

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Second Results Report – Appendices

Leslie Eudy National Renewable Energy Laboratory

Kevin Chandler Battelle

Link to main report

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Technical Report NREL/TP-5600-52349-2 October 2011

Contract No. DE-AC36-08GO28308

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Second Results Report – Appendices

Leslie Eudy National Renewable Energy Laboratory

Kevin Chandler Battelle

Prepared under Task No. H270.8150

National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 • www.nrel.gov	NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-5600-52349-2 October 2011 Contract No. DE-AC36-08GO28308

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: <u>mailto:reports@adonis.osti.gov</u>

Available for sale to the public, in paper, from:

U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: <u>orders@ntis.fedworld.gov</u> online ordering: <u>http://www.ntis.gov/help/ordermethods.aspx</u>

Cover Photos: (left to right) PIX 16416, PIX 17423, PIX 16560, PIX 17613, PIX 17436, PIX 17721. Bus photo courtesy of Leslie Eudy, NREL.

Printed on paper containing at least 50% wastepaper, including 10% post consumer waste.

Introduction to the Appendices

The National Renewable Energy Laboratory (NREL) has reported evaluation results for fuel cell buses since 2003. These reports include a broad range of background on the transit property, buses, infrastructure, and overall experience operating fuel cell buses. Several reports are planned for each evaluation site. The first data report typically includes extensive background material plus an analysis of the first round of data. Update reports follow the initial publication, focusing on the newest data analysis and lessons learned since the previous report. The authors would like to provide more focus on the new data without depriving new readers of the background and context on the transit property and the technology. These appendices, referenced in the main report, are designed to provide the full background for the evaluation. They will be updated as new information is collected but will contain the original background material from the first report. Both parts can be downloaded separately. A Web link is provided on the cover to allow the reader to download the main report.

All NREL publications on hydrogen and fuel cell buses are available at <u>http://www.nrel.gov/hydrogen/proj_fc_bus_eval.html</u>.

Acronyms and Abbreviations

ASME	American Society of Mechanical Engineers			
CARB	California Air Resources Board			
CNG	compressed natural gas			
СТА	Center for Transportation and the Environment			
CWI	Cummins Westport Inc.			
DGE	diesel gallon equivalent			
DOE	U.S. Department of Energy			
FCB	fuel cell bus			
ft	feet			
FTA	Federal Transit Administration			
GGE	gasoline gallon equivalent			
HFCIT	Hydrogen, Fuel Cells, and Infrastructure			
	Technology			
HHICE	hydrogen hybrid internal combustion engine			
hp	horsepower			
HVAC	heating, ventilation, and air conditioning			
ICE	internal combustion engine			
in.	inches			
kg	kilogram			
kW	kilowatts			
lb	pounds			
LFL	lower flammability limit			
LNG	liquefied natural gas			
MBRC	miles between roadcalls			
mph	miles per hour			
NFCBP	National Fuel Cell Bus Program			
NAVC	Northeast Advanced Vehicle Consortium			
NREL	National Renewable Energy Laboratory			
PMI	preventive maintenance inspection			
PSA	pressure swing adsorption			
psi	pounds per square inch			
RC	roadcall			
rpm	revolutions per minute			
SAFETEA-LU	Safe, Accountable, Flexible, Efficient			
	Transportation Equity Act: a Legacy for Users			
SCAQMD	South Coast Air Quality Management District			

Table of Contents

Appendix A: NREL Transit Bus Evaluation Activities	1
Overall Evaluation Objectives	4
Appendix B: SunLine Description	5
Route Descriptions	6
Appendix C: Evaluation Bus Technology Descriptions	9
Advanced Technology Fuel Cell Bus	9
Hybrid Fuel Cell System	10
Appendix D: Evaluation Infrastructure Description	11
Infrastructure and Facilities	11
Natural Gas Fueling	11
Hydrogen Fueling	12
Maintenance Facilities	14
Appendix E: Fleet Summary Statistics	16
Appendix F: Fleet Summary Statistics – SI Units	22

Appendix A. NREL Transit Bus Evaluation Activities

Under funding from the U.S. Department of Energy (DOE) and in coordination with the Federal Transit Administration (FTA), the National Renewable Energy Laboratory (NREL) has been evaluating alternative fuel transit buses since the early 1990s. NREL uses a standard data collection and evaluation protocol that was established early in the process. This protocol has evolved over time but is still based on the original effort.

Since its first evaluation of hydrogen-fueled transit buses in 2000, NREL has published reports on fuel cell bus (FCB) performance and fleet experience for several transit agencies in the United States. Funding for these evaluations comes from DOE and FTA.

- DOE the Technology Validation activity within DOE's Fuel Cell Technologies (FCT) Program¹ is focused on addressing the technical challenges and accelerating the development and successful market introduction of hydrogen technologies. NREL supports DOE's Technology Validation activity by evaluating hydrogen and fuel cell vehicles in parallel with hydrogen infrastructure to determine the current status of the technology and assess the progress toward technology readiness. While DOE has not funded the direct development of fuel cell buses, it has provided funding to NREL to conduct data collection and analysis and report results of existing FCB projects under this activity.
- FTA the National Fuel Cell Bus Program (NFCBP) is a cooperative research, development, and demonstration program to facilitate commercialization of fuel cell bus technology for the transit industry. The program is conducted in close partnership with industry and includes a portfolio of development and demonstration projects, component projects, and analysis and coordination efforts. FTA has tasked NREL with evaluating the fuel cell bus demonstrations for the NFCBP.

NREL uses the standard data collection and analysis protocol established for DOE heavy-duty vehicle evaluations. In November 2010, NREL published *Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration*, which outlines the methodology for these evaluations.² Table A-1 provides an overview of all the FCB evaluation projects planned under both DOE and FTA funding. This is the estimated timing for NREL's data collection and evaluation and does not reflect the early design, development, and construction phase for the buses. The plans for upcoming evaluations are subject to change as each project progresses. The projects are separated by funding agency. Table A-2 provides more details and status for the evaluation sites funded solely by DOE. Additional details on the NFCBP demonstration sites funded by FTA are listed in Table A-3.

¹ DOE FCT website: <u>www1.eere.energy.gov/hydrogenandfuelcells/</u>.

² Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration, NREL/TP-560-49342-1, November 2010, <u>www.nrel.gov/hydrogen/pdfs/49342-1.pdf</u>.

NREL Hydrogen Evaluations for DOE and FTA																			
Site/Locations	State	No.	Eval.		20)10	-		20	11	1		20)12			20	13	
	olulo	Buses	Funding	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
AC Transit /SF Bay Area	CA	12	logy ion						Z	EBA	Den	10							
SunLine /Thousand Palms	CA	1	DOE chno llidat			Ad	vano	ced I	€СВ	Proj	ect								
City of Burbank/Burbank	CA	1	Tec							Βι	ırba	nk FC	СВ						
SunLine /Thousand Palms	CA	1	_										Ame	erica	n FC	B D	emo		
CTTRANSIT /Hartford	СТ	4	gran				Nutn	neg	Hybr	id F	СВ [Demo)						
USC, CMRTA /Columbia UT, Cap Metro/Austin	SC TX	1	s Pro	Ну	/brid	I FCI	В			D	emo	Site	2						
Logan Airport /Boston	MA	1	ll Bu										MA	H2 F	СВ	Fleet	t		
Albany /NY	NY	1	l Ce									Liç	ght-\	wt F	СВ				
SFMTA /San Francisco	CA	1	I Fue							FC	APL	J Hyk	orid						
CTA/ Chicago	IL	1	tiona											Cł	nicaç	jo F	СВ		
BJCTA/Birmingham	AL	1	Na												Birn	ning	ham	FCB	
Ohio State/Columbus	ОН	1	FTA										Ecc	Sav	er IV	' Hył	orid I	СΒ	
USC, CMRTA /Columbia	SC	1											Adva	ance	d Co	ompo	osite	FCE	3
Demonstration sites color co	ded by	geograp	ohic area:			No	rtherr	n Cali	fornia	1		Nor	thea	st		Sc	outh		
						So	utheri	n Cal	ifornia	a		So	uthea	ast		Mi	dwest	t	

Table A-1. Summary of NREL Evaluations for DOE and FTA³

Table A-2. DOE/NREL Heavy Vehicle Fuel Cell Bus Evaluations

Fleet	Vehicle/Technology	Number	Evaluation Status
SunLine Transit Agency (Thousand Palms, CA)	New Flyer/Ballard/Bluways fuel cell hybrid bus	1	Bus in operation; in process
City of Burbank, CA	Proterra battery-dominant, plug-in hybrid bus using two Hydrogenics fuel cells	1	Bus delivered; in process
Bay Area Transit Consortia led by AC Transit (Oakland, CA)	Van Hool/UTC Power fuel cell hybrid	12	In process; 9 of 12 buses delivered
Completed Evaluations			
Connecticut Transit (Hartford, CT)	Van Hool/UTC Power fuel cell hybrid transit bus integrated by ISE Corp.	1	Complete; results reported in Oct 2008, May 2009, and Jan 2010
SunLine Transit Agency (Thousand Palms, CA)	Van Hool/UTC Power fuel cell hybrid transit bus integrated by ISE Corp.	1	Complete; results reported in Feb 2007, Sep 2007, June 2008, Jan 2009, and Aug 2009
Alameda-Contra Costa Transit District (Oakland, CA)	Van Hool/UTC Power fuel cell hybrid transit bus integrated by ISE Corp.	3	Complete; results reported in Mar 2007, Oct 2007, and June 2008
Santa Clara VTA, (San Jose, CA) and San Mateo (San Carlos, CA)	Gillig/Ballard fuel cell transit bus	3	Complete and reported in 2006
SunLine Transit Agency (Thousand Palms, CA)	ISE Corp./ UTC Power ThunderPower hybrid fuel cell transit bus	1	Complete and reported in 2003

³ For current version of the summary table, see link: <u>www.nrel.gov/hydrogen/proj_fc_bus_eval.html</u>.

Table A-3. Summary	/ of FTA NFCBP	Demonstration Pro	jects
--------------------	----------------	--------------------------	-------

Project Title	Description
American Fuel Cell Bus Program (CALSTART) Status: In development, scheduled for late 2011 delivery	One new El Dorado bus to be operated at SunLine Transit Agency. This 40- foot bus is equipped with a hybrid propulsion system from BAE Systems, lithium ion batteries, and a fuel cell power system from Ballard (FCvelocity HD6).
Compound Fuel Cell Hybrid Bus 2010 (CALSTART) Status: On-going, bus delivered Nov 2010	One new Orion bus to be operated at San Francisco MTA. This 40-foot bus is equipped with a diesel hybrid propulsion system from BAE Systems, lithium ion batteries, and electric accessories to be driven by an APU consisting of two fuel cell systems from Hydrogenics.
AC Transit HyRoad: Commercialization of Fuel Cells for Public Transit (CALSTART) Status: Project complete	Three existing Van Hool buses to continue operation at AC Transit. These 40- foot buses are equipped with a Siemens ELFA hybrid electric propulsion system integrated by ISE with UTC Power PureMotion fuel cell power system and ZEBRA sodium nickel chloride high-temperature batteries. The project focused on maximizing operation of the buses to study failure modes and determine improvements.
Dual Variable Output Fuel Cell Hybrid Bus Validation and Testing (CTE) Status: On-going, bus moved to second demonstration site	One newly designed Proterra bus to be operated in Columbia, SC, and Austin, TX. This 35-foot bus is a plug-in/battery dominant hybrid propulsion design integrated by Proterra with two Hydrogenics fuel cell power systems, and includes lithium titanate batteries for energy storage.
Nutmeg Project (NAVC) Status: On-going, buses in service	Four next-generation Van Hool 40-foot buses operating in Hartford, CT, at CTTRANSIT. These buses were purchased by UTC Power and are leased for transit operation. These 40-foot buses are equipped with a Siemens ELFA hybrid electric propulsion system integrated by Van Hool with a UTC Power PureMotion fuel cell power system. This design includes lithium ion batteries for energy storage.
Lightweight Battery Dominant Hybrid Fuel Cell Bus (NAVC) Status: In development	GE-led project for one development/testing bus and one new fuel cell bus. The testing vehicle includes a Hydrogenics fuel cell power system and has been used to support development activities of the new fuel cell bus, which will use a Ballard fuel cell power system.
Massachusetts Hydrogen Fuel Cell Powered Bus Program (NAVC) Status: In development	One new fuel cell bus to be operated at the Boston-area Logan International Airport. This will be a plug-in/battery dominant hybrid propulsion system. This design is planned with a Nuvera/Fiat fuel cell power system and lithium ion batteries for energy storage.
Chicago Transit Authority FCB Demo (CALSTART) Status: In development	Develop a next generation, 'Buy America' compliant fuel cell bus and test in the Chicago Transit Authority fleet. Project goals include proving the fuel cell system in a cold climate, exploring the potential of larger FCB fleet deployments, and reducing overall FCB cost to \$1M. Partners: BAE Systems, ElDorado, Ballard.
Adv. Composite FCB Demo (CTE) Status: In development	Develop a 35-foot, highly efficient, battery-dominant FCB with an enhanced version fuel cell and fast charging capability. Demonstrate the bus in revenue service. Partners: Proterra, Ballard.
Birmingham FCB Demo (CTE) Status: In development	Develop and demonstrate a 30-foot battery dominant FCB with advanced lithium ion battery technology. Project goals include improved range, acceleration, and fuel economy. Partners: EV America, Ballard. (Continuation of an existing program originally funded outside the NFCBP.)
ECO Saver IV Hybrid Electric FCB Demo (CTE) Status: In development	Develop an advanced, battery-dominant FCB by integrating a Ballard fuel cell into an existing hybrid electric bus platform. Demonstrate in a campus shuttle route. Partners: DesignLine, Ballard.

Overall Evaluation Objectives

The objectives of the DOE and FTA evaluations are to provide comprehensive, unbiased evaluation results of fuel cell and hydrogen bus development and performance compared to conventional baseline vehicles when they available and appropriate. Baseline vehicles are typically diesel buses or occasionally compressed natural gas (CNG) buses. These evaluations also include information on the development and performance of hydrogen infrastructure and descriptions of the facility modifications required for safe operation of hydrogen-fueled vehicles.

The DOE and FTA demonstration and evaluation programs have two major goals:

- Provide credible data analysis results to the transit bus and fuel cell industries that go beyond "proof of concept" for fuel cell transit buses and infrastructure.
- Provide results focused on performance and use including progress over time and experience from integrating vehicle systems, operations, and facilities for the fuel cell transit buses and supporting infrastructure.

DOE and FTA have both cited the lack of data and analysis results in real-world service as a challenge for moving the technology forward. These evaluations have proved useful for a variety of groups including transit operators considering the technology for future procurements, manufacturers needing to understand the status of the technology for transit applications, and government agencies making policy decisions or determining future research needs.

Appendix B: SunLine Description

Host Site Profile

SunLine⁴ is located in the Palm Springs/Coachella Valley, California, and serves an area greater than 1,100 square miles (Figure B-1). Transit bus operations started in 1977 with 22 vehicles. SunLine provides bus service from two locations in the valley—one in Thousand Palms (shown in Figure B-2), which serves as headquarters, and another in Indio. In fiscal year 2009, ridership was reported as approximately 3.6 million passengers, the fleet operated 3.2 million revenue miles, and SunLine had an operating budget of \$22.7 million.⁵

Figure B-1. SunLine operating area in the Coachella Valley, California

SunLine is a Joint Powers Authority (JPA) created by its nine member cities as well as the county (Riverside). Each member city and the county have an appointed member on the SunLine board. SunLine operates 11 fixed routes (SunBus) and provides paratransit services (SunDial). Table B-1 outlines SunLine's current bus fleet including the newest fuel cell bus. In addition to the 69 fixed-route buses, the agency's fleet includes 31 CNG paratransit vehicles. Its non-revenue vehicle fleet consists of 39 light- and medium-duty CNG vehicles and one hybrid light-duty vehicle.

⁴ SunLine Transit Agency website: <u>www.sunline.org</u>.

⁵ SunLine Transit Agency FY 2008 Annual Report: <u>www.sunline.org/annual-report</u>.

Figure B-2. SunLine headquarters in Thousand Palms

Number	Description
41	New Flyer 40-ft, low floor, CNG
15	Orion V 40-ft, CNG
10	ElDorado 30-ft, CNG
1	New Flyer Hybrid Hydrogen ICE (HHICE)
1	Van Hool 40-ft, Fuel Cell Bus
1	New Flyer 40-ft, Advanced Technology Fuel Cell Bus
69	Total Bus Fleet

Table	B-1.	SunL	ine	Fixed	-Route	Bus	Flee	1
Table	D-1.	Oune		I IAGU	litoute	Dus	1100	•

Route Descriptions

SunLine's fixed routes in the Coachella Valley operate along State Highway 111 and Interstate 10. In 2009, SunLine conducted a Comprehensive Operational Analysis⁶ to better understand the existing and future transit market in the area and to develop a plan for optimizing service to cost-effectively meet those needs. The Preferred Service Plan outlined in the study recommended a variety of modifications to the route structure to increase ridership and lower operational costs. The changes included realignment of select routes, establishment of new routes, and increased frequencies and spans on most routes. SunLine began implementing this plan during 2010. Table B-2 shows a weekly summary of the updated bus use at SunLine and indicates that bus service operates at an average of 13.9 mph on the weekends and 14.0 mph during the week for an overall average of 13.9 mph.

ableB-2. Summa	ry of Total Weekly	Bus Use at SunLine
----------------	--------------------	--------------------

Day of Week	Total Miles	Hours	Average Speed
Weekday	42,993.0	3,080.8	14.0
Weekend	11,388.6	820.9	13.9
Total	54,381.6	3,901.7	13.9

The weather in SunLine's service area can have an effect on vehicle performance. The Coachella Valley is a hot, desert climate with an annual rainfall between 2 and 4 inches. Average high

⁶ Link to SunLine's Comprehensive Operational Analysis: <u>http://www.sunline.org/pub/pdfs/COA_July2009.pdf</u>.

temperatures are usually over 80°F for eight months of the year and can get as high as 120°F. This plays a role in how the SunLine buses are operated. During the eight months in the year when the average high temperature is above 80°F, drivers typically idle on the shorter layovers to keep the buses cool for passengers. This causes the bus average speed to go down and the air-conditioning load to go up, both of which have a significant impact on fuel efficiency.

Alternative Fuels. SunLine started looking for a defining position on clean bus operations in 1991. At that time, a decision was made to convert the entire SunLine fleet (buses and support vehicles) to CNG in order to maximize the impact of potential emissions reductions and economic benefits. This decision was made at a very early stage in CNG bus development and deployment in the United States. For context, in 1991 approximately 25 heavy-duty CNG buses had just been placed into service in this country, with another 70 on order.

As background for SunLine's interest in alternative fuels, the State of California has identified some severe air-quality challenges, especially in the Los Angeles metropolitan area. The Coachella Valley, including Palm Springs, is located in Riverside County, which is one of the four counties (Los Angeles, Orange, Riverside, and San Bernardino) included in the Los Angeles metropolitan area. Starting in the late 1980s and early 1990s, the California Air Resources Board (CARB) began to strongly encourage alternative fuels for vehicles to help with emissions reductions. The South Coast Air Quality Management District (SCAQMD) launched several incentive programs for converting vehicles in the district to alternative fuel vehicles. One of these incentive programs focused on transit buses because of the potential significant emissions impact in urban areas.

The SunLine board of directors approved a 100% alternative fuels approach in 1992 and took advantage of local and state incentives for purchasing alternative fuel vehicles. Natural gas vehicle training programs were developed at the College of the Desert's Energy Technology Training Center, and the SunLine mechanics were the first "graduates" of that training. All SunLine employees received some natural gas vehicle safety familiarization training. SunLine was the nation's first fleet to change to 100% CNG bus operations, which essentially occurred overnight in May 1994. An NREL report documenting SunLine's first 10 years of CNG operations experience is available.⁷ Since May 1994, SunLine has remained fully committed to operating its entire fleet on alternative fuels and continues that commitment to this day with CNG and hydrogen-fueled transit buses.

Experience with Hydrogen. SunLine's experience with hydrogen spans more than a decade of development and demonstration projects. SunLine has successfully used its unique capabilities with gaseous fuels, its small size, and its high-temperature/low-humidity location for attracting testing projects with government and manufacturer partners. Over the years, many projects have involved natural gas, hydrogen, fuel cells, and various combinations of these technologies. The objectives for these projects have been to advance clean transit bus propulsion systems and leverage project funding to afford SunLine additional equipment and infrastructure. A timeline of SunLine's hydrogen fueled bus demonstrations is shown in Figure B-3.

⁷ NREL, 2006, "Ten Years of Compressed Natural Gas Operations at SunLine Transit Agency," <u>http://www.eere.energy.gov/afdc/pdfs/39180.pdf.</u>

Ballard P4 Bus: SunLine participated in a demonstration of the Phase 4 version of the ZeBus. The bus was tested in SunLine's service area but was not used in actual revenue service.

ThunderPower FCB: This bus featured an ISE hybrid design powered by UTC Power's 60 kW fuel cell power system. SunLine demonstrated this 30-foot FCB in revenue service for six months. The bus accumulated more than 8,000 miles and 640 hours on the fuel cell system. Fuel economy averaged 12 mpDGE.

Cummins - Westport (CWI) engine

development: SunLine worked with CWI to develop and demonstrate a natural gas engine capable of using hydrogen and CNG blended fuel. Using a blend of 20% hydrogen/80% CNG, the project demonstrated significant reductions of several pollutant emissions-including 50% lower oxides of nitrogen and 58% lower nonmethane hydrocarbons-when compared to conventional CNG engines.

Hydrogen Hybrid Internal Combustion Engine bus: SunLine demonstrated the HHICE bus in revenue service for several years. During that time, the bus accumulated more than 85,000 miles with an average fuel economy of 4.9 mpDGE.

Van Hool/UTC Power FCB: SunLine's first full-size FCB went into service in late 2006. This bus, developed by UTC Power, ISE, and Van Hool, continues to operate in revenue service in the fleet. The bus has accumulated more than 128,000 miles and 8,800 fuel cell system hours (through June 2011).

New Flyer/Bluways/Ballard FCB: SunLine's newest FCB, which is the subject of this report, has operated more than 33,000 miles and accumulated 2,537 hours on the fuel cell system since it was put in service.

Appendix C: Evaluation Bus Technology Descriptions

Table C-1 provides bus system descriptions for the AT fuel cell bus and CNG buses that were studied in this evaluation. The AT bus is a low floor, 40-foot New Flyer model with the latest advances designed to improve performance, reliability, and durability. Five compressed natural gas (CNG) buses operating from the same SunLine location are being used as a baseline comparison. These buses are 2008 model year New Flyer CNG buses with Cummins Westport ISL G natural gas engines that are designed to meet 2010 emission regulations.

Vehicle System	AT Fuel Cell Bus	CNG Bus
Number of buses	1	5
Bus manufacturer and model	New Flyer, H40LFR	New Flyer
Model year	2009	2008
Length/width/height	40 ft/102 in./137 in.	40 ft/102 in./130.8 in.
Gross vehicle weight rating	44,530 lb	42,540 lb
Passenger capacity	37 seated with no wheelchairs	39 seated with no wheelchairs
Hybrid system	Bluways hybrid-electric drive system incorporating Siemens ELFA components	N/A
Fuel cell or engine	Ballard Power Systems FCvelocity HD6, 150 kW	Cummins Westport ISL G, 280 hp @ 2,200 rpm
Propulsion motor	Two Siemens AC induction motors, 85 kW each	N/A
Energy storage	Valence, phosphate based lithium ion batteries, rated energy: 47 kWh	N/A
Accessories	Electric	Mechanical
Fuel/storage	Gaseous hydrogen, 43 kg at 5,000 psi, 6 Dynetek, Type 3 tanks	125 diesel gallon equivalent
Bus purchase cost	\$1,200,000 ⁸	\$402,900

Table C-1. Fuel Cell and CNG Bus System Descriptions

Advanced Technology Fuel Cell Bus

This AT fuel cell bus was designed in collaboration between Bluways,⁹ Ballard, and New Flyer. The bus was originally developed as the pilot for an order of 20 buses to be operated in British Columbia, Canada, beginning with the 2010 Winter Olympic Games. The transit operator, BC Transit, put the bus through a series of acceptance tests over a period of about six months. The data results from those tests enabled the manufacturers to make changes and optimize the design prior to building the larger fleet. Once this bus completed its pilot testing in Canada, it was returned to Bluways where it was upgraded to match the final design of the rest of the BC Transit fleet. With funding from California and federal government agencies, SunLine was able to purchase the bus for operation in its service area. The bus is pictured in Figure C-1.

⁸ The purchase price for the AT bus was prorated based on the fact that it was previously demonstrated at BC Transit.

⁹ In February 2011, Bluways acquired substantial assets and technology from ISE Corporation.

Figure C-1. SunLine's AT fuel cell bus at a transit stop

Hybrid Fuel Cell System

The design is a next-generation system based on experiences with early hybrid and fuel cell bus demonstrations conducted by the manufacturers. Each partner brings a unique perspective and set of experiences to creating a fuel cell bus designed to compete in the market. For Ballard, the new fuel cell module included improvements and upgrades based on lessons learned with projects such as the CUTE and HyFLEET:CUTE programs. As part of these and other demonstrations, Ballard gathered data from fuel cell buses operating for more than 1.2 million miles of revenue service. The data collected during these demonstrations were used to refine and optimize the fuel cell and system components for higher efficiency and increased durability. Ballard now offers a 5-year, 12,000-hour warranty on the HD6 fuel cell module.

The Bluways hybrid system was designed as a plug-and-play architecture, which enables a variety of power sources or energy storage solutions to be easily incorporated. For this AT bus, Bluways integrated Ballard's 150-kW fuel cell module and lithium-ion batteries from Valence. The hybrid electric propulsion system is based on the Siemens ELFA system. The company's experience with early version fuel cell buses and a fleet of gasoline hybrid buses provided inservice data to aid in the development process.

Appendix D: Evaluation Infrastructure Description

Infrastructure and Facilities

SunLine's gaseous fuel experience began in the early 1990s when the agency switched its fleet to compressed natural gas (CNG). Protecting the air quality in the Coachella Valley was the primary reason the agency chose to abandon diesel for natural gas. To accomplish this conversion, SunLine sought out various partners. College of the Desert, a local community college, created a training program for alternative fuels. SunLine partnered with the local natural gas provider, Southern California Gas Company (SoCal Gas), to build the fueling infrastructure. The CNG station was completed and ready for operation by the end of 1993. The most unusual aspect of the station, from a transit perspective, is the fact that it is open to the public. SunLine has full ownership of the station and benefits fully from the sale of fuel. In addition to CNG, the station offers a blend of CNG and hydrogen, and pure hydrogen. Diesel and gasoline are not available at SunLine.

Natural Gas Fueling

SunLine has two bus operation sites, and both locations have a CNG fueling station for the bus fleet and for public fueling. The station has a public fueling station on the outside of the facility at Thousand Palms (Figure D-1), and piping is run underground to SunLine's private bus fueling station (Figure D-2). The public and private stations provide CNG at 3,600 psi.

Figure D-1. Public fueling at SunLine's Thousand Palms CNG fueling station (left) and a CNG dispenser (right)

Figure D-2. CNG fueling lane and bus wash (Thousand Palms)

The CNG fueling station at Thousand Palms includes two 400 hp natural gas compressors from Wilson Technologies and provides a 10-minute CNG fill for a transit bus. The station design includes six American Society of Mechanical Engineers (ASME) tubes for a buffer to help start the fast fill.

In 1995, SunLine opened a second operating location in Indio called the Clean Air Center, which now operates approximately 40% of SunLine's service. A CNG fueling station was added at this location in 1995. This station includes both public and private fueling with higher speed fueling behind the fence of the facility. One Sulzer and one IMW Industries natural gas compressor along with three ASME tubes for a buffer were installed at Indio. Fueling times range from 12 minutes to 20 minutes, depending on demand. Some trucks and support vehicles are also fueled at this location from the public side of the station.

Hydrogen Fueling

SunLine has been providing hydrogen fuel for various vehicles on-site since 2000. Acting as a "test bed" for advanced technologies, SunLine has partnered with various organizations to test and optimize hydrogen production technologies. The fleet has demonstrated hydrogen production methods, including electrolyzers from two different manufacturers (using energy from solar and wind) and natural gas reformers.

SunLine currently produces hydrogen with a HyRadix reformer. The installation was completed and the unit went into service in August 2006. Funding for the new reformer was provided by SCAQMD and the Federal Transit Administration (FTA). The HyRadix Adéo¹⁰ is a natural gas reformer that uses a proprietary catalytic auto-thermal reforming technology. The reformer generates hydrogen in four steps (as shown in Figure D-3):

- **Sulfur removal** The natural gas is fed through an ambient temperature sulfur adsorption device to remove specific impurities, such as the odorant added for leak detection. These compounds can affect the performance of the catalysts used in the reforming process.
- **Reforming** The natural gas is converted into a hydrogen-rich product stream through auto-thermal reforming, which uses a bi-functional catalyst that promotes two reactions (partial oxidation reaction and steam reforming reaction) in the same catalyst bed.

¹⁰ HyRadix specifications two-page handout, <u>http://www.hyradix.com/common/documents/adeo_specs.pdf</u>

- Heat integration To increase overall efficiency, heat recovered during the process is used to pre-heat the feed into the reactor and generate steam for the reforming reaction.
- **Purification** Pressure swing adsorption (PSA) technology is used to purify the hydrogen.

The resulting purified hydrogen is compressed to 6,000 psi for storage prior to dispensing into the buses. The reformer is capable of producing 9 kg of hydrogen per hour. SunLine typically operates the unit at 4.5 kg per hour to meet current hydrogen demand. Onsite storage of hydrogen is approximately 180 kg of hydrogen in 9 ASME tubes and a tube trailer with another 16 ASME tubes. The hydrogen dispenser provides hydrogen to vehicles at a pressure up to 5,000 psi. Figure D-4 shows the hydrogen storage, natural gas reformer, and dispenser at the SunLine fueling station.

Figure D-3. HyRadix hydrogen production process (Courtesy of HyRadix)

The SunLine public fueling station provides CNG, hydrogen, and blended hydrogen (20%) and CNG (80%) fuel to the public. SunLine estimates that this hydrogen fueling infrastructure can produce enough hydrogen to comfortably operate five full-size transit buses without running out of fuel for the small hydrogen vehicles expected to be fueled at this station.

Figure D-4. SunLine's hydrogen storage (top left), HyRadix Adéo commercial reformer (bottom left), and hydrogen dispenser (right)

Maintenance Facilities

To support operation and maintenance of CNG buses, SunLine made some modifications and upgrades to the maintenance facility in 1995. These included the addition of combustible gas detectors and the upgrade of some of the electrical conduit, lighting, and ventilation in the maintenance bays. The fueling station and maintenance facility upgrade costs at the Thousand Palms location were reported to be \$1.47 million in 1995. There were no additional costs for the outside bus parking areas.

The combustible gas sensors and alarms in the maintenance facility are required by building codes for indoor maintenance of CNG vehicles. The combustible gas detection system is designed to alarm at a 20% lower flammability limit (LFL) in air with a siren and lights. At a 40% LFL the siren and lights latch on, power in the building is turned off, and the vents are opened in the roof of the building. The proper operation of this system is tested quarterly and the combustible gas detectors are calibrated every six months.

When SunLine first began testing hydrogen buses, it built a special on-site facility for maintenance. Located behind the CNG bus maintenance building, the facility is essentially a tent designed to vent hydrogen through its roof. It consists of an aluminum frame covered with fireproof canvas, which is ventilated along the ridgeline with an 18-inch gap and a 6-inch raised "rain cap" to allow hydrogen gas to safely escape if it is inadvertently released from the vehicle. All lighting within the tent structure and adjacent maintenance bay is rated Class 1, Division 1.

The building is also equipped with sensors that sound an alarm if a hydrogen leak is detected. Construction of the building cost approximately \$50,000 (\$21,000 for the building, doors, and ventilation system; and \$29,000 for the fire and combustible gas sensors and the alarm system). This type of structure can provide a low-cost option to an agency located in a warmer climate, such as SunLine. The CNG and hydrogen maintenance facilities are pictured in Figure D-5.

There have been no reported hydrogen leaks in the hydrogen maintenance facility, and no alarms have occurred. The system and sensors are checked and calibrated twice a year.

Figure D-5. CNG maintenance facility in Thousand Palms (top) and hydrogen maintenance building (bottom)

Appendix E: Fleet Summary Statistics

Fleet Summary Statistics: SunLine Transit Agency Fuel Cell Bus (FCB) and Compressed Natural Gas (CNG) Study Groups Fleet Operations and Economics

	Fuel Cell Bus	Fuel Cell Bus New Data	CNG Buses	CNG Buses
Number of vehicles	1	1	5	5
Period used for fuel and oil op analysis	5/10–6/11	12/10–6/11	5/10-6/11	12/10-6/11
Total number of months in period	14	7	14	7
Fuel and oil analysis base fleet mileage	20,744	11,164	320,005	161,833
Period used for maintenance op analysis	5/10–6/11	12/10–6/11	5/10–6/11	12/10–6/11
Total number of months in period	14	7	14	7
Maintenance analysis base fleet mileage	20,851	11,164	320,005	161,833
Average monthly mileage per vehicle	1,489	1,595	4,572	4,624
Availability	62%	64%	89%	88%
Fleet fuel usage in CNG GGE/H ₂ kg	3,472	1,807	108,250	53,254
Roadcalls	4	2	24	17
RCs MBRC	5,213	5,582	13,334	9,520
Propulsion roadcalls	4	2	13	10
Propulsion MBRC	5,213	5,582	24,616	16,183
Fleet miles/kg hydrogen or CNG GGE	5.98	6.18	2.96	3.04
(1.13 kg H ₂ /gal diesel fuel)				
Representative fleet MPG (energy equiv)	6.75	6.98	3.30	3.40
Hydrogen cost per kg	8.00	8.00		
GGE cost			0.90	0.97
Fuel cost per mile	1.34	1.29	0.30	0.32
	1			
Total scheduled repair cost per mile	0.16	0.20	0.13	0.13
Total unscheduled repair cost per mile	0.68	0.96	0.28	0.31
Total maintenance cost per mile	0.84	1.16	0.41	0.44
	Ι			
Total operating cost per mile	2.18	2.45	0.71	0.76

Maintenance Costs

	Fuel Cell Bus All Data	Fuel Cell Bus New Data	CNG Buses All Data	CNG Buses New Data
Fleet mileage	20,851	11,164	320,005	161,833
Total parts cost	1,949.22	1,796.00	44,240.48	25,858.95
Total labor hours	310.5	222.5	1739.3	908.5
Average labor cost (@ \$50.00 per hour)	15,525.00	11,125.00	86,965.00	45,425.00
Total maintenance cost	17,474.22	12,921.00	131,205.48	71,283.95
Total maintenance cost per bus	17,474.22	12,921.00	26,241.10	14,256.79
Total maintenance cost per mile	0.84	1.16	0.41	0.44

Maintenance Costs by Vehicle System

	Fuel Cell Bus All Data	Fuel Cell Bus New Data	CNG Buses All Data	CNG Buses New Data
Fleet mileage	20,851	11,164	320,005	161,833
	•			
Total Engine/Fuel-Related Systems (AT	A VMRS 27, 30, 3	31, 32, 33, 41, 42,	43, 44, 45, 46, 0	65)
Parts cost	59.64	46.64	22,750.64	13,744.81
Labor hours	122.75	78.00	346.50	217.75
Average labor cost	6,137.50	3,900.00	17,325.00	10,887.50
Total cost (for system)	6,197.14	3,946.64	40,075.64	24,632.31
Total cost (for system) per bus	6,197.14	3,946.64	8,015.13	4,926.46
Total cost (for system) per mile	0.2972	0.3535	0.1252	0.1522
Exhaust System Repairs (ATA VMRS 43	5)	I	I	I
Parts cost	0.00	0.00	168.95	168.95
Labor hours	0.0	0.0	2.0	2.0
Average labor cost	0.00	0.00	100.00	100.00
Total cost (for system)	0.00	0.00	268.95	268.95
Total cost (for system) per bus	0.00	0.00	53.79	53.79
Total cost (for system) per mile	0.0000	0.0000	0.0008	0.0017
Fuel System Repairs (ATA VMRS 44)	4.45	4.45	070.00	004.00
Parts cost	4.45	4.45	676.26	331.92
Labor nours	1.0	0.0	0.5	0.5
Average labor cost	50.00	0.00	25.00	25.00
Total cost (for system)	54.45	4.45	140.25	300.92
Total cost (for system) per bus	0,0006	4.40	140.20	71.30
Total cost (for system) per mile	0.0026	0.0004	0.0022	0.0022
Power Plant (Engine) Penairs (ATA VME	29.45)			
Parts cost	13.00	0.00	9 939 60	7 289 26
Labor hours	58.0	37.5	220.8	156.3
Average labor cost	2 900 00	1 875 00	11 037 50	7 812 50
Total cost (for system)	2,913.00	1.875.00	20.977.10	15,101,76
Total cost (for system) per bus	2.913.00	1.875.00	4,195,42	3.020.35
Total cost (for system) per mile	0.1397	0.1680	0.0656	0.0933
Electric Propulsion Repairs (ATA VMRS	6 46)			
Parts cost	0.00	0.00	0.00	0.00
Labor hours	23.0	9.5	0.0	0.0
Average labor cost	1,150.00	475.00	0.00	0.00
Total cost (for system)	1,150.00	475.00	0.00	0.00
Total cost (for system) per bus	1,150.00	475.00	0.00	0.00
Total cost (for system) per mile	0.0552	0.0425	0.0000	0.0000

	Fuel Cell Bus All Data	Fuel Cell Bus New Data	CNG Buses All Data	CNG Buses New Data
Electrical System Repairs (ATA VMRS 30	ral, 31-Charging	, 32-Cranking, 3	3-Ignition)	
Parts cost	0.00	0.00	9,670.14	4,663.98
Labor hours	13.5	9.0	71.0	26.0
Average labor cost	675.00	450.00	3,550.00	1,300.00
Total cost (for system)	675.00	450.00	13,220.14	5,963.98
Total cost (for system) per bus	675.00	450.00	2,644.03	1,192.80
Total cost (for system) per mile	0.0324	0.0403	0.0413	0.0369
Air Intake System Repairs (ATA VMRS 41	1)			
Parts cost	0.00	0.00	751.97	331.62
Labor hours	0.0	0.0	0.0	0.0
Average labor cost	0.00	0.00	0.00	0.00
Total cost (for system)	0.00	0.00	751.97	331.62
Total cost (for system) per bus	0.00	0.00	150.39	66.32
Total cost (for system) per mile	0.0000	0.0000	0.0023	0.0020
Cooling System Repairs (ATA VMRS 42)				
Parts cost	42.19	42.19	840.48	583.32
Labor hours	27.3	22.0	49.8	33.0
Average labor cost	1,362.50	1,100.00	2,487.50	1,650.00
Total cost (for system)	1,404.69	1,142.19	3,327.98	2,233.32
Total cost (for system) per bus	1,404.69	1,142.19	665.60	446.66
Total cost (for system) per mile	0.0674	0.1023	0.0104	0.0138
Hydraulic System Repairs (ATA VMRS 6	5)			
Parts cost	0.00	0.00	456.79	263.27
Labor hours	0.0	0.0	0.0	0.0
Average labor cost	0.00	0.00	0.00	0.00
Total cost (for system)	0.00	0.00	456.79	263.27
Total cost (for system) per bus	0.00	0.00	91.36	52.65
Total cost (for system) per mile	0.0000	0.0000	0.0014	0.0016
General Air System Repairs (ATA VMRS	10)			
Parts cost	0.00	0.00	15.86	15.86
Labor hours	4.5	3.5	14.0	0.0
Average labor cost	225.00	175.00	700.00	0.00
Total cost (for system)	225.00	175.00	715.86	15.86
Total cost (for system) per bus	225.00	175.00	143.17	3.17
Total cost (for system) per mile	0.0108	0.0157	0.0022	0.0001

Maintenance Costs by Vehicle System (continued)

Maintenance Costs by Vehicle System (continued)

	Fuel Cell Bus All Data	Fuel Cell Bus New Data	CNG Buses All Data	CNG Buses New Data
Brake System Repairs (ATA VMRS 13)				
Parts cost	4.99	4.99	4,720.60	4,688.99
Labor hours	0.0	0.0	85.8	84.3
Average labor cost	0.00	0.00	4,287.50	4,212.50
Total cost (for system)	4.99	4.99	9,008.10	8,901.49
Total cost (for system) per bus	4.99	4.99	1,801.62	1,780.30
Total cost (for system) per mile	0.0002	0.0004	0.0281	0.0550
Transmission Repairs (ATA VMRS 27)				
Parts cost	0.00	0.00	246.45	112.49
Labor hours	0.0	0.0	2.5	0.0
Average labor cost	0.00	0.00	125.00	0.00
Total cost (for system)	0.00	0.00	371.45	112.49
Total cost (for system) per bus	0.00	0.00	74.29	22.50
Total cost (for system) per mile	0.0000	0.0000	0.0012	0.0007
Inspections Only - No Parts Replacemen	nts (101)			
Parts cost	0.00	0.00	0.00	0.00
Labor hours	65.3	44.5	545.8	259.3
Average labor cost	3,262.50	2,225.00	27,287.50	12,962.50
Total cost (for system)	3,262.50	2,225.00	27,287.50	12,962.50
Total cost (for system) per bus	3,262.50	2,225.00	5,457.50	2,592.50
Total cost (for system) per mile	0.1565	0.1993	0.0853	0.0801
Cab, Body, and Accessories Systems R	epairs			
(ATA VMRS 02-Cab and Sheet Metal, 50-	Accessories, 71	-Body)		
Parts cost	1,485.48	1,462.32	10,362.84	3,750.28
Labor hours	84.0	75.8	543.3	257.0
Average labor cost	4,200.00	3,787.50	27,162.50	12,850.00
I otal cost (for system)	5,685.48	5,249.82	37,525.34	16,600.28
Total cost (for system) per bus	5,685.48	5,249.82	7,505.07	3,320.06
l otal cost (for system) per mile	0.2727	0.4702	0.11/3	0.1026
HVAC System Repairs (ATA VMRS 01)	00.70	00.70	0.540.00	0.000.04
Parts cost	22.73	22.73	2,518.22	2,220.81
Labor nours	20.0	725.00	50.8 2.527.50	23.3
Total cost (for system)	1,300.00	747 72	2,037.00	1,102.30
Total cost (for system) per hus	1,022.73	747.73		3,303.31
Total cost (for system) per bus	1,322.73	141.13	1,011.14	0/0.00
Total Cost (for System) per mile	0.0634	0.0670	0.0158	0.0209

	Fuel Cell Bus All Data	Fuel Cell Bus New Data	CNG Buses All Data	CNG Buses New Data	
Lighting System Repairs (ATA VMRS 34)	•				
Parts cost	150.32	33.26	892.40	722.04	
Labor hours	4.0	3.3	37.5	23.3	
Average labor cost	200.00	162.50	1,875.00	1,162.50	
Total cost (for system)	350.32	195.76	2,767.40	1,884.54	
Total cost (for system) per bus	350.32	195.76	553.48	376.91	
Total cost (for system) per mile	0.0168	0.0175	0.0086	0.0116	
Frame, Steering, and Suspension Repair	irs (ATA VMRS [^]	14-Frame, 15-Stee	ering, 16-Suspe	nsion)	
Parts cost	226.06	226.06	2,728.81	716.16	
Labor hours	2.3	1.5	31.8	8.5	
Average labor cost	112.50	75.00	1,587.50	425.00	
Total cost (for system)	338.56	301.06	4,316.31	1,141.16	
Total cost (for system) per bus	338.56	301.06	863.26	228.23	
Total cost (for system) per mile	0.0162	0.0270	0.0135	0.0071	
Axle, Wheel, and Drive Shaft Repairs (ATA VMRS 11-Front Axle, 18-Wheels, 22-Rear Axle, 24-Drive Shaft)					
Parts cost	0.00	0.00	251.11	0.00	
Labor hours	0.0	0.0	22.0	6.5	
Average labor cost	0.00	0.00	1,100.00	325.00	
Total cost (for system)	0.00	0.00	1,351.11	325.00	
Total cost (for system) per bus	0.00	0.00	270.22	65.00	
Total cost (for system) per mile	0.0000	0.0000	0.0042	0.0020	
Tire Repairs (ATA VMRS 17)					
Parts cost	0.00	0.00	0.00	0.00	
Labor hours	1.8	1.5	62.0	28.8	
Average labor cost	87.50	75.00	3,100.00	1,437.50	
Total cost (for system)	87.50	75.00	3,100.00	1,437.50	
Total cost (for system) per bus	87.50	75.00	620.00	287.50	
Total cost (for system) per mile	0.0042	0.0067	0.0097	0.0089	

Notes

1. To compare the hydrogen fuel dispensed and fuel economy to diesel, the hydrogen dispensed was also converted into diesel energy equivalent gallons. Actual energy content will vary by locations, but the general energy conversions are as follows:

Lower heating value (LHV) for hydrogen = 51,532 Btu/lb LHV for diesel = 128,400 Btu/lb 1 kg = 2.205 lb 51,532 Btu/lb * 2.205 lb/kg = 113,628 Btu/kg Diesel/hydrogen = 128,400 Btu/gal /113,628 Btu/kg = 1.13 kg/diesel gal

2. The propulsion-related systems were chosen to include only those systems of the vehicles that could be affected directly by the selection of a fuel/advanced technology.

3. ATA VMRS coding is based on parts that were replaced. If there was no part replaced in a given repair, then the code was chosen by the system being worked on.

4. In general, inspections (with no part replacements) were included only in the overall totals (not by system). Category 101 was created to track labor costs for PM inspections.

5. ATA VMRS 02-Cab and Sheet Metal represents seats, doors, etc.; ATA VMRS 50-Accessories represents things like fire extinguishers, test kits, etc.; ATA VMRS 71-Body represents mostly windows and windshields.

6. Average labor cost is assumed to be \$50 per hour.

7. Warranty costs are not included.

Appendix F: Fleet Summary Statistics – SI Units

Fleet Summary Statistics: SunLine Transit Agency Fuel Cell Bus (FCB) and Compressed Natural Gas (CNG) Study Groups Fleet Operations and Economics

	Fuel Cell Bus	Fuel Cell Bus	CNG Buses	CNG Buses
Number of vehicles				New Data
Period used for fuel and oil on analysis	5/10_6/11	12/10_6/11	5/10_6/11	12/10_6/11
Total number of months in period	5/10-0/11 1/	7	0/10-0/11 1/	7
Fuel and oil analysis base fleet kilometers	33 383	17 966	514 984	260 438
Period used for maintenance on analysis	5/10_6/11	12/10_6/11	5/10_6/11	12/10_6/11
Total number of months in period	14	7	14	7
Maintenance analysis base fleet	17	,	17	I
kilometers	33,556	17,966	514,984	260,438
Average monthly kilometers per vehicle	2,396	2,567	7,357	7,441
Availability	62%	64%	89%	88%
Fleet fuel usage in CNG liter equiv/H ₂ kg	3,472	1,807	409,726	201,566
Roadcalls	4	2	24	24
RCs KMBRC	8,389	8,983	21,458	10,852
Propulsion roadcalls	4	2	13	13
Propulsion KMBRC	8,389	8,983	39,614	20,034
·	I			
Fleet kg hydrogen/100 km	10.40	10.06	79.56	77.40
(1.13 kg H ₂ /gal diesel fuel)				
Rep. fleet fuel consumption (L/100 km)	34.84	33.69	71.21	69.27
Hydrogen cost per kg	8.00	8.00	0.04	0.00
GGE cost/liter			0.24	0.26
Fuel cost per kilometer	0.83	0.805	0.189	0.20
Total scheduled renair cost per kilometer	0.01	0.12	0.08	0.08
Total unscheduled repair cost per kilometer	0.01	0.12	0.00	0.00
kilometer	0.42	0.60	0.17	0.19
Total maintenance cost per kilometer	0.52	0.72	0.25	0.27
	-			
Total operating cost per kilometer	1.35	1.52	0.44	0.47

Maintenance Costs

	Fuel Cell Bus All Data	Fuel Cell Bus New Data	CNG Buses All Data	CNG Buses New Data
Fleet mileage	33,556	17,966	514,984	260,438
Total parts cost	1,949.22	1,796.00	44,240.48	25,858.95
Total labor hours	310.5	222.5	1739.3	908.5
Average labor cost (@ \$50.00 per hour)	15,525.00	11,125.00	86,965.00	45,425.00
Total maintenance cost	17,474.22	12,921.00	131,205.48	71,283.95
Total maintenance cost per bus	17,474.22	12,921.00	26,241.10	14,256.79
Total maintenance cost per kilometer	0.52	0.72	0.25	0.27