Impact of Interface Recombination on Time Resolved Photoluminescence Decays (TRPL) in CdTe solar cells (Numerical Simulation Analysis)

Ana Kanevce, Darius Kuciauskas, Timothy A. Gessert, Dean H. Levi and David S. Albin
National Renewable Energy Laboratory, Golden, CO, USA

Abstract
Using Sentaurus Device Software, we analyze how bulk and interface recombination affect time-resolved photoluminescence (TRPL) decays in CdTe solar cells. This modeling analysis could improve the interpretation of TRPL data and increase the possibility of rapid defect characterization in thin-film solar cells. By illuminating the samples with photons of two different wavelengths, we try to deduce the spatial origin of the dominant recombination loss. Shorter-wavelength photons are more affected by the interface recombination and drift compared to the longer ones. Using the two-wavelength TRPL characterization method, it may be possible to determine whether a specific change in deposition process has affected the properties of interface or the bulk of the absorber.

Introduction
• TRPL is a contactless and quick method to determine the carrier lifetime in CdTe absorbers.
• TRPL is a contactless and quick method to determine the carrier lifetime in CdTe absorbers.
• The decay shape is affected by complex carrier dynamics, including drift, diffusion, and recombination.
• The bi-exponential nature of the decay is pronounced for \(\lambda = 635 \text{ nm} \).
• For \(\lambda = 635 \text{ nm} \), more carriers are generated close to the junction where the electric field is the strongest, and many of them are separated quickly.
• For \(\lambda = 808 \text{ nm} \), the difference between \(\tau_D \) and \(\tau_R \) is much smaller, and the decay appears more single-exponential.

Light absorption in CdTe devices
• For typical doping levels of CdTe cells, \(10^{13} \text{ cm}^{-3} \) to \(10^{15} \text{ cm}^{-3} \), most of the light is absorbed within the depletion region.
• The junction field plays a significant role in the decay.
• The 635 nm illumination generates 3.3 times more carriers near the CdS/CdTe interface.
• The decay generated by 635 nm illumination is expected to be more influenced by drift and interface recombination.

Where do the carriers go?
• The maximum electron density shifts away from the interface in the first 0.5 ns, and then slowly toward the interface.
• For low \(S \), the maximum hole density remains close to the interface.
• The recombination at the interface reduces hole density during the slower part of the decay.
• The electron and hole densities after 808 nm excitation are more widely distributed.

The decay slope and device properties
• Both interface and bulk recombination accelerate the carrier decay.
• In a case of 635 nm illumination, the decay is affected by interface recombination stronger than for the longer wavelengths.
• If \(S < 10^3 \text{ cm/s} \), its impact on the TRPL decay becomes significant for \(\tau_{DR} > 5 \text{ ns} \).
• When \(S \) is low, \(\tau_{DR} \) for 635 nm excitation is higher than \(\tau_{DR} \) for 808 nm excitation, and for \(S > 10^3 \text{ cm/s} \) the \(\tau_{DR} \) increases.
• The \(V_c \) can be predicted from the decay slope.

Conclusions
Carrier decays after a short-light pulse illumination have been simulated to enhance the interpretation of TRPL measurements. The TRPL decays in thin-film devices are influenced by the carrier dynamics, including drift, diffusion, interface and bulk recombination. We have found that at 635 nm illumination, the decay is affected more by the interface properties compared with the 808 nm decay. We have also calculated the \(n*p \) product at different moments during the decay to show that the interface recombination affects the second, slower part of the decay. By comparing the decays at different wavelengths, it may be possible to estimate whether the dominant recombination is located at the interface or in the bulk.