
ABSTRACT
In a laboratory environment, it is cost prohibitive to run
automotive battery aging experiments across a wide range of
possible ambient environment, drive cycle, and charging
scenarios. Because worst-case scenarios drive the
conservative sizing of electric-drive vehicle batteries, it is
useful to understand how and why those scenarios arise and
what design or control actions might be taken to mitigate
them. In an effort to explore this problem, this paper applies a
semi-empirical life model of the graphite/nickel-cobalt-
aluminum lithium-ion chemistry to investigate calendar
degradation for various geographic environments and
simplified cycling scenarios. The life model is then applied to
analyze complex cycling conditions using battery charge/
discharge profiles generated from simulations of plug-in
electric hybrid vehicles (PHEV10 and PHEV40) vehicles
across 782 single-day driving cycles taken from a Texas
travel survey. Drive cycle statistics impacting battery life are
compared to standard test cycles.

INTRODUCTION
Electric-drive vehicles (EDVs) offer the potential to reduce
reliance on fossil fuels; however, the fuel displacement of
EDVs will be elusive until they achieve meaningful market
penetration. Batteries are often the most expensive
component of the EDV. Further reductions in battery cost,
weight, and volume are required to make the vehicles more
attractive in the marketplace. To compete with conventional
vehicles, EDVs and their batteries must achieve a 10- to 15-
year life [1]. Cost analyses of light-duty EDVs generally
show that periodic battery replacement (e.g., every 5 years) is
not warranted and the battery should be designed to last the
life of the vehicle [2].

A battery's aging behavior directly impacts the applications
and environments to which it is suited and to what degree the
battery must be oversized to achieve the desired service life.
Unlike batteries for consumer electronics, automotive
batteries face large variations in thermal environment and
duty-cycle. Hybrid-electric vehicle (HEV) batteries presently
achieve more than 10 years of life by using a small portion,
generally less than 25%, of their total energy. Conservatism
in battery sizing directly impacts battery cost. Worst-case
aging conditions drive the need to oversize batteries, and it is
important to explore degradation impacts for a range of
possible duty cycles to identify and understand such worst
cases. Control strategies that extend battery life may also help
reduce the market cost of EDVs.

From the system perspective, significant stressors to a
lithium-ion (Li-ion) battery include exposure to high
temperatures, exposure to high states of charge (SOCs) and
charge voltages, calendar age, depth of discharge (DOD), and
the rate and frequency of charge/discharge cycles. Various
models in the literature, ranging from physics-based [3,4] to
semi-empirical [5,6] and empirical [7,8,9], describe the
dependence of battery resistance and capacity fade on various
aging factors. Based on aging datasets for the graphite/nickel-
cobalt-aluminum (NCA) Li-ion chemistry, the authors [6,10]
developed a physically justified semi-empirical model
allowing interpolation/extrapolation from laboratory-tested
conditions to arbitrary duty cycles likely to be encountered in
real-world environments. The life degradation model is
suitable for battery system engineering and techno-economic
analysis of Li-ion batteries.

This paper specifically considers aging scenarios for plug-in
hybrid electric vehicles (PHEVs) with 10 and 40 mile (16 and
64 km, respectively) nominal electric ranges. The PHEVs,
referred to as PHEV10 and PHEV40, respectively, have two
modes of operation. In the charge depletion (CD) mode,
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vehicle motive power is primarily provided by the battery.
When the CD energy is depleted, the vehicle switches to a
charge sustaining (CS) mode supported by both a gasoline-
fueled internal combustion engine and battery-powered
motor. Recharge of the battery is achieved by connection to
the electrical grid.

The paper is organized as follows. Section II summarizes the
battery life model and gives example results for the
graphite/NCA chemistry. Section III analyzes battery aging
with time under variable temperature and SOC conditions
representative of a PHEV10 and PHEV40 in 100 different
geographic areas throughout the United States. Section IV
analyzes battery aging for a distribution of hypothetical
PHEV cycling scenarios. The cycling scenarios are generated
by simulating PHEV10 and PHEV40 vehicles using 782
second-by-second speed-versus-time driving profiles
recorded during single-day travel surveys of light-duty
vehicles in Texas.

LIFE MODEL
MODEL DESCRIPTION
Battery aging is caused by multiple phenomena related to
both cycling and time. Battery degradation is accelerated with
the DOD and frequency of cycling, elevated temperature, and
elevated voltage exposure, among other factors. At the
battery terminals, the observable effects of degradation are an
increase in resistance and a reduction in capacity. These two
effects can be correlated with power and energy losses that
cause battery end-of-life in an application. Mechanisms for
resistance growth include loss of electrical conduction paths
in the electrodes, fracture and isolation of electrode sites,
growth of film layers at the electrode surface, and
degradation of electrolyte. Mechanisms for capacity loss
include fracture, isolation, and chemical degradation of
electrode material, as well as permanent loss of cyclable
lithium from the system as a byproduct of side reactions.

Under storage conditions, the dominant fade mechanism is
typically growth of a resistive film layer at the electrode
surface. As the layer grows, cyclable lithium is also
consumed from the system, reducing available capacity. In
the present model, resistance growth and lithium capacity
loss are assumed to be proportional to the square-root of time,
t1/2, typical of diffusion-limited film-growth processes [3].
Under cycling-intense conditions, degradation is mainly
caused by structural degradation of the electrode matrix and
active sites. Cycling-driven degradation is assumed to be
proportional to the number of cycles, N.

Cell resistance growth due to calendar- and cycling-driven
mechanisms is assumed to be additive:

(1)

Cell capacity is assumed to be controlled by either loss of
cyclable Li or loss of active sites:

(2)

where

(3)

(4)

Equations (2, 3, 4) are simplifications of observations from
experimental data [11]. Note that electrode site capacity,
Qsites, in (2) may be expanded to include separate terms for
negative electrode sites and positive sites; however, it is
typical for one electrode to limit active-site capacity and
hence only one site-capacity term is included here.

Models (1), (3), and (4) are readily fit to a resistance or
capacity trajectory measured for one storage or cycling
condition. With multiple storage- and cycling-condition
datasets, functional dependence can be built for rate constants
a1(T,Voc,ΔDOD), a2(T,Voc,ΔDOD), b1(T,Voc,ΔDOD), and
c1(T,Voc,ΔDOD). For a general rate constant θ, the present
model assumes Arrhenius dependence on temperature T:

(5)

Tafel dependence on open-circuit voltage Voc:

(6)

and Wöhler dependence [12] on individual swings in depth-
of-discharge ΔDOD:

(7)
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The combination of individual stress factors is assumed to be
multiplicative:

(8)
The life model was fit to laboratory aging datasets [13, 14,
15, 16] for the Li-ion graphite/NCA chemistry. The NCA
chemistry has generally graceful aging characteristics and is
expected to achieve 8 or more years of life when sized
appropriately for a vehicle application. The present model
does not capture possible accelerating fade mechanisms that
could occur beyond 30% capacity fade. Other degradation
mechanisms not captured by the model include fast charge-
rate effects (other than temperature rise), the effect of
extreme temperatures (> 50°C, < 0°C), sudden damage due to
exceeding typical operating conditions, cell-to-cell
manufacturing variation, infant mortality due to latent
manufacturing defects, and long-term degradation effects that
may occur beyond 10 years of life.

Figure 1. Typical graphite/NCA degradation rates for
storage at constant SOC and temperature (solid lines).

Dotted lines show maximum allowable degradation rates
for example end-of-life requirements of 20% resistance

growth and 20% capacity fade.

Figure 1 shows resistance and capacity fade rates for storage
at different constant temperatures and SOCs. Fade rates are
relatively insensitive to temperature when the cell is stored at
less than 40% SOC. At SOC greater than 80%, there is strong
sensitivity to temperature. The life model captures SOC/
temperature interaction using the exponential of Voc/T term in
Eq. (6). In Figure 1, dotted lines provide reference examples
of maximum allowable degradation rates to achieve 5, 8, and
10 years of service life. These examples assume battery end-
of-life is controlled by 20% cyclable-lithium capacity loss
and 20% resistance growth (17% power loss). The value of
20% degradation is arbitrarily chosen for this example. Note
that cycling will cause additional degradation to the storage
results shown in Figure 1. Comparison of the 5-, 8-, and 10-
year life degradation-rate limits make apparent what
temperatures and SOC combinations are acceptable to
achieve desired service-life requirements under storage
conditions.

DUTY-CYCLE METRICS
For the purpose of comparing degradation resulting from
variable temperature and cycling profiles, life model
equations (1), (2), (3), (4), (5), (6), (7), (8) suggest useful
metrics for comparison of duty cycles on the basis of
effective temperature,

(9)

effective open-circuit voltage,

(10)

which can be expressed as effective SOC using look-up
tables, SOCeff = f(Voc,eff), and effective cycles-per-day,

(11)

With ΔDODref = 1, Eq. (11) is an effective number of 100%
ΔDOD cycles per day.

BATTERY AGING UNDER STORAGE
GEOGRAPHIC AMBIENT CONDITIONS
The geographic region in which a battery is used directly
influences the average lifetime temperature of the battery. To
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estimate possible distributions of future PHEV market
penetration throughout the United States, we consider 100
geographic locations with the greatest HEV light-duty vehicle
registration in 2010 as determined by the Polk Company [17].
Analyzing those 100 locations using typical meteorological
year (TMY) data [18], the hottest three cities based on annual
average temperature are Honolulu, Hawaii; Miami Florida;
and Phoenix, Arizona; with Honolulu the hottest based on
annual average temperature. Note that Phoenix becomes the
worst-case hot location when the impact of peak summertime
temperature and solar radiation are taken into account. The
coldest three cities are Portland Maine; Madison, Wisconsin;
and Minneapolis Minnesota; with Portland the coldest based
on annual average temperature. The median city is Baltimore,
Maryland. Figure 2 shows example temperature data for
Phoenix.

Figure 2. TMY temperature data for Phoenix, Arizona.

VEHICLE PASSIVE THERMAL
ENVIRONMENT
In addition to ambient temperature, battery temperature is
also affected by solar radiation when the vehicle is parked in
the sun. Figure 3 shows a thermal network model used to
simultaneously consider ambient temperature and solar
radiation effects on battery temperature. Using Matlab
System Identification Toolbox, thermal model parameters
(Table 1) were fit to match hourly measurements of ambient,
battery, and cabin temperatures and solar radiation for a 2005
Toyota Prius HEV parked during three days of testing in
Golden, Colorado. An additional one year of testing in
Phoenix on a similar Prius validated the thermal model's
prediction of battery temperature to within ½°C for the
Phoenix environmental conditions [19].

Figure 2. Thermal network model for prediction of
battery temperature variation in various environments.

Table 1. Thermal Network Model Parameters for 2005
Toyota Prius.

1Nickel metal hydride battery. Parameters fit to data from
2005 Toyota Prius HEV.
2Parameters used for this study, adjusted to account for
larger thermal mass and surface area of PHEV packs.

To analyze PHEV batteries in this study, Mb, Kab, and Kbc re
scaled from the Prius HEV to capture the greater thermal
mass and surface area of PHEV10 and PHEV40 battery packs
(Table 1). The Prius body type may represent something of a
worst case for solar radiation impact on battery temperature
as its battery is located in close proximity to the passenger
cabin and the windshield and hatchback windows have
shallow slopes. Solar radiation on a PHEV with a Prius-like
body type and battery location that is parked in full sun can
increase the yearly average battery temperature by 1.3°C to
3.1°C relative to a vehicle experiencing no solar radiation.
This number varies with the solar intensity of the geographic
location and battery thermal mass. The battery thermal mass
attenuates the magnitude of daily battery temperature swings
compared to daily ambient temperature swings. This
attenuation damps out the impact of peak daily temperatures
on battery life. Battery fade rates are on the order of 1%
slower when accounting for attenuated daily temperature
swings due to battery thermal mass using the vehicle thermal
network model compared to assuming battery temperature
equal to ambient temperature.
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AGING AT VARIABLE TEMPERATURE
AND CONSTANT SOC
Figure 3 shows capacity fade of a PHEV10 battery under
storage conditions in worst-case hot and cold cities, with
temperatures simulated using the vehicle thermal network
model. Small fluctuations visible in capacity fade rate with
time correspond to variable seasonal temperatures throughout
each year. Accounting for solar radiation through simulation
of the battery in its passive thermal environment has obvious
importance for predicting battery life in solar-intense
environments. In Figure 3, for Phoenix the difference
between the ambient-only and ambient + solar curves is 2.0
years or 21% difference in years to 80% remaining capacity
(Figure 3 inset). This result also suggests a difference in
battery life for vehicles parked in the shade versus in the sun,
although the magnitude of the difference may be less for
vehicles that are driven regularly.

In the experimental life testing of batteries, it is useful to
reduce annual temperature variation to a simplified
temperature profile. Four-season tests, using seasonal average
temperature (green dashed line in Figure 3), provide a
reasonable approximation of the full hour-by-hour
temperature profile when predicting life under storage
conditions. In contrast, simplification of the full temperature
data to a single yearly average temperature (blue dotted line)
does not reliably reproduce the battery fade pattern,
particularly for climates with large seasonal temperature
variation, such as Portland, Maine.

Figure 3. Capacity fade under storage at 90% SOC for
two geographic locations with and without impact of

solar loading on the parked vehicle. All cases utilize the
vehicle thermal network model (Figure 2). Blue and

green curves consider various simplifications of the full
hour-by-hour temperature data and should be compared

to the ambient + solar case.

Figure 4 is similar to Figure 1, but now considers the impact
of variable battery temperature resultant from hourly ambient
temperature profiles and solar loading on the vehicle cabin
for the PHEV10 and PHEV40 in the 100 climates. Result are
given at several constant values of SOC. The dotted lines in
Figure 4 provide reference degradation rates for aging at
constant temperature (similar to Figure 1). Here, the PHEV
batteries (symbols) age at a faster rate compared to what one
would conclude if analysis were based on average yearly
ambient temperature (dotted lines). This is due to (i)
accelerated wear caused by peak summer-seasonal
temperatures and (ii) temperature rise due to solar radiation.
Not shown, the variable temperature PHEV simulation results
for 100 cities would fall directly on top of the constant
temperature lines if variable temperature results were plotted
using effective battery aging temperature (Eq. 9) on the x-
axis rather than average yearly temperature.

Figure 4. Resistance growth and capacity fade rates
under storage at constant SOCs. Reference lines show

results for constant temperature. Symbols show
simulated results for PHEVs using hour-by-hour TMY
ambient temperature and solar radiation data for 100

U.S. cities.
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PHEV10 batteries (“small-filled diamond” symbols) show
slightly more degradation than PHEV40 batteries (“plus”
symbols) when stored in variable-temperature environments.
The smaller PHEV10 batteries have less thermal mass,
resulting in wider daily temperature swings and higher peak
temperatures each day. Under pure storage conditions, small
batteries, including those in HEVs and short-electric-range
PHEVs, may benefit from thermal insulation to passively
reduce daily peak temperatures. Insulation, however, is only
effective for battery designs that employ some means of
active cooling during driving and charging. For insulation to
be advantageous, the active cooling system must remove at
least as much heat as would normally be passively dissipated
to ambient as with a non-thermally insulated system.

In addition to thermally isolating the battery from the cabin,
battery life will also benefit by avoiding long dwells at high
SOC during peak summertime temperatures. The latter can be
achieved by oversizing the battery and prohibiting operation
at the highest SOCs by enforcing a maximum SOC limit
<100%. Too avoid excessive oversizing, alternative designs
might still allow operation of the batteries at high SOCs
under moderate conditions, but take extra measures when the
vehicle is parked in extremely hot conditions. If a grid
connection is available, the cooling system might be allowed
to run with some regular duty cycle. Or, lacking a grid
connection or suitable cooling system, energy might simply
be drawn out of the battery while the vehicle is parked until
an acceptable SOC for long-term storage at high temperatures
is reached (see Figure 1).

AGING AT VARIABLE TEMPERATURE
AND SOC
Strictly speaking, it is not possible to vary SOC without
charge/discharge cycling of the battery. Studies of solid-
electrolyte interface (SEI) growth under both storage and
cycling conditions generally show that SEI growth
predominantly correlates with time, not with number of
cycles. SEI growth-rate with time is determined by SOC,
temperature, and SEI thickness. In this manner, it is
appropriate to consider variable SOC and temperature and
their combined impact on time-related aging [t1/2terms in
Eqs. (1) and (3)].

Five variable SOC scenarios are used to investigate
temperature and SOC interactions with time. Table 2 and
Figure 5 define the five single-day SOC profiles. These
simplified profiles all assume two hours of driving per day,
one hour to deplete CD energy to 20% SOCmin, and two
hours to recharge. Two values of SOCmax, 80% and 100%,
are considered. Scenarios I and II consider a single driving
trip per day. Scenarios III, IV, and V consider two driving
trips per day. In scenarios I, II, and IV batteries are recharged
immediately after each driving trip and thus have high

average SOCs, near SOCmax. Scenario V employs a just-in-
time charging strategy in which the start of charging is
delayed as late as possible but still meets the constraint of
achieving full-charge in time for the next driving trip. This
scenario has the lowest average SOC, near SOCmin. Based on
the previous results we expect this low-SOC scenario to have
the lowest fade rate.

Table 2. Average SOC for five variable SOC scenarios.
All use SOCmin = 20%.

Figure 5. Five variable SOC scenarios. Descriptions are
given in Table 2. (SOC profiles include slight offsets for

clarity.)

Figure 6 shows degradation rates for the five scenarios and
two maximum SOC limits. For the same SOCmax, there is
negligible difference in degradation rate between scenarios I
and II. The only difference between these two single-driving-
trip-per-day scenarios is the time of day of the trip: In
scenario I, the driving trip occurs at 2:00 during the night
when daily temperatures are coolest, whereas in scenario II,
the trip occurs at 14:00 in the afternoon when daily
temperatures are hottest. Time of day of SOC variation does
not matter much when the battery temperature fluctuations
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are only determined by the passive thermal environment.
Scenario IV, consisting of two driving trips, at 8:00 in the
morning and 17:00 in the late afternoon, each followed by an
opportunity charge, produces similar aging results to
scenarios I and II. This is not surprising as scenarios I, II, and
IV all have similar average daily SOC (Table 2).

Figure 6. Capacity fade rate for batteries stored in Prius-
like thermal environment, 100 geographic locations, and

five variable SOC scenarios described in Table 2.

The two maximum SOCs investigated are SOCmax = 80%
and 100%. Lowering SOCmax from 100% to 80% adds
considerable expense to the battery, as a larger battery is
needed to meet the vehicle's useable CD energy requirement.
On the other hand, the lower SOC greatly reduces storage-
related fade for hot climates. For scenarios I, II, III, and IV,
fade rates are some 25% to 30% lower when battery
operation is restricted to 80% SOCmax versus allowing full
utilization up to 100% SOCmax. The just-in-time charging
scenario V, however, shows little sensitivity to SOCmax as
that scenario keeps the average SOC low regardless of
SOCmax limit (Table 2). The result points to a tangible
benefit to battery life by delaying the beginning of charge
until several hours before the next driving trip. In practice, it
will be difficult to realize the full benefits of just-in-time
charging without good knowledge of when the next driving
trip will occur.

BATTERY AGING UNDER CYCLING
A challenge in battery life prediction is that aging effects take
place across multiple time scales:

1.  Desired battery life time ∼10 years

2.  Changes in duty-cycle (due to adaptive controls, battery
swapping, vehicle resale, etc.) ∼ 1 month to 5 years

3.  Seasonal thermal variation ∼ 3 months

4.  Daily thermal variation ∼ 24 hours

5.  Drive cycle thermal variation ∼ 10s of minutes

6.  SOC variation ∼ 10s of seconds to hours

The previous sections compared the impact of variable
temperature and SOC on battery calendar life during storage.
This section presents initial work towards comparison of the
impact of variable PHEV cycling profiles on battery cycle
life. In the initial investigation of drive cycles, daily and
seasonal temperature variations are neglected. Changes in
duty cycle during the battery life are also not considered.

VEHICLE DRIVE CYCLES
This analysis considers two midsize PHEV passenger sedans
with batteries providing nominal 10- and 40-mile all-electric
ranges for the Urban Dynamometer Driving Schedule
(UDDS) driving cycle (Table 3). Drive cycles are taken from
a Texas Department of Transportation travel survey in San
Antonio and Austin, Texas [20]. The survey used GPS
loggers to record speed vs. time for 782 individual light-duty
vehicles over 24 hours. A NREL study used the 782 drive
cycles to estimate fuel economy of PHEV10 and PHEV40
sedans relative to conventional vehicles across variable drive
cycles [21].

Table 3. Vehicle model parameters.

BOL = beginning of life

EOL = end of life

IC = internal combustion

For prediction of battery life, it is necessary to make
assumptions on how often each drive cycle occurs. The
present analysis considers each drive cycle individually and
neglects variability in daily travel. One day of rest is assumed
for each 6.8 days of driving. This weighting is chosen so that
the average travel distance from the Texas survey, 38.9
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miles/day (62.6 km/day), matches the U.S. national average
for annual distance traveled, 12,375 miles/yr (19,916 km/yr)
[22].

Simulations assume the PHEV batteries are recharged at a 1.6
kW rate following the final driving trip of the day. Vehicle
simulation outputs are battery I2R heat generation during
driving and charging, temperature, SOC and open-circuit
voltage variation with time, which serve as inputs to the
battery life model. Various charging and battery thermal
management scenarios will be presented in future work.

Subsequent analysis compares metrics of the Texas cycles to
UDDS, HWY, and US06 standard drive-cycles. To achieve
an appropriate mix of CD and CS operation, either four or
five repetitions of the UDDS, HWY and US06 standard drive
cycles are simulated so that each cycle's daily travel distance
falls as close as possible to the Texas average of 38.9 miles/
day. These UDDS, HWY, and US06 cycles are weighted with
appropriate rest days such that the annual mileage of each is
12,375 miles/yr. The United States Advanced Battery
Consortium (USABC) cycle-life test protocol is also
simulated [23]. The PHEV10 USABC cycle simulated here
uses both the CD and CS portions of the test protocol. The
PHEV40 USABC cycle uses only the CD portion of the test.
This is to keep the implied daily travel distance as close as
possible to the Texas drive-cycle average.

DRIVE-CYCLE COMPARISON
Figure 7 shows histograms of daily travel distance, travel
time, average speed, and maximum acceleration. These
factors strongly influence battery charge/discharge rate, heat
generation rate, and daily energy throughput. Daily travel
distance results (Figure 7a) show 66% of the Texas driving
trips are less than 40 miles per day and 14% of drive cycles
are less than 10 miles per day. From a fuel economy

perspective, the PHEV40 will accommodate a greater
percentage of these drive cycles in the electric CD-mode of
operation compared to the PHEV10. The implication for
battery life is that PHEV40s will be less likely to discharge
through their entire CD energy compared to PHEV10s. Fewer
PHEV40s may encounter cycle life limitations compared to
PHEV10s.

Figure 8 gives statistics of charge/discharge-throughput
calculated with Eq. (11). The metric aggregates all single-day
cycling encountered by the battery into a single number. It
includes large perturbations in DOD due to CD cycles and
small perturbations due to acceleration/deceleration events
and CS cycles. The PHEV10 and PHEV40 both have a group
of drive cycles clustered near 0.55 to 0.65 100% DOD-
equivalent cycles/day. These groups correspond to the
useable SOC cycling windows chosen in sizing the battery
(Table 3) and represent the population of drive cycles that
fully deplete their battery's useable CD energy. For the
PHEV10, there are few drive-cycles with travel distance less
than 10 miles/day, and the left side of the histogram in Figure
8a is rather sparse. For the PHEV40, there are many drive-
cycles with travel distances less than 40 miles/day, and the
left side of the histogram in Figure 8b has a broad distribution
of partial cycles/day. Results in Figure 8 consider just a
single recharge of the battery per day. Charge/discharge-
throughput of the small PHEV10 battery, which will be
shown in future work, can increase significantly when
multiple recharges/day are considered. This would shift much
of the histogram in Figure 8a to the right, representing a more
severe cycle-life requirement.

Figure 7. Drive-cycle metrics (a) distance-traveled per day, (b) travel time per day, (c) average speed while driving, and (d)
maximum acceleration. Blue histograms represent 782 drive-cycles from Texas survey.
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Figure 8. Model-predicted 100% DOD-equivalent cycles
per day.

Figure 9 shows the distributions of PHEV10 and PHEV40
I2R battery heat generation rates for the 782 drive cycles. The
US06 cycle, with aggressive accelerations and high average
speed, produces heat at a 99th to 100th percentile rate. The
USABC cycle, a stair-stepped charge/discharge profile
lacking second-by-second charge/discharge perturbations,
does not generate much heat relative to the other cycles
according to the I2R battery heat generation model.

Figure 9. Model-predicted average heat generation rate
during driving.

Figure 10 shows life simulation results for the 782 Texas
drive-cycles for the PHEV10 and PHEV40. Distributions
show the prediction of remaining capacity after 8 years of
vehicle operation under each individual drive-cycle. The
average-, worst-, and best-case outcomes are similar for the
PHEV10 and the PHEV40. This is influenced by the battery
sizing assumptions in Table 3. Recall that the PHEV10 uses
50% of available energy at the beginning of battery life and

80% SOCmax. The PHEV40 uses 60% of available energy at
the beginning of battery life and 90% SOCmax.

Figure 10. Battery remaining capacity at Year 8 for 782
drive-cycles. Battery temperature is fixed at 28°C in this

simplified thermal scenario.

Small differences are evident between the two PHEVs'
distributions. The PHEV10 has a larger percentage of
vehicles encountering worst-case cycle-life compared to the
PHEV40. (In Figure 10, blue bars are taller than green bars in
the 0.75 to 0.77 remaining capacity range.) This difference is
caused by the high percentage of PHEV10s that utilize their
entire CD energy each day, as previously discussed for Figure
7a and Figure 8. At the opposite end of the histogram are
best-case battery life cases. These correspond to vehicles with
small daily driving distances. For these vehicles, battery life
is predominantly dictated by storage conditions. A small
group of PHEV10 batteries have an apparent longer life than
their PHEV40 counterparts because they are stored near 80%
SOCmax (PHEV10) rather than 90% SOCmax (PHEV40).

CONCLUSIONS
Battery life is dictated by complex interactions of temperature
history, SOC history, and charge/discharge cycling conditions
across multiple time scales. This paper presents an initial
attempt to analyze the impact of each separate effect on
PHEV battery life. The approach is based on a semi-empirical
battery life model for the graphite/NCA chemistry that allows
interpolation of battery degradation rates across different
temperature, open-circuit voltage, and DOD operating
profiles. Other chemistries or designs may have different
aging behavior.

Analysis of storage-related degradation for 100 U.S.
geographic environments suggests several strategies to reduce
fade related to calendar age. Storage degradation in worst-
case hot climates and temperatures can be mitigated by
reducing the time spent at high SOC. One approach is to
overdesign the system with a maximum SOC limit less than
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100%, for example, by using the battery only up to 80% or
90% SOCmax. Of course, sizing the battery in this
conservative manner makes it more expensive. For batteries
designed with a conservative SOCmax, an adaptive control
strategy might gradually increase SOCmax and allow
increased electric-range performance for vehicle not
experiencing worst-case thermal conditions. Seasonal
adjustments may increase SOCmax during cold winter months
to help compensate for sluggish battery performance and
vehicle electric range at cold temperatures. Other strategies to
reduce time spent at high SOC include just-in-time (delayed)
charging and/or intentional partial-depletion of battery energy
from a vehicle parked in a hot environment (e.g., by running
the cooling system) until an acceptable SOC for long-term
storage is reached. Calendar life may also be greatly
increased by using a refrigeration system and insulation to
isolate the battery from peak hot temperatures. Such a system
may operate on a regular periodic basis for a parked vehicle
connected to the electrical grid.

Analysis of cycling-related degradation compared attributes
of UDDS, HWY, US06 and USABC cycles to 782 single-day
drive-cycles recorded in a light-duty vehicle travel survey in
Texas. Important attributes of driving cycles are cyclic
throughput-dictating the daily average number of charge/
discharge cycles, and heat generation rate-dictating
requirements for battery thermal management system design.
Worst-case PHEV driving and charging patterns are those
with high utilization of charge-depletion mode of operation.
However, electricity is less expensive than petroleum
operation and can financially offset shorter battery life.
Future work will investigate driving and charging patterns in
further detail to identify designs and controls that extend the
life and reduce the cost of EDV battery systems.

REFERENCES
1.  United States Council for Automotive Research, USABC
Plug-in HEV Battery Goals, http://uscar.org/guest/
article_view.php?articles_id=85.
2.  Wood, E., Alexander, M., Bradley, T.H., “Investigation of
battery end-of-life conditions for plug-in hybrid electric
vehicles,” J. Power Sources 196 (2011) 5147-5154.
3.  Ploehn, H.J., Ramadass, P., White, R.E., “Solvent
diffusion model for aging of lithium-ion battery cells,” J.
Electrochemical Society, 151 (3), 2004, A456-A462.
4.  Safari, M., Morcrette, M., Teyssot, A., Delacourt, C., “A
Multimodal physics-based aging model for life prediction of
Li-ion batteries” J. Electrochem. Soc., 156(3), A145-A153
(2009)
5.  Spotnitz, R., “Simulation of capacity fade in lithium-ion
batteries,” J. Power Sources, 113(1), 2003, 72-80.
6.  Smith, K., Markel, T., Pesaran, A., “PHEV battery trade-
off study and standby thermal control,” 26th Int. Battery
Seminar & Exhibit, Fort Lauderdale, FL, March 16-19, 2009.

7.  Idaho National Laboratory, Technology Life Verification
Testing, Idaho Falls, ID, 2010, INEEL-EXT-04-01986.

8.  Wang, J., Liu, P., Hicks-Garner, J., Sherman, E.,
Soukiazian, S., Verbrugge, M., Tataria, H., Musser, J.,
Finamore, P., “Cycle-life model for graphite-LiFePO4 cells,”
J. Power Sources 196(2011) 3942-3948.

9.  Peterson, S., Apt, J., Whitacre, J. (2010) “Lithium-ion
battery cell degradation resulting from realistic vehicle and
vehicle-to-grid utilization,” J. of Power Sources, v195
p2385-2392.

10.  National Renewable Energy Laboratory, “Design of
Electric Drive Vehicle Batteries for Long Life and Low
Cost,” Golden, CO, 2010, NREL/PR-540-48933.

11.  Santhanagopalan, S., Zhang, Q., Kumaresan, K., White,
R.E., “Parameter estimation and life modeling of lithium-ion
cells,” J. Electrochem. Soc. 155(4) 2008, A345-A353.

12.  Verbrugge, M.W., Cheng, Y.-T., “Stress and strain-
energy distributions within diffusion-controlled insertion-
electrode particles subjected to periodic potential
excitations,” J. Electrochem. Society, 156(11) 2009, A927-
A937.

13.  Broussely, M., “Aging of Li-ion batteries and life
prediction, an update,” 3rd Int. Symposium on Large Li-ion
Battery Technology and Application, Long Beach, California,
May 2007.

14.  Hall, J., Lin, T., Brown, G., Biensan, P., and Bonhomme,
F., “Decay processes and life predictions for lithium ion
satellite cells,” 4th Int. Energy Conversion Engineering
Conf., San Diego, California, June 2006.

15.  Smart, M., Chin, K., Whitcanack, L., and Ratnakumar,
B., “Storage characteristics of Li-ion batteries,” NASA
Battery Workshop, Huntsville, Alabama, Nov. 2006.

16.  Broussely, M., Chap. 13 in: Advances in Li-ion Batteries,
van Schalkwijk, W., and Scrosati, B., editors. New York:
Kluwer Academic / Plenum Publishers, 2002.

17.  R.L. Polk & Co., https://polk.com.

18.  National Renewable Energy Laboratory, National Solar
Radiation Database, Typical Meteorological Year Database 3,
Golden, CO.

19.  National Renewable Energy Laboratory Strategic
Initiative Working Group Report: Thermal Model of Gen 2
Toyota Prius, Kandler Smith, Ahnvu Le, Larry Chaney.

20.  Ojah, M., Pearson, D., “2006 Austin/San Antonio GPS-
Enhanced Household Travel Survey,” Texas Transportation
Institute, August 2008.

21.  Earleywine, M., Gonder, J., Markel, T., Thornton, M.,
“Simulated Fuel Economy and Performance of Advanced
Hybrid Electric and Plug-in Hybrid Electric Vehicles Using
In-Use Travel Profiles,” Vehicle Power and Propulsion
Conference, Lille, France, Sept. 2010.

Gratis copy for Kandler Smith
Copyright 2012 SAE International

E-mailing, copying and internet posting are prohibited
Downloaded  Thursday, June 07, 2012 05:57:08 PM

http://uscar.org/guest/article_view.php?articles_id=85
http://uscar.org/guest/article_view.php?articles_id=85
https://polk.com
rweisbru
Rectangle



22.  U.S. Department of Transportation, Federal Highway
Administration, 2005 National Household Travel Survey.
URL: http://nhts.ornl.gov.

23.  Idaho National Laboratory, Battery Test Manual For
Plug-In Hybrid Electric Vehicles, Idaho Falls, ID, 2010, INL/
EXT-07-12536.

CONTACT INFORMATION
The authors may be reached via email at

kandler.smith@nrel.gov

matthew.earleywine@nrel.gov

eric.wood@nrel.gov

jeremy.neubauer@nrel.gov

ahmad.pesaran@nrel.gov

ACKNOWLEDGMENTS
The authors gratefully acknowledge funding and guidance
from the U.S. Department of Energy Office of Vehicle
Technologies, Energy Storage program managers David
Howell and Brian Cunningham and for data and helpful
discussions from Loïc Gaillac, John C. Hall, Tony Markel,
Naum Pinsky, and Marshall Smart.

The Engineering Meetings Board has approved this paper for publication. It has
successfully completed SAE's peer review process under the supervision of the session
organizer. This process requires a minimum of three (3) reviews by industry experts.

ISSN 0148-7191

Positions and opinions advanced in this paper are those of the author(s) and not
necessarily those of SAE. The author is solely responsible for the content of the paper.

SAE Customer Service:
Tel: 877-606-7323 (inside USA and Canada)
Tel: 724-776-4970 (outside USA)
Fax: 724-776-0790
Email: CustomerService@sae.org
SAE Web Address: http://www.sae.org
Printed in USA

Gratis copy for Kandler Smith
Copyright 2012 SAE International

E-mailing, copying and internet posting are prohibited
Downloaded  Thursday, June 07, 2012 05:57:08 PM

http://nhts.ornl.gov
mailto:kandler.smith@nrel.gov
mailto:matthew.earleywine@nrel.gov
mailto:eric.wood@nrel.gov
mailto:jeremy.neubauer@nrel.gov
mailto:ahmad.pesaran@nrel.gov
rweisbru
Rectangle




