Building-Integrated Photovoltaics (BIPV) in the Residential Section: An Analysis of Installed Rooftop Prices

Ted James, Alan Goodrich, Michael Woodhouse, Robert Margolis, and Sean Ong

World Renewable Energy Forum
Denver, Colorado
May 17, 2012

NREL/PR-6A20-55027

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.
Disclaimer Agreement

These manufacturing cost model results (“Data”) are provided by the National Renewable Energy Laboratory (“NREL”), which is operated by the Alliance for Sustainable Energy LLC (“Alliance”) for the U.S. Department of Energy (the “DOE”).

It is recognized that disclosure of these Data is provided under the following conditions and warnings: (1) these Data have been prepared for reference purposes only; (2) these Data consist of forecasts, estimates or assumptions made on a best-efforts basis, based upon present expectations; and (3) these Data were prepared with existing information and are subject to change without notice.

The names DOE/NREL/ALLIANCE shall not be used in any representation, advertising, publicity or other manner whatsoever to endorse or promote any entity that adopts or uses these Data. DOE/NREL/ALLIANCE shall not provide any support, consulting, training or assistance of any kind with regard to the use of these Data or any updates, revisions or new versions of these Data.

YOU AGREE TO INDEMNIFY DOE/NREL/ALLIANCE, AND ITS AFFILIATES, OFFICERS, AGENTS, AND EMPLOYEES AGAINST ANY CLAIM OR DEMAND, INCLUDING REASONABLE ATTORNEYS’ FEES, RELATED TO YOUR USE, RELIANCE, OR ADOPTION OF THESE DATA FOR ANY PURPOSE WHATSOEVER. THESE DATA ARE PROVIDED BY DOE/NREL/ALLIANCE "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED. IN NO EVENT SHALL DOE/NREL/ALLIANCE BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THESE DATA.
Residential PV: a continuum of integration with building materials and designs

Least integrated
“Open rack-mounted systems”
“Rack-mounted PV” or “PV”
- Both using racking hardware
- Neither replacing building materials

More integrated
“Close roof rack-mounted systems”
“Low profile systems”
“Building-applied PV” or “BAPV”

Fully integrated
“Direct-mounted systems”
“Building-integrated PV” or “BIPV”
- No racking hardware
- Replaces building materials
- Install methods are similar to those of traditional materials

Sources: www.eeremultimedia.energy.gov; www.buildingenergyvt.com
BIPV – no consensus definition

In their descriptions of BIPV, some market reports and incentive programs include PV systems that are partially integrated with building materials or architectural designs. These systems often represent a combination of independent products.

Definitions we use for cost modeling:

Building-Integrated Photovoltaics (BIPV)
- A multifunctional product that generates electricity and replaces traditional building materials by serving as a significant weather barrier on building surfaces. Installation methods are similar to those of traditional building materials.

Rack-mounted Photovoltaics (PV)
- Traditional PV systems that are designed to generate electricity only, are mounted on racks, and do not replace the function of building materials.

All costs in this presentation are in 2010 U.S. dollars and in terms of U.S. dollars per peak watt of DC PV capacity ($/W or $/Wp DC)
Potential opportunities for BIPV market growth

Installation cost reductions
- Lower non-module costs -- elimination of racking hardware, greater use of traditional roofing labor and installation methods
- Cost offsets for displaced traditional building materials
- Lower supply chain costs -- utilizing established channels to market

Improved aesthetics
- Consumer willingness to pay premiums in some markets
- Broader appeal for residential solar product designs

Higher technical potential
- Increased PV-suitable space on buildings

Solar industry interest
- Showcase applications
- High growth potential
- Help PV suppliers distinguish themselves
- Leverage more established channels to market

Government support
- Maintain historic/cultural building designs
- BIPV-specific incentives in select international markets

...**many opportunities but limited deployment:** the cumulative installed capacity of BIPV (and related semi-integrated PV products) worldwide was about 250–300 MW by the end of 2009 -- about 1% of the cumulative installed capacity of distributed PV systems at that time.

Market prices are higher for BIPV than for rack-mounted PV

Average market prices for rooftop BIPV and PV systems (2- to 3-kW) on newly constructed homes in California

- Illustrated prices are from an analysis of about 3,000 systems
- BIPV prices do not include cost offsets for traditional roofing materials
- In Europe, increasing price convergence in some markets

Market prices are not necessarily representative of downward trends in system costs.

These prices are influenced by several factors, including:
- Consumers’ willingness to pay premiums for the aesthetic values of BIPV
- Supply chain considerations (supply and demand)
- Incentives

Module and system considerations for cost modeling

Modules: additional materials required for BIPV modules
- Framing, flashing, adhesives, etc.
- We added a flat 10% cost premium to commercially-available PV modules

Module dimensions and system geometry
- Smaller modules may increase total labor costs (time to install) but may enable installation methods that are similar to those of traditional roofing products – single contractor, nails and hammers
- BIPV modules may have greater “dead space” (reducing efficiencies) as a result of extra framing, flashing, or other materials
- Some system geometries can reduce total system efficiencies

Examples of commercial modules

| Building-applied PV / Building-integrated PV | SunPower SunTile (0.69 m²) | Luma Solar Shingle (0.55 m²) |
| Rack-mounted PV | SunPower T5 (2.09 m²) | Suntech 190S – 24/Ad+ (1.20 m²) |
Cost analysis of a hypothetical BIPV rooftop case

Comparative crystalline silicon (c-Si) cases – PV and BIPV

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Technology</th>
<th>Form</th>
<th>Efficiency</th>
<th>Module Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV Reference Case</td>
<td>c-Si</td>
<td>Rigid</td>
<td>14.8%</td>
<td>1.28</td>
</tr>
<tr>
<td>BIPV Derivative Case</td>
<td>c-Si</td>
<td>Rigid</td>
<td>14.1%</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Our analysis approximates the cash purchase prices (overnight capital costs) for a hypothetical BIPV system and a typical rack-mounted PV system installed on residential rooftops in the United States. This bottom-up method of estimating BIPV system prices disregards the pricing parameters determined by markets, focusing instead on objective inputs as a means to assess cost-reduction opportunities and challenges.

BIPV – Potential off-sets for traditional materials

<table>
<thead>
<tr>
<th>Technology</th>
<th>PV metrics</th>
<th>Residential Material Offsets ($/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c-Si</td>
<td>Efficiency</td>
<td>Asphalt Shingle</td>
</tr>
<tr>
<td></td>
<td>Wp/m²</td>
<td>$0.18</td>
</tr>
</tbody>
</table>

Estimated Offset Values for the Residential BIPV Case

Offsets are inversely related to PV efficiencies
BIPV has the potential to achieve lower installed prices than rack-mounted PV

Comparison of installed residential rooftop prices for the PV Reference Case and the BIPV Derivative Case – Q4 2011 estimate

“Effective price” values include shingle cost offsets, shown as a negative bar, in the BIPV case (right)

- Cost reductions of the simulated BIPV case are mostly from the elimination of hardware racking and associated labor costs (and resulting channel cost reductions)
- BIPV may experience reduced performance compared to rack-mounted PV, impacting levelized costs of energy