales that are important in 
the unit commitment and economic dispatch process.  
Comparisons are made between the different cases and 
conclusions on the importance of the differences for power 
systems operations with higher wind power penetrations are 
drawn.  

II. METHODS AND DATA 
In this study statistical analysis techniques are applied to 

wind power forecasting data taken from seven different 
countries.  Day-ahead wind power forecasts were supplied for 
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six countries, or balancing areas within a country.  Hour-ahead 
wind power forecasts were utilized for one country-wide 
system, and for one large wind plant in a balancing area.  The 
hyperbolic distribution parameters were fitted to the data using 
a maximum likelihood method. 

Mean, μ, and variance (represented here by the standard 
deviation), σ, the first two standardized moments, are 
frequently used in the characterization of wind forecasting 
error distributions.  They provide important information about 
the distribution, however, considering the third and fourth 
statistical moments can provide additional information [10, 14, 
15].  Skewness, γ, is the third moment and is a measure of the 
probability distribution’s asymmetry.  Kurtosis, κ, is the fourth 
moment and describes the magnitude of the distribution’s 
peak.  Conversely, kurtosis can also be thought of as a measure 
of the thickness of the tails of the distribution.  A distribution 
with a high kurtosis value is leptokurtic and one with a low 
kurtosis value is platykurtic. Leptokurtic distributions have 
more pronounced peaks, slimmer shoulders, and longer tails 
than normal distributions with identical first two moments.  In 
what follows we will refer to excess kurtosis, the kurtosis 
above that of the normal distribution, simply as kurtosis.    

We utilize some standard statistical tools such as 
histograms, quantile-quantile (Q-Q) plots, and cumulative 
distribution function plots.  It is important to note that the 
forecast errors have been normalized, based on the wind power 
capacity, for the sake of comparison.  Therefore all of the 
forecast errors lie on the interval from -1 to 1.  The Q-Q plots 
shown here are normal Q-Q plots that compare the observed 
distribution to a Gaussian distribution with the same mean and 
standard deviation as the observed distribution.  They include a 
line that runs through the first and third quantiles of the 
observed distributions.  If the two distributions are identical 
the line should pass through all of the points in the observed 
distribution.  The cumulative distribution plots show how 
likely a random error from the distribution will be less than or 
equal to the magnitude selected. 

III. SYSTEM OPERATIONS WITH FORECASTS 
Wind power forecasting plays an important role in 

reducing the uncertainty of wind generation.  Forecasts may be 
included directly in the unit commitment and economic 
dispatch scheduling process used to ensure that enough 
generation is available to meet forecast load, or they may 
simply provide situational awareness for the balancing 
authority.  Day-ahead forecasts are often required for the unit 
commitment process, since the starting of large thermal units 
can often take 24 hours or more.  The forecasted wind power 
output at this timeframe can be used to optimize the 
availability of other generation units over the course of the 
following day.  The economic dispatch process sets the final 
power output for units that are online, and is performed closer 
to the time of realization, often one hour-ahead  Variability 
and forecast errors at smaller timescales are often compensated 
with reserves held for that purpose.  Since wind forecasts can 
be helpful to system operations in both the unit commitment 
and economic dispatch phases, we will examine the wind 
power forecasting errors that occur at these two timeframes, in 
this paper represented by day-ahead and hour-ahead forecasts.  

IV. ERROR DISTRIBUTIONS FROM OPERATIONAL SYSTEMS 
In this section we examine the wind power forecast error 

distributions observed in a total of seven countries at the day-
ahead and hour-ahead timescales.  In this work we follow the 
convention that the error is equal to the forecast minus the 
realized value.   

A. Day-Ahead Forecasts 
1) United States 

Day-ahead forecasts for the United States are taken from 
the ERCOT interconnection in Texas for the year 2010, with 
an installed wind capacity of approximately 9,000 MW.  As 
seen in Figure 1, the distribution is leptokurtic, though not 
dramatically so, with a significant negative skew.  The 
distribution also has a fairly large spread, with minimum and 
maximum error values above half of the installed capacity.  
The red line represents a normal distribution with the same 
mean and standard deviation as the observed errors.  Figure 2 
shows that the distribution is poorly represented by the normal 
distribution.  The observed error distribution has a more 
pronounced peak, slimmer shoulders and fatter tails than the 
corresponding normal distribution. This is shown as an 
example of the differences between the observed error and 
normal distributions, the other day-ahead forecasting Q-Q 
plots show similar features. 

 
Figure 1.  Histogram of the normalized day-ahead forecast errors for the 

ERCOT system. μ = 0.0117; σ = 0.1187; γ = -0.616; κ = 1.0308.   

 

Figure 2.  Normal Q-Q plot of the ERCOT day-ahead forecast errors.  If the 
observed errors were well represented by a normal distribution, all 

observations would lie on the straight line. 
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2) Finland 
The Finnish installed wind capacity is the smallest in the 

study, with 102 MW of rated power.  However, the capacity is 
spread over 25sites (77 turbines) with the largest distance 
between the sites being 630 km.  Figure 3 shows the slightly 
positively skewed and leptokurtic distribution of observed 
wind power forecasting errors for the Finnish system.  The 
distribution includes a number of fairly large positive forecast 
errors (overforecasting), with a few exceeding half of the 
installed capacity.  This may be the result of the smaller 
number of turbines included in this dataset, and possibly 
erroneous data used in producing the forecasts. 

 
Figure 3.  Histogram of the normalized day-ahead forecast errors for the 

Finnish system. μ = -0.0155; σ = 0.0751; γ = -0.0720; κ = 3.1036.  

3) Spain 
The Spanish installed wind power forecasting error 

histogram is shown in Figure 4.  This data is from the year 
2010 and includes 19,300 MW of wind power capacity.  The 
distribution is leptokurtic and fairly strongly positively 
skewed.  The forecasts also display a notable bias, 
corresponding to over 15% of the installed wind power 
capacity.  The distribution also has distinctly fat-tails in both 
the over and under forecasting directions. 

 
Figure 4.  Histogram of the normalized day-ahead forecast errors for the 

Spanish system. μ = 0.0162; σ = 0.0514; γ =0.3855; κ = 3.0180.  

4) Sweden 
The day-ahead forecasts for the Swedish system (year 

2011) include 2,899 MW of installed wind capacity.  The 
distribution of forecast errors plotted in Figure 5 shows a 
slightly leptokurtic negatively skewed distribution.  The 
Swedish errors are interesting for their fairly small spread, 

with the largest errors being less than 30% of the installed 
wind capacity.  This is likely due to the large amount of 
geographic diversity stemming from the multiple sites over a 
large geographic area.  It is also interesting to see that the 
normal distribution would under-represent the negative error 
tail, but over-represent the positive error tail, because of the 
skewness of the distribution.  Figure 6 shows the cumulative 
distribution function of the observed errors, the normal 
distribution based on those errors, and a hyperbolic 
distribution fit to the observed errors.  It is readily apparent 
that the hyperbolic distribution provides a superior fit to the 
data than does the normal distribution, with the hyperbolic line 
running on top of the observed errors line for much of the 
cumulative distribution function.  The Swedish example was 
chosen to display the cumulative distribution plot due to the 
clear example it shows of the improved fit of the hyperbolic 
distribution.  However, other cumulative distribution functions 
would have similar characteristics. 

 
Figure 5.  Histogram of the normalized day-ahead forecast errors for the 

Swedish system. μ = -0.0052; σ = 0.0603; γ = -0.7252; κ = 0.7757.  

 

Figure 6.  Cumulative distribution plot of the normalized Swedish day-ahead 
forecast errors. 
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5) Denmark 
The Danish system data includes 3,871 MW of installed 

wind capacity for the year 2011.  The distribution is more 
strongly leptokurtic than many of the other day-ahead forecast 
error distributions examined previously, as seen in Figure 7.  
Also in contrast to the other countries, the distribution is fairly 
symmetric, with only a slightly positive skew.  The spread of 
the data is fairly small with relatively few errors greater than 
25% of the total installed capacity.  This is likely a result of the 
geographic diversity acquired from the turbines being spread 
throughout the country. 

 
Figure 7.  Histogram of the normalized day-ahead forecast errors for the 

Danish system. μ = -0.0005; σ = 0.0534; γ = 0.1378; κ = 2.3859.  

6) Ireland 
The Irish data is from the year 2011 and includes 1,557 

MW of installed wind capacity.  The Irish day-ahead 
forecasting errors have a small positive skew, and are 
leptokurtic, as seen in Figure 8.  There is a fairly large spread 
to the distribution with a significant amount of forecast errors 
approaching 50% of the installed wind power capacity.  This is 
likely due to the small geographic area covered by the wind 
turbines.  For reference, the total land area of Ireland is 
roughly 1/6th the land area of Sweden, and 1/5th that of 
Germany. 

 
Figure 8.  Histogram of the normalized day-ahead forecast errors for the 

Irish system.  μ = -0.0123; σ = 0.0827; γ = 0.3063; κ = 3.0311.  

7) Germany 
The German data is from the year 2010 and covers the total 

installed wind capacity in Germany ranging from 25.18 GW in 
January 2010 to 26.39 GW in December 2010. The power 
measurement is based on an up-scaling algorithm based on 
spatially distributed reference wind farms that include about 
25% of the total capacity.  The forecasts are used and 
published by the German TSOs and are based on combinations 
of power forecasts from different providers and on different 
NWP models.  The day-ahead forecasting errors have a 
slightly negative skew, and are leptokurtic, as seen in Figure 9.  
The spread of the data is relatively small with all errors less 
than 30% of the installed wind capacity.  This is due to the 
large number of turbines included in the analysis, as well as 
the geographic spread of the locations used. 

 
Figure 9.  Histogram of the normalized day-ahead forecast errors for the 

German system.  μ = 0.0092; σ = 0.0450; γ = -0.2891; κ = 3.5896.  

B. Hour-Ahead Forecasts 
In power system scheduling short-term wind power 

forecasts are necessary to set the generating unit output levels 
in the dispatch process, which often coincides with intraday 
market timing.  These shorter term forecasts are used to reduce 
the uncertainty from the day-ahead forecasts, and 
consequently, only these forecast errors must be balanced by 
reserve power [16].  While the dispatch interval may vary 
between systems, we will use a one hour interval as a 
representative example.   

1) United States 
The US hour-ahead forecast error distributions come from 

a single wind plant in the Xcel Colorado service territory with 
approximately 300 MW of capacity.  As this data comes from 
a single plant, the benefits of geographic diversity will not be 
apparent.  This is clear when looking at the extreme values 
seen in Figure 10.  The maximum errors for the single plant 
are approximately 80% of the total capacity.  It must be noted 
that these large values are likely due to the manual curtailment 
of wind plant output.  These hour-ahead forecasts also have a 
much greater kurtosis value than the day-ahead forecasts 
observed in the previous section.  The practical implication of 
this is that the forecasts are often more accurate, but have 
occasional instances when they are very inaccurate. 
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Figure 10.  Histogram of the normalized day-ahead forecast errors for the 

Xcel Colorado wind plant.  μ = -0.01; σ = 0.08; γ = - 0.01; κ =17.62.  

2) Spain 
The hour-ahead forecasts for the Spanish system include 

20,091 MW of wind power capacity, the second largest 
amount in this study.  Figure 11 shows the histogram of the 
forecast errors.  One important aspect to note is the smaller 
range of values seen in the Spanish data, with forecast errors 
over 10% of capacity being very rare.  Part of the explanation 
is that the forecasts are hour-ahead instead of day-ahead 
forecast data; the smaller forecasting interval reduces the 
uncertainty in the forecast considerably.  The fat tails seen in 
figure 11 result in a poor fit to the normal distribution.  Further 
verification of this finding is provided by the normal Q-Q plot 
seen in the dramatic deviations in the tails seen in figure 12. 

 
 

Figure 11.  Histogram of the normalized hour-ahead forecast errors for the 
Spanish system. μ = -0.0018; σ = 0.0133; γ = - 1.6585; κ =20.2385.   

 

Figure 12.  Normal Q-Q plot of the Spanish hour-ahead forecast errors.  If the 
observed errors were well represented by a normal distribution, all 

observations would lie on the straight line. 

3) Germany 
The hour-ahead forecasts for the German system are for the 

same set of wind plants described in the day-ahead section.  
The histogram of the hour-ahead forecast errors can be seen in 
figure 13.  The spread of the errors is very small with no errors 
above 10% of the installed capacity.  As mentioned for the 
Spanish system, the large amount of wind turbines considered 
(~25 GW), with the resulting geographic diversity, is an 
important factor in the smaller spread of the error distribution, 
in addition to the usage of online power measurements that 
underlie a high quality data check.  The distribution is 
leptokurtic and slightly negatively skewed. 

 
Figure 13.  Histogram of the normalized hour-ahead forecast errors for the 

German system. μ = 0.0004; σ = 0.0116 γ = - 0.2194; κ =3.7389.  
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V. COMPARISON 
The wind power forecasting errors shown in this study 

follow at least one common theme, regardless of country, 
forecasting period, or amount of installed wind capacity 
considered: they are all leptokurtic distributions that are poorly 
represented by the normal distribution.  However, the 
distributions shown do vary considerably based on each of the 
aforementioned criteria.  As might be expected the hour-ahead 
forecasts have much higher kurtosis values than those made at 
the day-ahead timescale.  This would be expected from the 
reduction in uncertainty that occurs between making a forecast 
in the day-ahead time frame, versus a single hour ahead.  
These distributions have many more very small forecast errors, 
but can still have large forecast errors in extreme cases with 
high power ramps, as represented by the relatively fat tails of 
the distributions.  Generally speaking, the larger the installed 
wind power capacity, the smaller the spread of the distribution.  
This is related to the geographic diversity of having more 
turbines experiencing different weather conditions at the same 
time, though one exception of this is the ERCOT day-ahead 
dataset.  Most of the wind capacity installed in Texas is found 
in a narrow corridor in the northwest panhandle of the state.  
Additionally, wind turbines in the United States tend to be 
built in clustered plants, with a high density of turbines in a 
small area.  In some of the European countries considered, the 
turbines are built in smaller groups, with less dense clusters of 
wind power.  This geographic distance means that the 
forecasting errors between individual turbines are not as well 
correlated. 

TABLE I.  DAY-AHEAD FORECAST SUMMARY 

 US Finland Spain Sweden Denmark Ireland Germany 

Installed 
Capacity 

(MW) 

9,000 102 19,300 2,899 3,871 1,557 26,000 

Dataset 
Length 
(Hours) 

9,504 8,760 8,760 7,370 8,760 8,760 8,760 

Forecast 
Horizon 
(Hours 
Ahead) 

8-32 12-36 1-48 16-40 12-36 6-144 12-48 

VI. CONCLUSION 
This study has examined the day-ahead and hour-ahead 

wind power forecasting errors seen in operating practice in six 
different countries.  The distribution of forecasting errors have 
been shown to be poorly represented by the normal 
distribution often assumed in wind integration studies.  The 
distributions were found to be more leptokurtic, with an 
important distinction being the heavier tails seen in the 
operational forecast error distributions.  These large errors that 
are not represented by the normal distribution can have a large 
impact on integration planning studies and system operations 
due to the greater economic impact of these extreme errors.  It 
is recommended that in future integration studies, typical wind 
power forecasting error distributions are used to guide the 
process, instead of making the normal distribution assumption.  
The hyperbolic distribution has been found in this study to 
better represent the entire wind power forecasting error 
distribution. Further investigation is planned on the 

significance of the differences found in the country-to-country 
variations of wind power forecasting error distributions.  
Likely causes of such differences such as country-specific 
geographic features, forecasting methods, model input 
parameters, and long-term wind resource quality will be 
analyzed.  In addition, the use of this information can be 
important in system operations, impacting operational and 
planning policies.  An examination of how these country 
specific error distributions could impact issues such as wind 
power curtailment policies and thermal generator flexibility is 
planned.  Additional work is planned on disaggregating the 
forecast error distributions based on time of day and prevailing 
weather patterns, in order to extract more useful information 
for system operations. 
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