Development of a Visual Inspection Checklist for Evaluation of Fielded PV Module Condition

Corinne E. Packard1, 2*, John H. Wohlgemuth1, Sarah R. Kurtz1
1National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, CO USA
2Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO USA
*Corresponding Author: cpackard@mines.edu

ABSTRACT
A visual inspection checklist for the evaluation of fielded photovoltaic (PV) modules has been developed to facilitate collection of data describing the field performance of PV modules. The proposed inspection checklist consists of 14 sections, each documenting the appearance or properties of a part of the module. This tool has been evaluated through the inspection of over 60 PV modules produced by more than 20 manufacturers and fielded at two different sites for varying periods of time. Aggregated data from a single data collection tool such as this checklist has the potential to enable longitudinal studies of module condition over time, technology evolution, and field location for the enhancement of module reliability models.

OVERVIEW OF VISUAL INSPECTION CHECKLIST
- Uses IEC/UL standard terminology
- Attempts to balance collection of sufficient detail for failure mode evaluation against minimizing recording time per module
- Composed of 14 sections based on module component
- Additional detail can be found in the full NREL report

DESCRIPTION OF TEST FACILITIES
Photovoltaic modules from 2 sites served as the principle testbeds for the development of the inspection checklist, supplemented with the experience and knowledge of other professionals (identified in the Acknowledgements). Modules from Site 1 were inspected on location at the APS STAR Center (Arizona Public Services Solar Test and Research Center) in Tempe, Arizona. USA. Modules from Site 2 were shipped from the field site at the Solar Energy Center (SEC) in New Delhi, India* to NREL for evaluation.

VISUAL INSPECTION CHECKLIST
- Composed of 14 sections
 - Sections 1-2: field site, system configuration, and module identification
 - Sections 3-13: individual module components, starting from the back and ending at the front of the module
 - Section 14: locations of electronic records (I-V curves, infrared images, etc.)
- Detailed instructions are given in the full report for each part of the checklist to reduce ambiguity and variation in survey responses
- Required and optional tools:
 - a tape measure with centimeter and millimeter gradations, a pen or other recording implement, and any personal protective equipment required by the facility (required)
 - a digital camera, an I-V curve tracer, and an infrared camera (optional)
 - A full visual evaluation can be completed in approximately 8 minutes by a pair of experienced inspectors, though this can be reduced significantly for data sets consisting of a large number of similar modules or by the use of the abbreviated inspection list.

 Examples

 Section 3: Rear side glass

 Section 9: Frameless Edge Seal

 Section 12: Silicon (mono or multi) module

 Section 13: Thin film module

 PRELIMINARY RESULTS
We have not yet developed a large enough database to make conclusive statements about climate-zone dependent degradation but a preliminary analysis illustrates the types of data that become available through visual inspection.

 If visually observable defects can be correlated or conclusively linked with the measured electrical performance degradation rates, visual inspection may provide a relatively low impact method for assessing which PV installations may be more likely to see accelerated degradation based on the frequency and types of defects that develop.

 FUTURE
- Availability of the checklist, a data collection spreadsheet, and NREL report with detailed instructions for using the checklist
- Availability of a database for compiling user-submitted field data

 Please contact Corinne Packard if you are interested in participating in data collection

 ACKNOWLEDGEMENTS
This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. We also acknowledge the contributions of Ulrike Jahn (TÜV Rheinland Immissionsschutz und Energiesysteme GmbH, Germany), Karl Berger (Austrian Institute of Technology), Thomas Friesen (Scuola Universitaria Professionale della Svizzera Italiana), and Marc Koentges (Institut fuer Solarenergieforschung GmbH Hameln/Emmerthal) (Lead of IEA PVPS Task 13 Subtask 3.2) in developing the format and content of the checklist. Special thanks are also due to Cassius McChesney of Arizona Public Service for providing access to modules that were deployed there.