“The Durability of Polymeric Encapsulation Materials for Concentrating Photovoltaic Systems”

David C. Miller¹*, Matt Muller¹, Michael D. Kempe¹, Kenji Araki², Cheryl E. Kennedy¹, and Sarah R. Kurtz¹

1. National Renewable Energy Laboratory (NREL), 15013 Denver West Parkway, Golden, CO, USA 80401
2. Daido Steel Co., Ltd. 2-30 Daido-cho, Minami, Nagoya 457-8545, Japan
* David.Miller@nrel.gov

2012 PV Module Reliability Workshop
(Denver West Marriot, Golden, CO)
8:30-8:50 am, 2012/3/01 (Thursday)
Golden Ballroom

-this presentation contains no proprietary information-

NREL/PR 5200 54524
Motivation for the NREL Field Study

- Concentrating Photovoltaic (CPV) modules use cost effective optics ($) to focus light onto high efficiency ($\eta=44\%$) multijunction cells ($$$$$$

Cross-sectional schematic of the components near the cell in CPV systems (not to scale)
Motivation for the NREL Field Study

- Concentrating Photovoltaic (CPV) modules use cost effective optics ($) to focus light onto high efficiency (\(\eta=44\%\)) multijunction cells ($$$\$$)$

cross-sectional schematic of the components near the cell in CPV systems (not to scale)

corrosion prevention, optical coupling: CPV systems typically use encapsulation to adhere optical component(s) or cover glass to the cell
Motivation for the NREL Field Study

• Concentrating Photovoltaic (CPV) modules use cost effective optics ($) to focus light onto high efficiency ($\eta=44\%$) multijunction cells ($$$$$$)

corrosion prevention, optical coupling: CPV systems typically use encapsulation to adhere optical component(s) or cover glass to the cell.

encapsulation durability (30 year field deployment) is unknown:
• identify field failure modes
• gain insight related to failure mechanisms
• distinguish between material types
• identify materials for future study (HALT & qualification tests)
Details of the Experiment (Specimens & Apparatus)

Miller et. al., PIP, DOI: 10.1002/pip.1241.

Table: Materials in Test

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>ON-TEST</th>
<th>IN QUEUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVA</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>ionomer</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>polyolefin</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PVB</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>TPU</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PDMS</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>PPMS</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>25</td>
<td>11</td>
</tr>
</tbody>
</table>

Notes:
- Hydrocarbons (representative types)
- Silicones (representative grades)

test coupons are mounted in a modified CPV module product on a 2-axis tracker in Golden, CO
Details of the Experiment (Specimens & Apparatus)

Miller et. al., PIP, DOI: 10.1002/pip.1241.

Test coupons are mounted in a modified CPV module product on a 2-axis tracker in Golden, CO.
Details of the Experiment (Specimens & Apparatus)

Miller et. al., PIP, DOI: 10.1002/pip.1241.

Secondary optic (homogenizer)

Test coupons are mounted in a modified CPV module product on a 2-axis tracker in Golden, CO.
Details of the Experiment (Specimens & Apparatus)

Miller et al., PIP, DOI: 10.1002/pip.1241.

Table: MATERIAL vs. ON-TEST vs. IN QUEUE

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>ON-TEST</th>
<th>IN QUEUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVA</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>ionomer</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>polyolefin</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PVB</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>TPU</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PDMS</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>PPMS</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>25</td>
<td>11</td>
</tr>
</tbody>
</table>

Notes:
- **Silicones (representative grades):**
 - **silicones**
 - **hydrocarbons (representative types):**

Discussion:
- Test coupons are mounted in a modified CPV module product on a 2-axis tracker in Golden, CO.
- Passive cooling; no cell.
- **h=5 mm:** Not advised in future research.
- **C_g = 500x**

Images:
- Hydrocarbon
- Quartz/encapsulation/quartz
- Silicone

Legend:
- incident solar flux
- domed Fresnel lens
- reflector/aperture
- kaleidoscope homogenizer
- silica superstrate & substrate
- polymeric specimen
- aluminum base
- anodized machine screw
- secondary optic (homogenizer)
- domed PMMA Fresnel lens

References:
- Innovation for Our Energy Future
- Miller et al., PIP, DOI: 10.1002/pip.1241.
Details of the Experiment (Measurands & Schedule)

“Continuous” measurements:
- ambient conditions (irradiance, temperature, wind...)
- fixture temperature (via thermocouple)

Periodic measurements:
- transmittance ($T[\lambda]$, hemispherical & direct)
- mass
- appearance (photograph)

> from $T[\lambda]$, calculate: yellowness index (D65 source, 1964 10° observer), haze, $\lambda_{\text{cut-on}}$...

> fluorescence spectroscopy

Final measurements:
- FTIR, RAMAN, NMR
- TGA, DSC (polymer physics)

Test schedule:
0, 1, 2, 4, 6, 12, 18, 24, 30, 36 ... months
Optical Irradiance May Vary from CPV Transmittance

- PMMA transmits little \((T=1\%)\) UV flux, \(\lambda>390\) nm
- Thermal content therefore has increased significance (coupled UV & thermal degradation)

- Some popular indoor sources (UV 313V, UV340A) are completely inappropriate for a PMMA-enabled CPV system
- SoG Fresnel lens is substantially more transmitting \((T=89\%)\) of UV

Miller et. al., PIP, DOI: 10.1002/pip.1241

Irradiance for popular optical sources (including the sun) relative to the CPV optical system
UV Radiation: Damaging Dose

- Early weathering studies ⇒ total UV dose (damage vs. Joules or hours)

- Activation spectrum instead considers:
 1. characteristics of source & optical system
 2. effectiveness of damage at each λ ("action spectrum")
 3. may be unique to each characteristic (+ and -)

\[\Lambda[\lambda] = E[\lambda]s[\lambda] = E[\lambda]c_1e^{-c_2\lambda} \]

\[E[\lambda] = E_l[\lambda]C_g\prod_{i=1}^{i=j}\eta_iT_i[\lambda]\prod_{k=1}^{k=l}\eta_kR_k[\lambda] \]

Miller et. al., Optical Engineering, 50 (1), 2011, 013003
The Optical System Readily Affects UV & IR Dose

Innovation for Our Energy Future

Miller et. al., Optical Engineering, 50 (1), 2011, 013003
The Field Conditions (Specimen Temperature)

- Specimen temperature proportional to optical (IR) absorptance (thermal management “system”: conduction to the frame.)
- Measured at solar noon. Factors: T_{amb}, irradiance, wind speed
- ~40°C temperature rise observed. T_{max} 70-80°C in summer.

Graph Description:
- T_{meas}, measured temperature [°C] vs. T_{amb}, ambient temperature [°C]
- Linear relationship: $T = 0.66T_{\text{amb}} + 38$
- PDMS specimen temperature, determined using optical thermography

Miller et. al., PIP, DOI: 10.1002/pip.1241.
Thermal Decomposition of the Encapsulation May Occur at High Temperature

- Thermal stability compared using thermogravimetric analysis (TGA) @20°C·min⁻¹

- Onset of decomposition for hydrocarbons: 200-300°C

- Silicones more thermally stable: T_{onset} 300-400°C

Remember T’s for later!

Thermography data for representative materials from the study

Miller et. al., PIP, DOI: 10.1002/pip.1241
Results of Discovery Experiments
(The Homogenizer)

EVA: without homogenizer, rapid discoloration \(\Rightarrow\) combustion

optical images of EVA in (a) & (b), and PDMS in (c).
inset shows: voided center, char, cracked cover-glass, discoloration, delamination

silicone: without homogenizer \(\Rightarrow\) combustion

- Likely motivated by local hot spots \((10^1\) to \(10^3\) \cdot C_g)\)

Results of Discovery Experiments
The Effect of Contamination

• Intentionally introduce soil, Al, PE, or bubbles into EVA or silicone

EVA: soil, Al, PE motivated localized discoloration \Rightarrow combustion

silicone: soil, Al \Rightarrow localized cracking. (no primer present)

• elapsed time: minutes – days/weeks

• bubbles: no failure @ C_g=500, despite 4% measured $T[\lambda]$ reduction

Innovation for Our Energy Future
Results of the Formal Experiment
(Hydrocarbon Specimens)

- PVB was the first material to demonstrate thermal runaway mediated failure
- The radius of the affected region was seen to slowly grow during the cold winter months

optical images of test specimen at:
(a) 6 months and (b) 10 months

Miller et. al., PIP, DOI: 10.1002/pip.1241

time sequence: optical images of test specimen

(1) 06 months, (2) 07.5 months, (3) 08.5 months, (4) 09 months, (5) 10 months

200 μm
Results of the Formal Experiment
(Hydrocarbon Specimens)

- Transmittance & YI not significantly affected, despite impending failure
- A diagnostic characteristic with predictive capability is preferred!!!

The optical fluorescence spectrum of PVB, for $\lambda = 280$ nm

time sequence: transmittance of the PVB specimen
Results of the Formal Experiment
(Hydrocarbon Specimens)

- Transmittance & YI not significantly affected, despite impending failure
- A diagnostic characteristic with predictive capability is preferred!!!

- Optical & Raman spectroscopy clearly indicate fluorescence
- These techniques may help understand the degradation mechanism (e.g., chromophores)

optical fluorescence spectrum of PVB, for $\lambda_f = 280$ nm
Results of the Formal Experiment
(Silicone Specimens)

- Observations of silicone specimens include: (a) densification, (b) cracking, and (c) haze formation
 - No mass change with time for the (5) **densified** specimens ⇒ likely occurred during molding

- **Crack** advancement occurred during cold weather periods only ⇒ likely motivated by CTE misfit
- Additional fractured specimens may be emerging

Haze formation is attributed to one material’s unique formulation

optical images of silicone specimens, including those obtained using (a) cross-polarization or (c) back-lighting
Results of the Formal Experiment
(Densified Silicone Specimens)

- Densification is not delamination
- Densification does scatter direct light

Problematic for CPV?
- Current limited condition (blue light) • Optical attenuation (less power)
⇒ May not be significant in thin bond layers

Miller et. al., PIP, DOI: 10.1002/pip.1241

Innovation for Our Energy Future
Fluorescence Identifies the Silicones Are Affected!

- Unexpected new peaks identified for all silicone specimens!
- The particular details location and relative intensity of the new M_t peaks varied with formulation.
- Attributed to Pt catalyst (working to verify).

- The implications are unclear. PDMS is historically robust in extreme environments. $\lambda_x < 390$ nm for PMMA, ~ 320 nm for SoG.
UV and/or Temperature Can Degrade Pt Catalyst

• Karstedt’s catalyst, Pt(0), examined in tetramethyldivinyldisiloxane
• Catalyst loses fluorescence with UV or T
• Organometallic literature: mononuclear Pt with ligands → colloidal Pt, 3-5 nm

• Discoloration (optical absorptance) could motivate thermal runaway

• No evidence to date of optical degradation in NREL specimens
• Fluorescence of catalyst solution does not correspond to that in x-linked PDMS

• Alternate pathways: different catalyst type (ligands), peroxide cured silicone, PMMA on glass (PoG) lenses, AR coatings
UV Can Degrade Silicone Primers

- Dow-Corning 92-023 used in all NREL PDMS specimens
- The Ti based primer (on glass) reduces UV transmittance for $\lambda < 300$ nm ($n_{TiO_2} = 2.5$)

- Experiments identify primer is quite photoactive:
 - discoloration with minor fluorescence
- Transparency recovered with time (O_2 facilitated?)

- TiO_2 used in self cleaning coatings.
 (UV driven consumption of organic contamination). Affect on PDMS is unclear.
- Alternate pathway: Sn catalyzed primers ($n_{SnO}=2.1$)
Summary & Conclusions

Field study of the durability of polymeric encapsulation materials for CPV

Discovery experiments:
• Quickly confirmed the importance of an optical homogenizer
• Al, soil, polymeric contamination ⇒ T runaway & combustion of EVA
• Al, soil contamination ⇒ cracking of silicone

Formal experiment:
• 17 of 25 specimens not discussed today!
 • 3 of 25 specimens “failed”.

PVB: localized discoloration ⇒ thermal runaway ⇒ combustion
Fluorescence & Raman spectroscopy may diagnose & provide prediction
Silicone: densification, cracking, haze-formation
Densification affects the direct transmittance

PDMS Fluorescence:
• Working to understand observed peaks; alternative “solutions” identified

* Transmittance of optical system and corresponding activation spectrum of the encapsulation are critical to encapsulation durability
Acknowledgements

- NREL: Dr. Keith Emery, Dr. Daryl Myers, Dr. John Pern, Matt Beach, Christa Loux, Tom Moricone, Marc Oddo, Bryan Price, Kent Terwilliger, Robert Tirawat

This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory.