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Abstract 
Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, 

and disparate usage, and is not well understood. Battery life simulation scenarios that capture varying 

ambient temperature profiles, battery sizes, and driving patterns are of great value to battery manufacturers 

and vehicle original equipment manufacturers. This study seeks to improve understanding of battery wear in 

PEVs by implementing a predictive battery wear model, developed by the National Renewable Energy 

Laboratory, that is capable of capturing the effects of multiple cycling and storage conditions in a representative 

lithium chemistry. In particular, this paper explores the sensitivity of battery wear rates to ambient conditions, 

maximum allowable depth of discharge, and vehicle miles traveled. The analysis focuses on two midsize vehicle 

platforms: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric 

vehicle (PHEV) with 40 mi (64 km) of nominal charge-depleting range. Current U.S. hybrid electric vehicle 

populations are used to focus analysis on markets where consumers have shown a tendency towards early 

adoption of advanced vehicle technology. Both cross-sectional and longitudinal driving distance distributions are 

implemented to represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. In the scenarios 

examined, battery wear over an 8-year period was found to be dominated by ambient conditions for the BEV 

with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth 

of discharge with capacity fade ranging from 16% to 24%. In addition, the BEV and PHEV were found to be 

comparable in terms of petroleum displacement potential after 8 years of service due to the BEV’s limited utility 

for accomplishing long trips. Future work may include incorporating the effects of temperature on pack 

internal resistance/available capacity and analyzing a range of vehicle-to-grid scenarios. 

Keywords: lithium battery, battery calendar life, cycle life, BEV, PHEV 

1 Introduction 
Plug-in electric vehicles (PEVs) are an advanced 
vehicle technology capable of reducing liquid 

petroleum consumption by storing and using 
energy from the electric grid in an on-board 
battery. Widespread adoption of PEVs will be 
impacted by the ability of original equipment 

mailto:eric.wood@nrel.gov
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manufacturers to accurately predict battery life to 
produce durable vehicles at a reasonable price. 
Unfortunately, battery life in PEVs is inherently 
variable with factors such as ambient temperature, 
vehicle miles traveled (VMT), and charging 
behavior all interacting to produce potentially 
disparate power and energy fade rates. Battery 
wear is also sensitive to maximum allowable depth 
of discharge (DoD) and pack thermal management. 
The degree to which these sizing and usage 
conditions impact battery wear rates and the 
variability of wear rates is explored. 

2 Project Approach 
To explore the sensitivity and variability of battery 
wear rate in PEVs to various parameters, a 
predictive battery wear model developed by the 
National Renewable Energy Laboratory (NREL) 
was implemented [1]. The life model is informed 
by vehicle powertrain and battery pack thermal 
modeling capabilities developed internally at 
NREL. By leveraging these existing capabilities, it 
was possible to capture the effects of drive cycle-
based loading and ambient conditions on battery 
wear rates in a predictive and robust method. An 
overview of this integrated approach is provided, 
followed by an explanation of various sizing and 
usage scenarios examined. 

2.1 Battery Life Model 
Battery aging is caused by multiple phenomena 
related to both cycling and calendar age. Battery 
degradation is accelerated with the DoD of 
cycling, elevated temperature, and elevated voltage 
exposure, among other factors. At the battery 
terminals, the observable effects of degradation are 
an increase in resistance and a reduction in 
capacity. These two effects can be correlated with 
power and energy loss that cause battery end-of-
life in an application. Mechanisms for resistance 
growth include loss of electrical conduction paths 
in the electrodes, fracture and isolation of electrode 
sites, growth of film layers at the electrode surface, 
and degradation of the electrolyte. Mechanisms for 
capacity loss include fracture, isolation, and 
chemical degradation of electrode material, as well 
as loss of cyclable lithium (Li) from the system as 
a byproduct of side reactions. 
 
Under storage or calendar-aging conditions, the 
dominant fade mechanism is typically growth of a 
resistive film layer at the electrode surface. As the 
layer grows, cyclable Li is also consumed from the 
system, reducing capacity. In the present model, 

resistance growth and Li-capacity loss are assumed 
to be proportional to the square-root of time, t1/2, 
typical of diffusion-limited film-growth processes 
[2]. Under cycling-intense conditions, degradation 
is mainly caused by structural degradation of the 
electrode matrix and active sites. Cycling-driven 
degradation is assumed to be proportional to the 
number of cycles, N. Cell resistance growth due to 
calendar- and cycling-driven mechanisms are 
assumed to be additive: 
 
 R = ao + a1t1/2 + a2N (1) 
 
Cell capacity is assumed to be controlled by either 
loss of cyclable Li or loss of electrode sites,  
 
 Q = min(QLi, Qsites) (2) 
 
where 
 
 QLi = bo + b1t1/2 (3) 
 
 Qsites = co +c1N (4) 
 
Models (1), (3), and (4) are readily fit to a 
resistance or capacity trajectory measured over 
time for one specific storage or cycling condition. 
Using multiple storage and cycling datasets, 
functional dependence can be built for rate 
constants a1(T, V, DoD), a2(T, V, DoD), b1(T, V, 
DoD), and c1(T, V, DoD). The present battery life 
model was fit to laboratory aging datasets [3]–[6] 
for the Li-ion graphite/nickel-cobalt-aluminum 
(NCA) chemistry as described in [6]. The 
graphite/NCA chemistry has generally graceful 
aging characteristics and is expected to achieve 8 
or more years of life when sized appropriately for 
a vehicle application. 
 
The life model employed in this analysis was 
matched to experimental data for a graphite/NCA 
Li-ion cell with up to 25% battery capacity fade. 
Beyond this level of wear, fade rates may 
accelerate, as sometimes evidenced in 
experimental data by a sharp drop in remaining 
capacity with continued cycling. The present life 
model does not capture possible accelerating fade 
mechanisms that could occur beyond 25% capacity 
fade. 
 
In addition, the life model has been shown to have 
weak sensitivity to normal battery temperature 
variation over the course of a single day, 
particularly when the thermal mass of the battery is 
taken into account [7]. As such, this analysis uses 
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average monthly temperatures as inputs to the life 
model to capture the effect of seasonal variability 
in disparate climate regions of the United States. 
 
While high heat generation rates resulting from 
aggressive driving are correlated to increased 
battery temperature, the impact of fast charging as 
it relates to rate-induced wear is not considered in 
the present model. 

2.2 FASTSim Vehicle Model 
Vehicle modeling was performed using a high-
level tool developed at NREL known as FASTSim 
(Future Automotive Systems Technology 
Simulator). The analysis focuses on two midsize 
vehicle platforms: a battery electric vehicle (BEV) 
with a nominal range of 75 mi (121 km) and a 
plug-in hybrid electric vehicle (PHEV) with 40 mi 
(64 km) of nominal charge-depleting (CD) range 
followed by charge-sustaining (CS) operation via a 
gasoline-fueled internal combustion engine. Table 
1 summarizes the platform and component 
parameters selected for the BEV and PHEV 
models, which are roughly similar to the 
configuration of the production Nissan Leaf and 
Chevrolet Volt, respectively [8]–[9]. 

Table 1. FASTSim vehicle model inputs (baseline 
values). 

 BEV PHEV 
Drag Coefficient (Cd) 0.29 0.28 
Frontal Area (m2) 2.27 2.13 
Vehicle Mass (kg) 1663 1850 
Engine Power (kW) NA 53 
Battery Capacity (kWh) 24 16 
Maximum SOC 95% 85% 
Maximum Allowable DoD 90% 65% 
Battery Thermal 
Management System 

No active 
cooling 

Liquid 
cooling 

Accessory Load (W) 300 300 
Approx UDDS 
CD Range (mi) 100 50 

Approx Adjusted 
CD Range (mi) 75 40 

 
Battery internal heat generation rates were 
correlated with drive cycles through vehicle 
simulations informed with cell-level test data for a 
representative Li chemistry. Nominal heat 
generation rates were determined using the 
California Air Resources Board LA92 drive cycle, 
which was found to produce moderate heat 

generation rates characteristic of real-world drive 
cycles (see Table 2). 
Table 2. Cycle attributes determined through simulation 

of BEV and PHEV. 
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UDDS 1,369 11.99 31.5 60 103 
LA92 1,435 15.80 39.6 152 232 
US06 600 12.89 77.8 477 622 

2.3 Vehicle Thermal Model 
To correlate ambient conditions to battery 
temperature, a detailed thermal vehicle model was 
implemented. Based on previous analysis done by 
NREL on a Toyota Prius [10], the thermal model 
captures heating due to both ambient temperature 
profiles and solar loading (see Figure 1). These 
inputs are merged with battery internal heat 
generation profiles during driving and charging to 
calculate the average battery temperature over the 
course of a 24-hour period. In addition to passive 
heat transfer to ambient, the PHEV battery pack is 
equipped with an active thermal management 
system (TMS) capable of maintaining the battery 
temperature within a desired band when driven or 
plugged in. An active TMS was used to mitigate 
the effects of greater heat generation rates and 
smaller thermal mass in the PHEV pack whereas 
the modeled BEV employed passive thermal 
management. This methodology reflects current 
approaches of original equipment manufacturers 
and provides a means for evaluating different TMS 
strategies. 

 
Figure 1. Vehicle thermal model employed to calculate 

battery temperature with respect to ambient temperature, 
solar loading, and thermal insulation. 

Battery temperature was correlated to ambient for 
the passively cooled BEV in two steps (see Figure 
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2). First, an annual average battery temperature 
above ambient temperature in three different 
climates (shown in blue) was calculated according 
to the total solar loading for a given day (shown in 
green). In addition to solar loading, a second 
temperature differential was calculated as a result 
of battery heat generation and passive dissipation 
during driving and charging (shown in red). The 
temperature increase resulting from driving is a 
function of both daily driving distance and average 
ambient temperature. 

 
Figure 2. Average yearly battery temperature 

contributions from ambient, solar loading, and internal 
heat generation for simulated BEV. 

Noticeably, contributions to average battery 
temperature from driving are relatively small, 
accounting for an increase of less than one degree 
Celsius in all climates. For the BEV, this can be 
attributed to both the large percentage of drive 
days with zero miles (approximately 16%) and the 
number of trips omitted due to distances greater 
than the range of the vehicle (see section 2.4.3). 
 
Unlike for the BEV, contributions to battery 
temperature for the PHEV cannot be assumed to be 
additive due to the ability of the active TMS to 
heat or cool the battery as necessary. Contributions 
to battery temperature in the PHEV are attributed 
to three sources: (i) ambient temperature, (ii) solar 
loading and (iii) heat generation plus active 
cooling while driving/charging. A baseline battery 
temperature (shown in blue) is calculated as the 
difference above the ambient temperature due to 
solar loading (shown in Figure 3 in green). The red 
bar shows the adjusted temperature due to heat 
generated during driving/charging and the effects 
of the active TMS. The TMS is assumed to only 
operate when the vehicle is being driven or while 
plugged in. All scenarios assume that the PHEV is 
left unplugged and stationary (implying an inactive 
TMS) for approximately 8 hours during the course 
of the day. 

While battery temperature calculations are 
performed to account for variations in driver 
aggression, active versus passive TMS, and daily 
distance, the cell-level effects of temperature on 
internal resistance and capacity are not captured in 
the present model. For example, a BEV battery 
pack in Minneapolis may experience significantly 
lower temperatures and subsequently reduced 
vehicle efficiency and range. In addition, auxiliary 
loading placed on the PHEV resulting from 
operation of the active TMS with the potential to 
limit CD range is not considered. Auxiliary climate 
control loading has the potential to significantly 
impact the CD range of PEVs as shown in [11]. 
Future battery wear analysis may address 
temperature effects on cell internal resistance and 
capacity to quantify the impact of active TMS on 
PEV efficiency and utility. 

 
Figure 3. Average yearly battery temperature 

contributions from ambient, solar loading, active 
cooling, and internal heat generation for simulated 

PHEV. 

2.4 Design of Experiments 
Upon successful integration of the battery life 
model, the vehicle powertrain model, and the 
vehicle thermal model, the BEV and PHEV were 
run through a matrix of location, battery size, and 
usage scenarios with the primary outputs being 
battery resistance growth and capacity fade at 8 
years. An initial sensitivity analysis revealed 
ambient conditions, maximum allowable DoD, and 
VMT to have the greatest influence on battery 
wear. The design of experiments used to study the 
effects of these variables is described in greater 
detail below. 

2.4.1 U.S. Ambient Conditions 
An expected distribution of wear rates was desired 
for both vehicles subject to U.S. ambient 
conditions. Current hybrid electric vehicle (HEV) 
population data were used as an estimate for the 
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future distribution of PEVs. HEV population 
statistics highlight both large markets and regions 
where consumers have shown a tendency towards 
early adoption of advanced vehicle technology. 
The Polk Company’s 2010 light-duty vehicle 
registration dataset [12] was used to determine the 
top 100 U.S. metropolitan areas in terms of 
number of HEVs (see Figure 4). These locations 
account for approximately 75% of the total U.S. 
HEV population and represent a plausible estimate 
for the location distribution of PEV early adopters. 
Note from Table 3 moderate climates 
representative of the U.S. average. 
 

 
Figure 4. U.S. metropolitan areas with large HEV 

populations overlaid onto average ambient temperature 
map. (Credit: Evan Burton, NREL) 

Table 3. Top five U.S. metropolitan areas in terms of 
HEV population. 

Metropolitan Area # of HEVs 
Los Angeles, CA 149,042 
New York City, NY 86,773 
San Francisco, CA 82,756 
Washington, DC 66,720 
Chicago, IL 52,158 

 

 
Figure 5. Weighted distribution of average ambient 
temperatures based on existing HEV populations.  

 

Ambient temperature and solar irradiation data 
were assembled from NREL’s Typical 
Meteorological Year Database (TMY3) [13]. The 
national weighted distribution of average yearly 
ambient temperatures can be seen in Figure 5. The 
TMY3 data were aggregated into monthly 
averages because hourly and daily battery 
temperature variations were shown to have a 
negligible effect on wear rates in the battery life 
model. 

2.4.2 Depth of Discharge 
The effect of maximum allowable DoD on battery 
wear is explored for both the BEV and the PHEV. 
Each vehicle was assigned a nominal value for 
maximum allowable DoD and maximum state of 
charge (SOC). These values are adjusted over a 
feasible range for both the BEV and PHEV to 
explore the effect on wear (80%–94% and 55%–
87% maximum allowed DoD, respectively). The 
SOC window of the pack is adjusted relative to 
total energy to ensure that the available energy in 
the pack remains constant for all maximum 
allowable DoDs. By adjusting the maximum 
allowable DoD and maximum SOC, the life model 
will capture the wear effects of deep cycling and 
operation at high voltages. 
 
Adjusting pack energy has an impact on vehicle 
mass (and cost) and is subsequently related to CD 
range, efficiency, and acceleration. In light of these 
interactions, the maximum allowable DoD was 
restricted to values that produced vehicle range, 
efficiency, and acceleration values within ±1% of 
the nominal design. 

2.4.3 Vehicle Miles Traveled 
This analysis uses fleet-aggregated driving 
distance statistics in addition to longitudinal 
(multi-day) travel profiles to represent the 
variability of travel behavior, both from vehicle to 
vehicle and from day to day. Fleet-aggregated 
statistics represent a snapshot of the travel patterns 
for a large fleet of vehicles on a given day. In this 
study, fleet-aggregated statistics are taken from the 
2001 National Household Travel Survey (NHTS) 
[14] to reflect the behavior of the U.S. fleet. Using 
the NHTS, a distribution of fleet distances was 
created with a zero mile per day probability 
calculated as approximately 16% (about one day 
per week) such that the nominal VMT of the 
distribution was equal to 12,375 miles per year 
(19,916 km per year). This aggregated distribution 
is used as the default for analysis of ambient 
conditions and maximum allowable DoD.  
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To investigate the effect of VMT on battery wear, 
a large number of longitudinal distributions were 
simulated to capture the variable behavior of 
consumers. Longitudinal vehicle distributions 
track the driving behavior of individual vehicles 
over time and tend to exhibit a more focused set of 
distances with a small number of probability peaks 
representing routes frequently traveled. Figure 6 
shows three examples of longitudinal profiles. 
 

 
Figure 6. NHTS cross sectional distribution and three 

example longitudinal distributions taken from the 
Traffic Choices Study. 

Longitudinal distributions used in this analysis are 
derived from the Puget Sound Regional Council’s 
2007 Traffic Choices Study (TCS) [15]. The TCS 
was an investigation of the response of travel 
behavior to variable toll charges in the Seattle 
metropolitan area. The study placed global 
positioning systems in 445 vehicles from 275 
volunteer households that recorded driving 
patterns over an 18-month average per household 
period. The experiment started with a baseline 
period in which no artificial tolls were applied to 
affect behavior. We processed the data for use in 
this study by (i) only considering data collected 
during the approximately 3-month baseline period, 
(ii) eliminating vehicles for which no driving took 
place during the baseline period, (iii) eliminating 
vehicles for which significant errors in data 
recording were identified, and (iv) reducing 
detailed trip data to daily driving distance based 
upon the length of each trip and the date on which 
it was started. The resultant data were then 
converted into 398 longitudinal profiles of daily 
VMT with each profile representing one vehicle 
over multiple days. A distribution of annual VMT 
derived from this set of 398 longitudinal profiles is 
shown in Figure 7. 
 
VMT calculations for the BEV do not include 
driving days where the expected daily distance is 
greater than the nominal vehicle range. This 

assumption represents a conservative, near-term 
outlook. Alternate scenarios considering 
distributed charging, DC fast charging, or battery 
swapping could reflect greater utility for the BEV. 

 
Figure 7. Distribution of annual VMT for 398 TCS 

longitudinal profiles. 

3 Results 
The BEV and PHEV were simulated to determine 
battery wear rates under the conditions outlined in 
Table 4.  

Table 4. Tested wear conditions for the BEV and 
PHEV. 

BEV PHEV 
Distribution of U.S. 
ambient conditions 
(Portland, ME to 

Honolulu, HI) 

Distribution of U.S. 
ambient conditions 
(Portland, ME to 

Honolulu, HI) 
Range of max 
allowable DoD 

(80%–94%) 

Range of max 
allowable DoD 

(55%–87%) 
Range of VMT 

(398 TCS profiles) 
Range of CD VMT 
(398 TCS profiles) 

 

3.1 Battery Electric Vehicle 

3.1.1 U.S. Ambient Conditions 
Figure 8 and Figure 9 show resistance growth and 
capacity loss distributions after 8 years of wear for 
the BEV subject to U.S. ambient temperatures and 
U.S. average driving distributions. Resistance 
growth ranges from 12% to 26% while capacity 
loss ranges from 20% to 32% subject to ambient 
conditions. 
 
Wear rate variability is strongly linked to battery 
temperature variability. Figure 10 shows the 
distribution of yearly average battery temperatures 
experienced by the BEV. Pack temperature in the 
BEV was found to be greater than or equal to the 
ambient temperature in the absence of an active 
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TMS. The BEV battery pack is heated above 
ambient due to solar loading and internal heat 
generation during driving and charging. 

 
Figure 8. Weighted distribution of 8-year resistance 

growth for BEV exposed to 100 U.S. ambient conditions 
and NHTS national driving distribution. 

 
Figure 9. Weighted distribution of 8-year capacity loss 
for BEV exposed to 100 U.S. ambient conditions and 

NHTS national average driving distribution. 

 
Figure 10. Weighted distribution of average yearly 
battery temperature for BEV exposed to 100 U.S. 

ambient conditions and NHTS national average driving 
distribution. 

3.1.2 Depth of Discharge 
Battery wear rate is sensitive to both maximum 
DoD and maximum SOC allowed by the battery 
management system. This sensitivity was explored 

using the life model by simulating wear rates for a 
number of battery sizes in the BEV architecture. 
All battery sizes allowed the vehicle to discharge 
21.6 kWh of energy from the battery and achieved 
consistent range, acceleration, and efficiency 
values to within ±1% of the nominal vehicle 
design. Figure 11 shows resistance growth and 
capacity loss at 8 years for multiple battery sizes 
subject to ambient conditions in Los Angeles, CA. 

 
Figure 11. Eight-year resistance growth and capacity 

fade as a function of maximum allowable DoD for BEV 
exposed to ambient conditions in Los Angeles, CA and 

NHTS national driving distribution. 

As expected, wear can be seen to increase as the 
maximum allowable DoD window is expanded to 
maintain range for smaller battery packs. 
Increasing the maximum allowable DoD of the 
pack from 80% to 94% causes 8-year resistance 
growth and capacity fade values to increase by 6% 
and 8% respectively. Using near-term battery 
prices ($700/kWh production cost [16]) the 94% 
DoD scenario represents a beginning-of-life pack 
cost savings of $700 while the 80% DoD design 
increases cost by $2,100 (both relative to the 90% 
DoD pack). 

3.1.3 Vehicle Miles Traveled 
Battery wear in the BEV was subjected to 398 
longitudinal distance distributions as interpreted 
from the TCS. Figure 12 shows the results of this 
simulation in terms of resistance growth and 
capacity fade after 8 years subject to ambient 
conditions in Los Angeles, CA. 
 
Increased VMT can be seen to have opposing 
effects on resistance growth and capacity loss in 
the BEV for the simulated longitudinal profiles. 
Eight-year resistance growth increases by 18% 
over the selected range of VMT while capacity 
fade actually decreases by 5% at high VMT. 
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In the life model, capacity fade is dictated by the 
greater of two fade mechanisms, calendar and 
cycling. In this case, calendar fade is the dominant 
mechanism driven by average daily voltage. By 
increasing VMT, the battery is allowed to spend 
greater amounts of time resting at lower voltages 
(before daily recharge), which extends calendar 
life and thus reduces capacity fade. 

 
Figure 12. Eight-year resistance growth and capacity 

fade as a function of VMT for BEV exposed to ambient 
conditions in Los Angeles, CA and 398 longitudinal 

driving distributions. 

This analysis is restricted to the single-charge-per-
day scenario, and as such, driving days with 
distances longer than the nominal range of the 
vehicle are assumed to be accommodated by an 
alternative means of transportation. To represent 
the percentage of annual miles the BEV can 
achieve relative its original distribution, a BEV-
specific, multiple day individual utility factor 
(IUFBEV) is implemented according to Equation 5. 
As an example, a longitudinal distribution with an 
IUFBEV equal to 50% would be able to achieve half 
of its annual miles in the BEV with one charge per 
day with the remaining miles accommodated by 
some other means. 

  (5) 
 
A unique IUFBEV is calculated for each of the 398 
longitudinal profiles. The distribution of IUFBEV 
for the TCS is shown in Figure 13. The minimum 
and maximum of this distribution are 3% and 
100%, respectively, with the mean occurring at an 
IUFBEV of 75%. 

 
Figure 13. Distribution of IUF for BEV exposed to 

ambient conditions in Los Angeles, CA and 398 
longitudinal driving distributions over 8 years. 

3.2 Plug-In Hybrid Electric Vehicle 

3.2.1 U.S. Ambient Conditions 
Resistance growth and capacity fade distributions 
after 8 years of use for the PHEV subject to U.S. 
ambient temperatures and average driving 
distributions can be seen in Figure 14 and Figure 
15. Resistance growth ranges from 18%–26%, and 
capacity loss ranges from 14%–20% over 8 years 
subject to variation in ambient temperature. 
 
Figure 16 shows the distribution of battery 
temperatures experienced by the PHEV when 
exposed to U.S. ambient conditions. By reducing 
average battery temperatures and minimizing the 
effect of ambient conditions on the battery, the 
active TMS in the PHEV allows for reduced wear 
rates with relatively low amounts of variability 
with respect to regional climate differences 
experienced in the United States. 

 
Figure 14. Weighted distribution of 8-year resistance 

growth for PHEV exposed to 100 U.S. ambient 
conditions and NHTS national driving distribution. 
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Figure 15. Weighted distribution of 8-year capacity fade 
for PHEV exposed to 100 U.S. ambient conditions and 

NHTS national driving distribution. 

 
Figure 16. Weighted distribution of average yearly 
battery temperature for PHEV exposed to 100 U.S. 

ambient conditions and NHTS national driving 
distribution. 

3.2.2 Depth of Discharge 
Battery wear sensitivity to maximum allowable 
DoD was explored for the PHEV. All battery sizes 
allowed the vehicle to discharge 10.4 kWh of 
energy from the battery and achieved consistent 
CD range, acceleration, and efficiency values to 
within ±1% of the baseline case. Figure 17 shows 
resistance growth and capacity loss at 8 years for a 
range of battery sizes. 
 
Increasing the maximum allowable DoD window 
of the PHEV from 55% to 87% increased 
resistance growth by 18% while capacity loss 
increased by 8% over the same range. As the 
maximum allowable DoD window is expanded, 
increased resistance growth limits the power 
capability of the pack. Loss of pack power would 
be reflected at the vehicle level in an increased 
degree of blended electric/petroleum operation or 
reduced all-electric vehicle power. The 87% DoD 
scenario represents a beginning-of-life pack cost 
savings of $2,800 while the 55% DoD design 

increases cost by $2,100 (both relative to the 65% 
DoD pack). 

 
Figure 17. 8-year resistance growth and capacity fade as 

a function of maximum allowable DoD for PHEV 
exposed to ambient conditions in Los Angeles, CA and 

NHTS national driving distribution. 

3.2.3 Vehicle Miles Traveled 
The PHEV was subjected to an array of annual 
VMT scenarios according to the 398 longitudinal 
profiles derived from the TCS. Figure 18 shows 
the results of this analysis in terms of resistance 
growth and capacity fade after 8 years subject to 
ambient conditions in Los Angeles, CA. 

 
Figure 18. 8-year resistance growth and capacity loss as 

a function of VMT for PHEV exposed to ambient 
conditions in Los Angeles, CA and 398 longitudinal 

driving distributions. 

As with the BEV, increased VMT can be seen to 
have opposing effects on resistance growth and 
capacity loss. Eight-year resistance growth 
increases by 17% over the selected range of VMT 
while capacity fade decreases by 5% at high VMT. 
 
Note that the scatter of resistance growth and 
capacity fade is not as strongly correlated to VMT 
as was the BEV. This is due to the discrepancy in 
wear mechanisms between CD and CS operation 
in the PHEV. Wear induced by the deep cycles of 
CD operation significantly outweigh battery 
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degradation associated with the shallow cycling of 
CS operation. Battery wear in the PHEV can be 
seen to be more closely related with CD VMT, as 
shown in Figure 19. 

 
Figure 19. 8-year resistance growth and capacity fade as 
a function of CD VMT for PHEV exposed to ambient 
conditions in Los Angeles, CA and 398 longitudinal 

distributions. 

A unique IUF is again calculated for each of the 
398 longitudinal profiles. However, since the 
PHEV is assumed to have access to refueling 
stations, allowing it to operate in CS mode for a 
nearly unlimited distance, IUFPHEV is calculated as 
the ratio of annual miles achieved in CD mode to 
the total annual miles (see Equation 6). For 
example, a distribution with an IUFPHEV equal to 
50% would be able to achieve half of its annual 
miles in CD mode (with one charge per day) with 
the remaining miles accomplished with the PHEV 
in CS mode. 

  (6) 
 
The distribution of IUFPHEV for the TCS is shown 
in Figure 20. The minimum and maximum of this 
distribution are 9% and 100%, respectively, with 
the mean occurring at an IUFPHEV of 78%. 

 
Figure 20. Distribution of IUF for PHEV exposed to 

ambient conditions in Los Angeles, CA and 398 
longitudinal driving distributions over 8 years. 

4 Conclusions 
The sensitivity of battery wear to ambient 
conditions, battery size, and usage patterns has 
been explored. Major results of this analysis 
include: 
 
• The spectrum of climate and usage conditions 

PEVs are expected to face in the U.S. market 
suggest that the assumption of a single average 
ambient condition for battery wear 
calculations may not be representative of 
observed behavior in the fleet. 
 

• Ambient conditions have a large effect on 
battery wear for all variables considered in this 
study. The effects of ambient conditions on 
battery life can be mitigated by appropriate 
vehicle design. Thermal insulation and TMSs 
can be designed to improve fade rates for each 
vehicle platform. 
 

• TMSs that employ active battery heating/ 
cooling can reduce the amount of temperature 
variability in the pack. The passively cooled 
BEV experienced yearly average pack 
temperatures from 8°C to 26°C while the 
actively heated/cooled PHEV ranged from 
14°C to 24°C. 
 

• Maximum allowable DoD was found to 
significantly impact battery wear. Resistance 
growth and capacity fade were significantly 
reduced by designing a pack to operate with a 
relatively low maximum allowable DoD. 
However, pack design for low DoD can 
increase up-front vehicle costs by requiring 
additional total energy to achieve a desired CD 
range. For the modeled BEV, the extra battery 
capacity required for an 80% vs. 94% DoD 
window represents a roughly $2,800 increment 
in pack cost. For the modeled PHEV, the extra 
battery capacity required for a 55% vs. 87% 
DoD window represents a roughly $4,900 
increment in pack cost. Increased battery 
energy may also require components such as 
the electric motor to be resized to maintain 
vehicle acceleration. 
 

• The effect of VMT was explored for both the 
simulated BEV and PHEV. Battery wear was 
found to be a strong function of VMT for the 
BEV and of CD VMT for the PHEV. Under 
the single-charge-per-day assumption, 
increasing VMT was observed to decrease 
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capacity fade as longer driving trips reduced 
the amount of high voltage exposure to which 
the pack was subjected. This effect is believed 
to be pronounced by the unique characteristics 
of the NCA chemistry and would be expected 
to change significantly under alternative 
charge strategies (just-in-time, end-of-day, 
opportunity, 1x/day, 2x/day, etc.). 
 

• The PHEV can achieve a comparable 
distribution of IUF to the BEV over 8 years 
despite the substantially shorter CD range of 
the PHEV. For the 398 longitudinal 
distributions simulated, the BEV achieved an 
average IUF of 75% compared to an average 
of 78% for the PHEV. This result is a product 
of the assumption that driving trips longer than 
the range of the BEV will be accommodated 
by some other means of transportation. The 
effects of this assumption are magnified as the 
BEV experiences reduced range due to 
capacity loss. 

 
Future work may focus on improving the 
comparison of vehicle utility by incorporating 
effects of temperature on pack internal resistance 
and capacity. These effects are expected to reduce 
the utility of both BEVs and PHEVs as vehicle 
range is compromised at low pack temperatures 
and internal resistance increases at high 
temperatures. Additional analysis may also seek to 
develop a range of potential near term vehicle-to-
grid scenarios to determine the subsequent impact 
on battery wear and achievable VMT. 
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