All Composite Data Products: National FCEV Learning Demonstration With Updates Through October 5, 2011

Keith Wipke, Sam Sprik, Jennifer Kurtz, Todd Ramsden, Chris Ainscough, and Genevieve Saur
NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge
Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone: 865.576.8401
fax: 865.576.5728
email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from:
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
phone: 800.553.6847
fax: 703.605.6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/help/ordermethods.aspx

Cover Photos: (left to right) PIX 16416, PIX 17423, PIX 16560, PIX 17613, PIX 17436, PIX 17721

Printed on paper containing at least 50% wastepaper, including 10% post consumer waste.
All Composite Data Products: National FCEV Learning Demonstration

With Updates Through October 5, 2011

Keith Wipke, Sam Sprik, Jennifer Kurtz, Todd Ramsden, Chris Ainscough, Genevieve Saur
CDP#1: Hours Accumulated and Projected Hours to 10% Stack Voltage Degradation

DOE Learning Demonstration Fuel Cell Stack Durability: Based on Data Through 2009 Q2

Actual Operating Hours Accumulated To-Date

Projected Hours to 10% Voltage Degradation

Max Projection
Avg Projection

Gen1
Gen2
Gen1
Gen2
Gen1
Gen2

Max Hrs Accumulated\(^{1,2}\)
Avg Hrs Accumulated\(^{1,3}\)
Projection to 10% Voltage Degradation\(^{4,5,6}\)

Time (Hours)

(1) Range bars created using one data point for each OEM. Some stacks have accumulated hours beyond 10% voltage degradation.
(2) Range (highest and lowest) of the maximum operating hours accumulated to-date of any OEM's individual stack in "real-world" operation.
(3) Range (highest and lowest) of the average operating hours accumulated to-date of all stacks in each OEM's fleet.
(4) Projection using on-road data -- degradation calculated at high stack current. This criterion is used for assessing progress against DOE targets, may differ from OEM's end-of-life criterion, and does not address "catastrophic" failure modes, such as membrane failure.
(5) Using one nominal projection per OEM: "Max Projection" = highest nominal projection, "Avg Projection" = average nominal projection. The shaded projection bars represents an engineering judgment of the uncertainty on the "Avg Projection" due to data and methodology limitations. Projections will change as additional data are accumulated.
(6) Projection method was modified beginning with 2009 Q2 data, includes an upper projection limit based on demonstrated op hours.

National Renewable Energy Laboratory 2 Innovation for Our Energy Future
(1) Range is based on fuel economy and usable hydrogen on-board the vehicle. One data point for each make/model.
(2) Fuel economy from unadjusted combined City/Hwy per DRAFT SAE J2572.
(3) Fuel economy from EPA Adjusted combined City/Hwy (0.78 x Hwy, 0.9 x City).
(4) Excludes trips < 1 mile. One data point for on-road fleet average of each make/model.
(5) Fuel economy calculated from on-road fuel cell stack current or mass flow readings.
(1) Fuel cell system includes fuel cell stack, BOP and H2 storage, but excludes power electronics, battery storage, and electric drive.
CDP#4: Fuel Cell System Specific Power, Including Hydrogen Storage

FC System (Including Hydrogen Storage) Specific Power (W/kg)

- Gen 1
- Gen 2

2010 and 2015 FreedomCAR Research Goal

Specific Power (W/kg)

(1) Fuel cell system includes fuel cell stack, BOP and H2 storage, but excludes power electronics, battery storage, and electric drive.
CDP#5: Fuel Cell Start Times from Sub-Freezing Soak Conditions

Fuel Cell Vehicle Start Time from Sub-Freezing Soak Condition

Time [s]

- 12 hr Equilibrium
- 12 hr
- Equilibrium

Time to Drive Away
Time to Max FC Power

(1) Learning Demo soak temperature for freeze tests were between -9 and -20 °C
(2) 2010 & 2015 DOE MYPP Cold Start Up Time Target: 30 seconds to 50% of rated power from -20 °C (soak duration not specified).
CDP#6: Fuel Economy

Fuel Economy

(1) One data point for each make/model. Combined City/Hwy fuel economy per DRAFT SAE J2572.
(2) Adjusted combined City/Hwy fuel economy (0.78 x Hwy, 0.9 x City).
(3) Excludes trips < 1 mile. One data point for on-road fleet average of each make/model.
(4) Calculated from on-road fuel cell stack current or mass flow readings.
Operating Time at Fuel Cell Stack Voltage Levels: DOE Fleet

- <50%
- 50-55%
- 55-60%
- 60-65%
- 65-70%
- 70-75%
- 75-80%
- 80-85%
- 85-90%
- 90-95%
- 95-100%
- >100%

% Max Fuel Cell Stack Voltage

- All time
- Time at low current
CDP#8: FC System Efficiency

Fuel Cell System\(^1\) Efficiency\(^2\)

<table>
<thead>
<tr>
<th></th>
<th>Eff. at 25% Pwr</th>
<th>Eff. at 100% Pwr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen1</td>
<td>51 - 58%</td>
<td>30 - 54%</td>
</tr>
<tr>
<td>Gen2</td>
<td>53 - 59%</td>
<td>42 - 53%</td>
</tr>
</tbody>
</table>

\(^1\) Gross stack power minus fuel cell system auxiliaries, per DRAFT SAE J2615. Excludes power electronics and electric drive.

\(^2\) Ratio of DC output energy to the lower heating value of the input fuel (hydrogen).

\(^3\) Individual test data linearly interpolated at 5, 10, 15, 25, 50, 75, and 100\% of max net power. Values at high power linearly extrapolated due to steady state dynamometer cooling limitations.
CDP#9: Safety Reports – Vehicles

Safety Reports - Vehicle Operation

- Tank Scratch
- Traffic Accident
- H2 Leak - During Fueling
- H2 Alarm - Fuel System
- H2 Alarm - Passenger Compartment

Number of Reports

Created: Aug-15-11 1:56 PM
NREL cdp_fcev_09

National Renewable Energy Laboratory
Innovation for Our Energy Future
Targets are set for advanced materials-based hydrogen storage technologies.
Targets are set for advanced materials-based hydrogen storage technologies.
CDP#12: Vehicle Hydrogen Tank Cycle Life

Hydrogen Tank Cycle Life

1 Data reported reference NGV2, HGV2, or EIHP standards.
2 Some near-term targets have been achieved with compressed and liquid tanks. Emphasis is on advanced materials-based technologies.
Production conversion efficiency is defined as the energy of the hydrogen out of the process (on an LHV basis) divided by the sum of the energy into the production process from the feedstock and all other energy as needed. Conversion efficiency does not include energy used for compression, storage, and dispensing.

The efficiency probability distribution represents the range and likelihood of hydrogen production conversion efficiency based on monthly conversion efficiency data from the Learning Demonstration.
Histogram of Fueling Rates
350 vs 700 bar Fills - All Light Duty Through 2009Q4

<table>
<thead>
<tr>
<th>Fill Type</th>
<th>Avg (kg/min)</th>
<th>%>1</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>350 bar</td>
<td>0.82</td>
<td>29%</td>
<td>19659</td>
</tr>
<tr>
<td>700 bar</td>
<td>0.63</td>
<td>4%</td>
<td>5590</td>
</tr>
</tbody>
</table>

5 minute fill of 5 kg at 350 bar

3 minute fill of 5 kg at 350 bar

2006 MYPP Tech Val Milestone
2012 MYPP Tech Val Milestone
Projected Early Market 1500 kg/day Hydrogen Cost

Key H2 Cost Elements and Ranges

<table>
<thead>
<tr>
<th>Input Parameter</th>
<th>Minimum (P10)</th>
<th>Maximum (P90)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Direct Capital Cost</td>
<td>$10M</td>
<td>$25M</td>
</tr>
<tr>
<td>Facility Capacity Utilization</td>
<td>85%</td>
<td>95%</td>
</tr>
<tr>
<td>Annual Maintenance & Repairs</td>
<td>$150K</td>
<td>$600K</td>
</tr>
<tr>
<td>Annual Other O&M</td>
<td>$100K</td>
<td>$200K</td>
</tr>
<tr>
<td>Annual Facility Land Rent</td>
<td>$50K</td>
<td>$200K</td>
</tr>
<tr>
<td>Natural Gas Prod. Efficiency (LHV)</td>
<td>65%</td>
<td>75%</td>
</tr>
<tr>
<td>Electrolysis Prod. Efficiency (LHV)</td>
<td>35%</td>
<td>62%</td>
</tr>
</tbody>
</table>

(1) Reported hydrogen costs are based on estimates of key cost elements from Learning Demonstration energy company partners and represent the cost of producing hydrogen on-site at the fueling station, using either natural gas reformation or water electrolysis, dispensed to the vehicle. Costs reflect an assessment of hydrogen production technologies, not an assessment of hydrogen market demand.

(2) Hydrogen production costs for 1500 kg/day stations developed using DOE’s H2A Production model, version 2.1. Cost modeling represents the lifetime cost of producing hydrogen at fueling stations installed during an early market rollout of hydrogen infrastructure and are not reflective of the costs that might be seen in a fully mature market for hydrogen installations. Modeling uses default H2A Production model inputs supplemented with feedback from Learning Demonstration energy company partners, based on their experience operating on-site hydrogen production stations. H2A-based Monte Carlo simulations (2,000 trials) were completed for both natural gas reforming and electrolysis stations using default H2A values and 10th percentile to 90th percentile estimated ranges for key cost parameters as shown in the table. Capacity utilization range is based on the capabilities of the production technologies and could be significantly lower if there is inadequate demand for hydrogen.

(3) DOE has a hydrogen cost goal of $2-$3/kg for future (2015) 1500 kg/day hydrogen production stations installed at a rate of 500 stations per year.
CDP#16: Fuel Cell Stack Trips Per Hour Histogram

Segmented Trips/Hour Histogram: DOE Fleet

*Trips/Hour based on 50 hour segments spanning stack operating period

NREL CDP16
Created: Mar-09-10 4:13 PM
CDP#17: Statistics of Trips/Hour vs. Operating Hour

Statistics of Trips/Hour vs Operating Hour: DOE Fleet

Data Range
25th & 75th Percentiles
Group Median
Outlier

Trips/Hour based on 50 hour segments spanning stack operating period.
CDP#18: Refueling Rates

Histogram of Fueling Rates
Vehicle and Infrastructure

- 6,219 Events
 - Average = 0.65 kg/min
 - 5% >1 kg/min

- 25464 Events
 - Average = 0.77 kg/min
 - 23% >1 kg/min

- 5 kg in 3 minutes
- 5 kg in 5 minutes

2006 MYPP Tech Val Milestone
2012 MYPP Tech Val Milestone
Through 2009Q4
After 2009Q4
CDP#19: Time Between Trips & Ambient Temperature

![Graph showing the time between trips with ambient temperature for the DOE Fleet.](image-url)

- **Time Between Trips with Ambient Temperature: DOE Fleet**
- **Trip Frequency [%]**
- **Time Between Trips with Ambient Temperature:**
 - **<0°C**
 - **0-10°C**
 - **10-24°C**
 - **24-40°C**
 - **>40°C**

Created: Mar-09-10 4:13 PM

National Renewable Energy Laboratory 20 Innovation for Our Energy Future
An INCIDENT is an event that results in:
- a lost time accident and/or injury to personnel
- damage/unplanned downtime for project equipment, facilities or property
- impact to the public or environment
- any hydrogen release that unintentionally ignites or is sufficient to sustain a flame if ignited
- release of any volatile, hydrogen containing compound (other than the hydrocarbons used as common fuels)

A NEAR-MISS is:
- an event that under slightly different circumstances could have become an incident
- unplanned H2 release insufficient to sustain a flame
CDP#21: Range of Ambient Temperature During Vehicle Operation

Average Ambient Trip Temperature: DOE Fleet

- Max Op = 140.0 °F
- Min Op = -5.8 °F
- 1.4 % trips below 0 °C
- 28.2 % trips above 28 °C
Vehicle Hours: All OEMs, Gen 1 and Gen 2
Through 2011 Q2

Total Vehicle Hours = 146,584

(1) Retired vehicles have left DOE fleet and are no longer providing data to NREL
Some project teams concluded in Fall/Winter 2009

National Renewable Energy Laboratory
Innovation for Our Energy Future
Vehicle Miles: All OEMs, Gen 1 and 2
Through 2011 Q2

Total Vehicle Miles Traveled = 3,394,302

(1) Retired vehicles have left DOE fleet and are no longer providing data to NREL
Some project teams concluded in Fall/Winter 2009
CDP#24: Cumulative Vehicle Miles Traveled

Cumulative Vehicle Miles: All OEMs, Gen 1 and Gen 2

Through 2011 Q2

Vehicle Miles Traveled

NREL cdp_fcev_24
Created: Sep-01-11 11:37 AM
Vehicle Deployment by On-Board Hydrogen Storage Type

- 700 bar on-road
- 350 bar on-road
- Liquid H2 on-road
- 700 bar retired
- 350 bar retired
- Liquid H2 retired

(1) Retired vehicles have left DOE fleet and are no longer providing data to NREL
(2) Two project teams concluded in Fall/Winter 2009

National Renewable Energy Laboratory
Innovation for Our Energy Future
CDP#26: Cumulative H2 Produced or Dispensed

147,500 kg of hydrogen produced or dispensed since project inception

*Some project teams concluded in Fall/Winter 2009
CDP#27: Hydrogen Quality Index

H₂ Calculated Quality Index by Year and Production Method

Data is from Learning Demonstration and California Fuel Cell Partnership testing.
Year 1 is 2005Q3-2006Q2, Year 2 is 2006Q3-2007Q2, Year 3 is 2007Q3-2008Q2, Year 4 is 2008Q3-2009Q2, and Year 5 is 2009Q3-2009Q4.
CDP#28: Hydrogen Fuel Constituents

Data is from Learning Demonstration and California Fuel Cell Partnership testing.

*Total S calculated from SO2, COS, H2S, CS2, and Methyl Mercaptan (CH3SH).
CDP#28 Supplemental: Hydrogen Constituents by Year and Production Method

Data is from Learning Demonstration and California Fuel Cell Partnership testing. Year 1 is 2005Q3-2006Q2, Year 2 is 2006Q3-2007Q2, Year 3 is 2007Q3-2008Q2, Year 4 is 2008Q3-2009Q2, and Year 5 is 2009Q3-2009Q4.

*Total S calculated from SO2, COS, H2S, CS2, and Methyl Mercaptan (CH3SH).

(This slide contains 18 graphs (1 for each constituent): view in slide-show mode)
Histogram of Fueling Rates
Comm vs Non-Comm Fills - All Light Duty Through 2009Q4

Fill Type	Avg (kg/min)	% > 1
Comm | 0.86 | 30%
Non-Comm | 0.66 | 12%

- 5 minute fill of 5 kg at 350 bar
- 3 minute fill of 5 kg at 350 bar

2006 MYPP Tech Val Milestone
2012 MYPP Tech Val Milestone
CDP#30: Infrastructure Maintenance

Maintenance: Average Labor Hours Per Station Since Inception
Through 2009 Q4

- Replacement
- Repair
- Other
- Check Only
- Adjustment

Scheduled
Un-Scheduled

Maintenance: Average Number of Events Per Station Since Inception

Comparison of Scheduled/Un-Scheduled Maintenance

Hours
of Events

NREL CDP30
Created: Mar-10-10 9:30 AM

National Renewable Energy Laboratory 32 Innovation for Our Energy Future
CDP#31: Number of Online Stations

Cumulative Stations

- Continuing Outside of Project
- Retired Stations
- Current Project Stations

Number of Stations

Reporting Period

Number of Stations:
- 7
- 12
- 6
- 0
- 5
- 10
- 15
- 20
- 25
Learning Demonstration Hydrogen Stations by Type

<table>
<thead>
<tr>
<th>Number of Stations</th>
<th>Delivered</th>
<th>On-Site Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressed</td>
<td>7</td>
<td>Operating Outside of Project</td>
</tr>
<tr>
<td>Liquid</td>
<td>3</td>
<td>Operating Within Project</td>
</tr>
<tr>
<td>Pipeline</td>
<td>1</td>
<td>Historical 2005-2009*</td>
</tr>
<tr>
<td>Reforming</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Electrolysis</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Some project teams concluded Fall/Winter 2009. Markers show the cumulative stations operated during the 2005-2009 period.
CDP#33: Percentage of Theoretical Range Traveled Between Refuelings

Range Histogram: All OEMs

1. Range calculated using the combined City/Hwy fuel economy from dyno testing (not EPA adjusted) and usable fuel on board.
2. Some refueling events are not detected/reported due to data noise or incompleteness.
1. Calculated using the combined City/Hwy fuel economy from dyno testing (non-adjusted) and usable fuel on board.
2. Applying window-sticker correction factors for fuel economy: 0.78 x Hwy and 0.9 x City.
3. Using fuel economy from on-road data (excluding trips < 1 mile, consistent with other data products).
CDP#35: Average Refuelings Between Infrastructure Safety Reports

Infrastructure Safety Trend and Number of Stations Through 2009 Q4

Number of Stations

Avg Refuelings Between Safety Reports

Reporting Period

Number of Stations

Avg # of Refuelings Between Safety Reports

Created: Mar-23-10 2:43 PM
CDP#36: Type of Infrastructure Safety Report By Quarter

An INCIDENT is an event that results in:
- a lost time accident and/or injury to personnel
- damage/unplanned downtime for project equipment, facilities or property
- impact to the public or environment
- any hydrogen release that unintentionally ignites or is sufficient to sustain a flame if ignited
- release of any volatile, hydrogen containing compound (other than the hydrocarbons used as common fuels)

A NEAR-MISS is:
- an event that under slightly different circumstances could have become an incident
- unplanned H2 release insufficient to sustain a flame
An INCIDENT is an event that results in:
- a lost time accident and/or injury to personnel
- damage/unplanned downtime for project equipment, facilities or property
- impact to the public or environment
- any hydrogen release that unintentionally ignites or is sufficient to sustain a flame if ignited
- release of any volatile, hydrogen containing compound (other than the hydrocarbons used as common fuels)

A NEAR-MISS is:
- an event that under slightly different circumstances could have become an incident
- unplanned H2 release insufficient to sustain a flame
CDP#38: Refueling Times

Histogram of Fueling Times
Vehicle and Infrastructure

- Average = 3.26 min
- 86% < 5 min

- Average = 4.47 min
- 70% < 5 min

2006 MYPP Tech Val Milestone (5 kg in 5 min)
2012 MYPP Tech Val Milestone (5 kg in 3 min)
Through 2009Q4
After 2009Q4
CDP#39: Refueling Amounts

Histogram of Fueling Amounts
Vehicle and Infrastructure

- **Average = 2.13 kg** (Through 2009Q4)
- **Average = 2.67 kg** (After 2009Q4)

National Renewable Energy Laboratory
Innovation for Our Energy Future
CDP#40: H2 Tank Level at Refueling

Median Tank Level (At Fill) = 42%
Median Tank Level (At Fill) = 50%

Tank Levels: DOE Fleet

Through 2009Q4
After 2009Q4

14%

1. Some refueling events not recorded/detected due to data noise or incompleteness.
2. The outer arc is set at 20% total refuelings.
3. If tank level at fill was not available, a complete fill up was assumed.

Total refuelings

Through 2009Q4 = 27113
After 2009Q4 = 9034

Median Tank Level (At Fill) = 50%
Tank Level Medians (At Fill): DOE Fleet, All Vehicles

Total refuelings\(^1\) = 27113

1. Some refueling events not recorded/detected due to data noise or incompleteness.
2. If tank level at fill was not available, a complete fill up was assumed.
CDP#42: Refueling by Time of Day

1. Fills between 6 AM & 6 PM
2. The outer arc is set at 12% total fill.
3. Some events not recorded/detected due to data noise or incompleteness.

% of fills b/t 6 AM & 6 PM: 89.7%
% of fills b/t 6 AM & 6 PM: 88.5%

Total Fill^3 Events = 22657
Total Fill^3 Events = 9054
CDP#43: Refueling by Day of Week

Refueling by Day of Week

% of Fills in a Day

Day

Through 2009Q4
After 2009Q4

Created: Aug-16-11 3:36 PM
CCP#44: Driving Start Time – Day

1. Driving trips between 6 AM & 6 PM
2. The outer arc is set at 12% total Driving.
3. Some events not recorded/detected due to data noise or incompleteness.

% of driving trips b/t 6 AM & 6 PM: 85.3%
% of driving trips b/t 6 AM & 6 PM: 74.5%
% of NHTS trips b/t 6 AM & 6 PM: 81.5%

Total Driving\(^3\) Events = 295222
Total Drive\(^3\) Events = 36839

2001 NHTS Data Includes Car, Truck, Van, & SUV day trips
ASCII.csv Source: http://nhts.ornl.gov/download.shtml#2001

Created: Aug-24-11 4:28 PM
CDP#45: Driving by Day of Week

% of Trips in a Day

Day

Through 2009Q4
After 2009Q4
NHTS

2001 NHTS Data Includes Car, Truck, Van, & SUV day trips
ASCII.csv Source: http://nhts.ornl.gov/download.shtml#2001
CDP#46: Fuel Cell System Operating Power

Time at Fuel Cell Stack Power Levels: DOE Fleet

Operating Time [%]

% Max Fuel Cell Power (Gross)

- All time
- Time with 0 speed

NREL CDP46
Created: Mar-09-10 4:21 PM
CDP#47: Trip Length

Trip Length: DOE Fleet

2001 NHTS Data Includes Car, Truck, Van, & SUV day trips
ASCII.csv Source: http://nhts.ornl.gov/download.shtml#2001
CDP#48: Primary Factors Affecting Learning Demo Fleet Fuel Cell Degradation

1) On-going fuel cell degradation study using Partial Least Squares (PLS) regression model for combined Learning Demonstration Fleet.

2) DOE Fleet model has a low percentage of explained decay rate variance.

Due to differences among teams, the DOE Fleet Analysis results are spread out and concrete conclusions are difficult to draw.

Individual team analyses (CDP#49) focused on patterns within a fleet.

- High Current Time
- Hot Starts
- Starts/hour

- Low Voltage Time
- High Voltage Time
- Cold Starts
- Short Trips
- 0 Speed Trips
- Hot Ambient Temp

H*: Factor group associated with high decay rate fuel cell stacks

L**: Factor group associated with low decay rate fuel cell stacks
1) On-going fuel cell degradation study using Partial Least Squares (PLS) regression model for each team's Gen 1 fleet.
2) Teams' PLS models have a high percentage of explained decay rate variance, but the models are not robust and results are scattered.
3) Factor groups associated with stacks that are opposite to the identified groups here are not specified.

H*: Factor group associated with high decay rate fuel cell stacks
Refueling by Time of Night: DOE Fleet

% of fills b/t 6 PM & 6 AM: 10.3%

Total Fill^3 Events = 22657

1. Fills between 6 PM & 6 AM
2. The outer arc is set at 12% total Fill.
3. Some events not recorded/detected due to data noise or incompleteness.
CDP#51: Driving Start Time – Night

% of driving trips b/t 6 PM & 6 AM: 14.7%
% of NHTS trips b/t 6 PM & 6 AM: 18.4%

Total Driving\(^3\) Events = 295222

1. Driving trips between 6 PM & 6 AM
2. The outer arc is set at 12% total Driving.
3. Some events not recorded/detected due to data noise or incompleteness.

2001 NHTS Data Includes Car, Truck, Van, & SUV day trips
ASCII.csv Source: http://nhts.ornl.gov/download.shtml#2001
CDP#52: Refueling Data by Year

Histogram of Fueling Rates

All Light Duty by Year Through 2009Q4

<table>
<thead>
<tr>
<th>Year</th>
<th>Avg (kg/min)</th>
<th>% > 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>0.66</td>
<td>16%</td>
</tr>
<tr>
<td>2006</td>
<td>0.74</td>
<td>21%</td>
</tr>
<tr>
<td>2007</td>
<td>0.81</td>
<td>26%</td>
</tr>
<tr>
<td>2008</td>
<td>0.77</td>
<td>23%</td>
</tr>
<tr>
<td>2009</td>
<td>0.77</td>
<td>22%</td>
</tr>
</tbody>
</table>

- **5 minute fill of 5 kg at 350 bar**
- **3 minute fill of 5 kg at 350 bar**

Created: Mar-09-10 3:35 PM

National Renewable Energy Laboratory 54 Innovation for Our Energy Future
CDP#53: Fuel Cell System Energy within Power Levels

FC Energy by Power Levels: DOE Fleet

Cumulative % Fuel Cell Power (Gross) of Max

Fuel Cell Power [%]

0-5% 5-10% 10-15% 15-20% 20-25% 25-30% 30-35% 35-40% 40-45% 45-50% 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% >95-100%

Cumulative %

FC Energy [%]

0 2 4 6 8 10

% Fuel Cell Power (Gross) of Max

NREL CDP53
Created: Mar-11-10 9:13 AM

National Renewable Energy Laboratory
CDP#54: Time Between Trips

Time between Trips: DOE Fleet

<table>
<thead>
<tr>
<th>Time Range</th>
<th>Trip Frequency [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1 hr</td>
<td>0</td>
</tr>
<tr>
<td>1-6 hr</td>
<td>0</td>
</tr>
<tr>
<td>6-12 hr</td>
<td>0</td>
</tr>
<tr>
<td>12-18 hr</td>
<td>0</td>
</tr>
<tr>
<td>18-24 hr</td>
<td>0</td>
</tr>
<tr>
<td>1-7 days</td>
<td>0</td>
</tr>
<tr>
<td>7-30 days</td>
<td>0</td>
</tr>
<tr>
<td>>30 days</td>
<td>0</td>
</tr>
</tbody>
</table>

0-60 min Breakdown: DOE Fleet

<table>
<thead>
<tr>
<th>Time Range</th>
<th>% Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10 min</td>
<td>60</td>
</tr>
<tr>
<td>10-20 min</td>
<td>40</td>
</tr>
<tr>
<td>20-30 min</td>
<td>20</td>
</tr>
<tr>
<td>30-40 min</td>
<td>10</td>
</tr>
<tr>
<td>40-50 min</td>
<td>10</td>
</tr>
<tr>
<td>50-60 min</td>
<td>10</td>
</tr>
</tbody>
</table>

NREL CDP54
Created: Mar-09-10 4:16 PM

National Renewable Energy Laboratory
Innovation for Our Energy Future
Energy in Trip: DOE Fleet

- Battery
- Vehicle Motor
- FC

Net battery charge in trip

Energy Consumed [kWh]

Trip Frequency [%]
CDP#56: Daily Driving Distance

Daily Distance: DOE Fleet

Cumulative Frequency
@ 20 miles
DOE Fleet: 47.4%
NHTS: 27.2%

Cumulative Frequency
@ 40 miles
DOE Fleet: 67.2%
NHTS: 52.9%

2001 NHTS Data Includes Car, Truck, Van, & SUV day trips
ASCII.csv Source: http://nhts.ornl.gov/download.shtml#2001
CDP#57: H2 Storage System Mass and Volume Breakdown

Average Breakout of H2 Storage System Mass

- 73% (Pressure Vessel Mass)
- 23% (H2 Mass)
- 3% (Balance of Plant Mass)

Average Breakout of H2 Storage System Volume

- 73% (Pressure Vessel Volume)
- 24% (H2 Volume)
- 3% (Balance of Plant Volume)

- 350 bar: 3.26% (H2 Volume)
- 700 bar: 3.33% (H2 Volume)

Created: Aug-19-08 9:14 AM

National Renewable Energy Laboratory
Innovation for Our Energy Future
FC System Power Density (W/L)

2010 and 2015 DOE MYPP Target

Gen 1
Gen 2

(1) Fuel cell system includes fuel cell stack and BOP but excludes H2 storage, power electronics, and electric drive.
(1) Fuel cell system includes fuel cell stack and BOP but excludes H2 storage, power electronics, and electric drive.
Monthly Production Conversion Efficiency vs Utilization

1) 100% production utilization assumes operation 24 hrs a day, 7 days a week
2) Production conversion efficiency is defined as the energy of the hydrogen out of the process (on a LHV basis) divided by the sum of the energy into the production process from the feedstock and all other energy as needed. Conversion efficiency does not include energy used for compression, storage, and dispensing.
3) High correlation with electrolysis data ($R^2 = 0.82$) & low correlation with natural gas data ($R^2 = 0.060$)
Consistent with the MYPP, compression efficiency is defined as the energy of the hydrogen out of the process (on an LHV basis) divided by the sum of the energy of the hydrogen output plus all other energy needed for the compression process. Data shown for on-site hydrogen production and storage facilities only, not delivered hydrogen sites.
CDP#62: Learning Demonstration Vehicle
Greenhouse Gas Emissions

1. Well-to-Wheels greenhouse gas emissions based on DOE's GREET model, version 1.8b. Analysis uses default GREET values except for FCV fuel economy, hydrogen production conversion efficiency, and electricity grid mix. Fuel economy values are the Gen 1 and Gen 2 window-sticker fuel economy data for all teams (as used in CDP #6); conversion efficiency values are the production efficiency data used in CDP #13.

2. Baseline conventional passenger car and light duty truck GHG emissions are determined by GREET 1.8b, based on the EPA window-sticker fuel economy of a conventional gasoline mid-size passenger car and mid-size SUV, respectively. The Learning Demonstration fleet includes both passenger cars and SUVs.

3. The Well-to-Wheels GHG probability distribution represents the range and likelihood of GHG emissions resulting from the hydrogen FCV fleet based on window-sticker fuel economy data and monthly conversion efficiency data from the Learning Demonstration.

4. On-site electrolysis GHG emissions are based on the average mix of electricity production used by the Learning Demonstration production sites, which includes both grid-based electricity and renewable on-site solar electricity. GHG emissions associated with on-site production of hydrogen from electrolysis are highly dependent on electricity source. GHG emissions from a 100% renewable electricity mix would be zero, as shown. If electricity were supplied from the U.S. average grid mix, average GHG emissions would be 1330 g/mile.
CDP#63: Hydrogen Fueling Station Maintenance by System

By Number of Events
Total Number of Events = 2491

- System control & safety: 22%
- Compressor: 18%
- Reformer: 13%
- Electrolyzer: 13%
- Dispenser: 13%
- Other: 13%
- Valves & piping: 13%
- Electrical: 13%
- Storage: 13%

By Labor Hours
Total Hours = 11430

- System control & safety: 21%
- Compressor: 17%
- Reformer: 20%
- Electrolyzer: 12%
CDP#64: Fuel Cell Vehicle Maintenance by System

Fuel Cell Vehicle Maintenance Events and Labor Hours

Fuel Cell Vehicle Events (11574)
- Vehicle (non-powertrain): 53%
- Fuel Cell System: 23%
- Powertrain: 11%
- Battery: 3%

Fuel Cell Vehicle Labor (12522 hours)
- Vehicle (non-powertrain): 24%
- Fuel Cell System: 50%
- Powertrain: 8%
- Battery: 8%

Fuel Cell System Events (3916)
- Thermal Management: 23%
- Air System: 11%
- Controls, Electronics, Sensors: 11%
- Fuel System: 13%
- Fuel Cell Stack: 12%
- Other: 10%

Fuel Cell System Labor (6304 hours)
- Thermal Management: 27%
- Air System: 22%
- Controls, Electronics, Sensors: 11%
- Fuel System: 11%
- Fuel Cell Stack: 28%
- Other: 11%
CDP#65: Percent Idle in Trip with Comparison to Standard Drive Cycles
CDP#66: FCV Speed with Comparison to Standard Drive Cycles

Fuel Cell Vehicle Speed

- **DOE Fleet Speed**
- **DOE Fleet Idle**
- **1015 Cycle (14.1 mph avg)**
- **UDDS Cycle (19.6 mph avg)**
- **HWFET Cycle (48.0 mph avg)**
- **US06 Cycle (48.2 mph avg)**

Operation Time [%]

Speed [mph]
Fuel Cell Stack Operation Hours: Gen1

- 24% of stacks in operation

Fuel Cell Stack Operation Hours: Gen2

- 34% of stacks in operation

Some project teams concluded in Fall/Winter 2009

1) Stack currently accumulating hours
2) Stack removed for low performance
3) Stack not currently accumulating hours, but not removed because of low performance.
FC Power Drop During Operation Period: Gen1

Gen1

60% of In Op stacks have > 10% power drop

FC Power Drop During Operation Period: Gen2

Gen2

85% of In Op stacks have > 10% power drop

1) Stack currently accumulating hours
2) Stack removed for low performance
3) Stack not currently accumulating hours, but not removed because of low performance.

Some project teams concluded in Fall/Winter 2009
Max Fuel Cell Power Loss vs Op Hours: Gen1

1) Normalized by fleet median value at 200 hours.
2) Each segment point is median FC power (+-50 hrs).
 Box not drawn if fewer than 3 points in segment.
CDP#70: Max Fuel Cell Power Degradation – Gen 2

Max Fuel Cell Power Loss vs Op Hours: Gen2

1) Normalized by fleet median value at 200 hours.
2) Each segment point is median FC power (+-50 hrs).
 Box not drawn if fewer than 3 points in segment.
1. Low fuel cell power limit is dependent on the fuel cell vehicle system and is unique to each company in this Learning Demonstration.
2. Acceptable low vehicle performance limit will be determined by retail customer expectations.
3. Power projection method based on the voltage degradation techniques, but uses max fuel cell power instead of voltage at a specific high current.
4. Stacks with less than 200 operation hours are in separate groups because the projection is based on operation data and with operation hours greater than 200 the degradation rate tends to flatten out.
CDP#72: Difference Between Tank and Ambient Temperature Prior to Refueling

- This CDP created in support of SAE J2601 related to refueling
- Temperatures are prior to refueling and exclude data within 4 hours of a previous fill
- The plot to the left excludes ambient temperatures less than -5 deg C
Fuel Cell Stack Projected Hours as a Function of Voltage Drop

(1) 10% Voltage degradation is a DOE metric for assessing fuel cell performance.
(2) Projections using on-road data -- degradation calculated at high stack current.
(3) Curves generated using the Learning Demonstration average of each individual fleet average at various voltage degradation levels.
(4) The projection curves display the sensitivity to percentage of voltage degradation, but the projections do not imply that all stacks will (or do) operate at these voltage degradation levels.
(5) The voltage degradation levels are not an indication of an OEM's end-of-life criteria and do not address catastrophic stack failures such as membrane failure.
(6) All OEM Gen 2 average fleet projections are higher than Gen1 projections, however due to less operation data for Gen 2, these projections are limited by demonstrated operation hours to minimize extrapolations.
1) A fuel cell voltage transient cycle has a decrease and increase with a minimum delta of 5% max stack voltage.
1) A fuel cell voltage transient cycle has a decrease and increase with a minimum delta of 5% max stack voltage.
1) A fuel cell voltage transient cycle has a decrease and increase with a minimum delta of 5% max stack voltage.
2) Cycle categories based on cycle up and down times. A slow up or down transient has a time change >= 5 seconds.
SS = Steady State, where the time change is >= 10 seconds and the voltage change is <= 2.5% max stack voltage.
1) A fuel cell voltage transient cycle has a decrease and increase with a minimum delta of 5% max stack voltage.

2) Cycle categories based on cycle up and down times. A slow up or down transient has a time change >= 5 seconds.

SS = Steady State, where the time change is >= 10 seconds and the voltage change is <= 2.5% max stack voltage.
1) A fuel cell voltage transient cycle has a decrease and increase with a minimum delta of 5% max stack voltage.
2) The low voltage level is 70% Max Stack Voltage.
3) The high voltage level is 90% Max Stack Voltage.
4) Cycle categories based on cycle up and down times. A slow up or down transient has a time change >= 5 seconds.

SS = Steady State, where the time change is >= 10 seconds and the voltage change is <= 2.5% max stack voltage.
CDP#79: Percentage of Trip Time at Steady State

Percent of Trip Time at Steady State

1) SS = Steady State, where the time change is ≥ 10 seconds and the voltage change is ≤ 2.5% max stack voltage.
CDP#80: Miles Between Refuelings

Distance Driven Between Refuelings: All OEMs

Gen1
Refuelings\(^1\) = 18941
Median distance between refuelings = 56 Miles

Gen2
Refuelings\(^1\) = 6870
Median distance between refuelings = 81 Miles

Refuelings after 2009Q4\(^1\) = 8964
Median distance between refuelings = 96 Miles

1. Some refueling events are not detected/reported due to data noise or incompleteness.
2. Distance driven between refuelings is indicative of driver behavior and does not represent the full range of the vehicle.
CDP#81: Average Trip Speed

Histogram of Average Trip Speed

- Through 2009Q4
- After 2009Q4
- NHTS Data
- NHTS Avg Speed

Average trip speed of 23.2 mph
Average trip speed of 25.4 mph

- 179,424 trips
- 29,689 trips

1) Excludes trips <= 1 mile (40.9%)
2) Excludes trips <= 1 mile (19.4%)

2) 2001 NHTS data includes Car, Truck, Van & SUV day trips
CDP#82: Daily FC Operation Hours in Automotive Application

Fuel Cell System Operation Hours Per Day

- Through 2009Q4
- After 2009Q4

Average Daily Fuel Cell System Operation Hours

- 9.9% Fuel Cell Systems Average > 30 mins Daily
- 17.8% Fuel Cell Systems Average > 30 mins Daily

Average Hours of Operation Per Day

NREL cdp_fcev_82
Created: Aug-24-11 4:41 PM
CDP#83: Hydrogen Dispensed by Day of Week

Dispensed Hydrogen per Day of Week

- **All Stations**
- **Individual Stations**

Day of Week:
- Sun
- Mon
- Tues
- Wed
- Thur
- Fri
- Sat

Dispensed Hydrogen [% of total]

Average kg

All Stations

Individual Stations

NREL cdp_fcev_83

Created: Aug-30-11 3:35 PM

National Renewable Energy Laboratory 85 Innovation for Our Energy Future
Effect of Average Trip Speed on Fuel Economy

Effect of Average Trip Speed on Fuel Economy

Fuel Economy [normalized]

Avg Trip Speed [miles/hour]

Average of Fleet Medians
25th to 75th Percentile

(1) Data after 2009Q4. The data has been normalized to the max of the median curve for each fleet. Data binned every 5 mph for calculating median and percentiles.
CDP#85: Effect of Trip Length on Fuel Economy

Effect of Average Trip Length on Fuel Economy

Data after 2009Q4. The data has been normalized to the max of the median curve for each fleet. Data binned every 5 miles for calculating median and percentiles.

Created: Sep-22-11 1:35 PM

National Renewable Energy Laboratory 87 Innovation for Our Energy Future
1) Stacks that are in service and accumulating operation hours.
2) Stacks retired due to low-performance or catastrophic failure.
3) Indicates stacks that are no longer accumulating hours either a) temporarily or b) have been retired for non-stack performance related issues or c) removed from DOE program.
4) Only includes systems operating after 2009Q4.

25% of FC Stacks > 920 hours
1) Projection using field data, calculated at high stack current, from operation hour 0 or a steady operation period. Projected hours may differ from an OEM's end-of-life criterion and does not address "catastrophic" failure modes.

2) Indicates stacks that are no longer accumulating hours either a) temporarily or b) have been retired for non-stack performance related issues or c) removed from DOE program.

3) Projected hours limited based on demonstrated hours.

4) Only includes systems operating after 2009Q4.

5) Not all stacks have a steady operation fit which is calculated from data after 200 hr break-in period. The steady operation starting hour is an approximation of the period after initial break-in where degradation levels to a more steady rate.
Comparison of Operation Hours and Projected Hours to 10% Voltage Degradation

1) Indicates the projected hours to a 10% voltage degradation based upon curve fitting data from operation hour 0.
2) Projected hours limited based on demonstrated hours.
3) Stacks retired due to low-performance or catastrophic failure.
4) Each projection has uncertainty based on the confidence intervals of the fit.
5) Only includes systems operated after 2009Q4.
1) 10% Voltage degradation is a DOE metric for assessing fuel cell performance not an indication of an OEM's end-of-life criteria.
2) Projections using field data and calculated at high stack current.
3) 10th and 90th percentiles spans the range of stack projection. The included stacks satisfy a minimum number of operation hours and weighting factor.
4) The projected hours vary based on the percentage of voltage degradation, but the projected hours do not imply that all stacks will (or do) operate to these voltage degradation levels.
5) Each fleet has one voltage projection value that is the weighted average of the fleet's fuel cell stack projections.
6) Only includes systems operated after 2009Q4.
Median power difference from 0 hour segment to 1300 hour segment = -18.4%

1) Normalized by fleet median value at 200 hours.
2) Each segment point is median FC power (+-50 hrs). Box not drawn if fewer than 3 points in segment.
3) Only includes systems operated after 2009Q4.