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Abstract—Empirical techniques for characterizing electrical 
energy use now play a key role in reducing electricity 
consumption, particularly miscellaneous electrical loads, in 
buildings. Identifying device operating modes (mode extraction) 
creates a better understanding of both device and system 
behaviors. Using clustering to extract operating modes from 
electrical load data can provide valuable insights into device 
behavior and identify opportunities for energy savings. We 
present a fast and effective heuristic clustering method to identify 
and extract operating modes in electrical load data. 

Keywords–buildings, clustering, miscellaneous electrical loads, 
mode extraction, system characterization. 

I. INTRODUCTION 
Miscellaneous Electrical Loads (MELs) are the fastest 

growing load category in buildings and account for the largest 
portion of commercial and residential electricity consumption. 
MELs are defined as all building electrical loads apart from 
heating, ventilation, and air-conditioning (HVAC), space 
lighting, and water heating [1]. The U.S. Department of Energy 
(DOE) estimates that MELs will grow from 31% of total 
commercial building primary energy use in 2006 (1610 TWh or 
5.5 Quads) to 43% in 2030 (3140 TWh or 10.7 Quads); 
residential buildings have similar statistics. Since commercial 
and residential buildings consume 40% of U.S. primary energy 
(29300 TWH or 100 Quads in 2006), MELs account for around 
10% of all energy used in the United States [2], [3]. 

MELs represent a growing opportunity for energy savings. 
Characterizing MEL behavior is a key step toward energy 
reduction. Mode extraction—the identification and 
quantification of operating states (modes)—is an important 
technique for load characterization. Data collection and mode 
extraction for MELs are difficult to implement, however, 
because many end use subcategories fall under the umbrella of 
“miscellaneous” load. Several studies have specifically 
addressed MELs, particularly plug loads [1], [4]-[7], but few 
sources of load data are available for specific MELs. 

Targeted metering of individual MELs can alleviate the 
lack of available load data. As part of a larger DOE effort, the 
National Renewable Energy Laboratory (NREL) is conducting 
a study of commercial MELs. The study targets a large retail 

store with a wide variety of space types, including general 
merchandise, grocery, restaurant, pharmaceutical, and medical 
services. NREL has catalogued more than 750 distinct MEL 
devices and metered approximately 240 of these, recording 
power, voltage, and energy use. Characterizing and modeling 
MEL behavior are primary outcomes of the study, both to 
identify energy saving opportunities and to improve energy 
simulations. A rapid, reliable method of identifying and 
extracting MELs power consumption characteristics is needed 
to create energy models. Here, we present a fast and effective 
heuristic clustering technique for extracting operating modes 
from electrical load data. 

II. RELATED WORK 
Several studies have explored MEL operation, including 

extraction of operating modes. A recent study of MELs in U.S. 
commercial buildings [1] used building-level electrical data to 
estimate national MELs energy use by device and building 
type. This study is among the most rigorous in combining 
independent MELs data sets, but its results have significant 
uncertainty because many analysis inputs are assumptions, 
averages, or best estimates. A large-scale residential study in 
Europe [4] employed an integrated approach consisting of 
monitoring studies, household surveys, and detailed audits. The 
study focused on characterizing and reducing standby power 
consumption as defined in the IEC62301 standard [8], 
however, as opposed to overall power consumption. 

More limited studies have targeted specific MEL categories 
via field monitoring. One study examined a subset of office 
MELs via intensive monitoring over a two week period [5]. A 
similar study that focused on residential uses in Germany [6] 
analyzed and characterized power modes and operating times 
of information and communication devices according to four 
pre-defined operating modes: normal, standby, off-mode, and 
off.  Another study employed non-intrusive methodology 
consisting of an inventory and a night-time audit of the power 
status of office equipment and devices [7]; it recorded data on 
the types, power states and power save delay settings of office 
equipment in a commercial building environment. This study 
consisted only of a snapshot at a single point in time, however, 
and therefore yielded no information about the time spent in 
each power state. 
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Non-intrusive load monitoring (NILM) offers a different 
approach to load characterization, for both MELs and 
traditional loads. NILM uses a single, centralized instrument to 
monitor aggregated electricity consumption. Computer 
software then disaggregates individual loads from the overall 
signal, recording device behavior in the process. The simplest 
and least expensive NILM techniques measure changes in real 
and reactive power levels and require only low frequency 
sampling [9]-[11]. More complex techniques rely on harmonic 
analysis to distinguish loads; these require costlier hardware 
and more sophisticated software [12], [13]. NILM can reliably 
distinguish on/off loads, but loads with multiple or variable 
states present a much greater challenge [9], [14], [15]. NILM is 
less disruptive and less costly to deploy than a plug-level 
metering and can track mobile loads precisely. However, 
NILM must be preceded by analysis of the individual loads to 
be monitored because NILM algorithms can disaggregate 
individual loads only by comparison with known load 
behavior. Therefore, NILM is not a suitable first step in load 
characterization. 

III. MODE EXTRACTION VIA CLUSTERING 
Cluster analysis, or clustering, is the process of dividing a 

data set into logical groupings (clusters) based on similarity 
criteria. Mode extraction for electrical loads may be viewed as 
a clustering problem: each power mode represents a distinct 
cluster within the load data that must be identified and 
extracted. The resulting modes (clusters) may then be further 
analyzed to determine characteristics such as duty cycle, 
average mode power, and expected mode transitions. 

For example, the vending machine power data of Figure 1 
suggest four operating modes: a dominant mode near 700 W 
and three distinct but closely spaced modes in the range of 150-
250 W. Clustering the data provides a method for detecting and 
quantifying these power modes. 

A. Data Set Challenges 
Electrical load data present several challenges that make 

effective clustering difficult. Long-term time series of electrical 
loads may contain several hundred thousand data points, 
recording steady-state device operation, transient conditions, 
and noise. Many assumptions that give tractability to other 
clustering problems do not hold for electrical load data: the 
number of clusters is not known a priori, they may not conform 
to Gaussian distributions, and they may be of different 
densities. Electrical loads, particularly MELs, differ widely 
with respect to key characteristics, including magnitude, 
characteristic load profile, and cycling frequency. This load 
diversity creates difficulty during clustering algorithm 
initialization, as little information is available in advance. For 
loads encountered in the field, even basic nameplate data are 
often unavailable or unclear. 

Instrumentation imposes further challenges because a cost 
versus data quality tradeoff is inherent in widely deployed 
sensor networks. Data transmission and storage capabilities 
limit time resolution and the number of parameters recorded. 
Measured data are discretized to the precision of the 
instrument. Poor-quality instrumentation can also create excess 
noise, which must be discarded during mode extraction. 

B. Algorithm Requirements 
In characterization studies involving many loads, clustering 

must be performed on a large number of data sets representing 
diverse devices. The algorithm employed should operate with 
minimal user input, as manual initialization is tedious when 
many data sets must be processed. The algorithm should also 
be robust with respect to the challenges identified in section III-
A. An ideal clustering algorithm requires no initialization, is 
fast, is computationally efficient for large data sets, identifies 
and removes noise in the data, identifies clusters of arbitrary 
shapes, and accurately determines cluster boundaries. 

No presently available clustering algorithm fulfills all these 
requirements. In practice, the user must at minimum set global 
defaults for the algorithm and specify which measurements to 
use. The case where default parameters may be automatically 
computed from data set characteristics represents a suitable 
level of automation. Also, clustering becomes more tractable 
when it is performed using only a few dimensions. Here, we 
limit cluster analysis to device power only. 

C. Clustering Algorithms 
Numerous cluster analysis techniques are available, many 

of which are summarized in [16] and [17]. Only a few common 
partitioning techniques are discussed here, as many clustering 
techniques are too computationally expensive for application to 
large data sets [18]. Centroid-based techniques, such as K-
means, are a subclass of partitioning techniques that classify 
the data into k clusters based on the distance to k central points, 
where k is an input variable. Such techniques must be iterated 
for differing values of k when the number of clusters is not 
known. This greatly increases algorithm run time. 

Another class of partitioning methods applies the 
expectation-maximization (EM) algorithm for statistical 
modeling to finite mixtures, for instance, a set of Gaussian 

Figure 1.  Example of time series load data recorded from a vending machine 
used as an input for mode extraction via clustering. 
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distributions [19]. EM-based models must select both the 
number of clusters and an appropriate statistical model a priori. 
If this information is not known, the technique may perform 
very poorly. EM-based algorithms are more computationally 
expensive than centroid-based techniques, as they require 
complex statistical calculations. 

Density estimation partitioning techniques define clusters 
as regions of high density within the data. In contrast to the 
previous techniques, density estimation requires no a priori 
information about the number or shape of data clusters. The 
DBSCAN algorithm and its variants use a nearest-neighbor 
definition of density to perform clustering [18], [20], [21]. 
Except in cases where Fast Nearest Neighbor algorithms are 
available, the computational cost of these techniques scales 
with the square of the data set size [18]. 

IV. THE HISTOGRAM HEURISTIC APPROACH 
Because density estimation requires little input prior to 

clustering, it readily lends itself to automation; however, 
density-based approaches are computationally expensive. We 
developed a rapid approach called the histogram heuristic (HH) 
technique, which uses a histogram to estimate data density. The 
technique is based on the concept of visual classification of 
electrical load data and automates an otherwise tedious manual 
process. It is fast, scales linearly, and yields robust results 
across a wide range of inputs. It is, however, strictly heuristic; 
there is no guarantee of optimality according to formal criteria. 

A. The Algorithm 
The core of the HH technique is the construction of a 

histogram to represent the data. Given sufficient data points 
and appropriate bin selection, a histogram can approximate the 
probability density function of a data set. The algorithm may 
then examine the histogram rather than the underlying data. 
This greatly reduces the computational requirements. 

The main steps in the HH technique are: 

1. Construct a histogram of the data. 

2. Identify the largest histogram bin. 

3. Identify surrounding histogram bins that exceed a user-
specified threshold. 

4. Classify the data in these bins as a new cluster. 

5. Remove the bins from the histogram. 

6. If enough points have been classified into clusters, 
stop. Otherwise, return to step 2. 

Steps 2 and 3 represent cluster identification; steps 4 and 5 
represent cluster extraction. Figure 2 illustrates steps 2-5 in one 
dimension. The full version of the algorithm includes 
additional error checking to ensure that true clusters are not 
split apart because the threshold value was poorly selected. 

B. Parameter Selection 
The HH technique requires specification of the number of 

histogram bins, the bin height threshold during clustering, and 
the minimum amount of data to classify. The number of 

histogram bins drives the resolution at which cluster boundaries 
may be detected because the width of each bin is inversely 
proportional to the number of bins used. Generally, more 
histogram bins are desirable because they enable the algorithm 
to identify tightly spaced clusters. There are two practical 
limitations on the number of histogram bins: 

• The width of each bin may not be smaller than the 
precision of the data. Otherwise, some bins will fall 
entirely between allowable values of the data (and will 
be empty), artificially dividing the histogram.  

• If the number of bins is increased to the point that 
each bin contains very few points, the histogram loses 
smoothness and no longer accurately approximates the 
probability density function.  

In practical cases with large data sets, several hundred bins 
may be used without approaching either limitation. 

Figure 2.  Simplified representation of the histogram heuristic clustering 
technique in one dimension. 



4 

The bin height threshold controls how the algorithm 
identifies cluster edges: all adjacent bins above this threshold 
are included in the cluster. The algorithm uses a relative 
threshold in order to compensate for the number of bins and 
adapt to varying cluster densities. If the bin height threshold is 
too high, the algorithm will truncate the cluster edges. If it is 
too low, the algorithm will attach bordering noise points to the 
cluster and may merge multiple clusters together. 

The data classification stopping point controls the algorithm 
by specifying a minimum percentage of the data that must be 
classified into clusters. This number should be set based on the 
expected noise level. For example, if the data set contains 1% 
noise, the data classification threshold should be set at 99% or 
lower. In general, setting this threshold too low will not affect 
cluster discovery unless one or more valid clusters contain only 
a very small number of data points. Setting this threshold too 
high has an immediate and obvious effect: the algorithm 
identifies many additional small clusters of noise points. 

C. Advantages and Disadvantages 
The HH technique’s primary advantages are simplicity and 

speed. The algorithm requires no assumptions about the data 
structure, but still forms intuitive clusters. The bulk of the 
computation occurs during construction of the histogram, so 
the computational cost of the HH technique scales linearly. 
Finally, the HH technique offers reliable noise rejection. 

The HH technique has some limitations:  

• It requires sufficient data to create a smooth 
histogram. (This limitation does not usually apply to 
electrical load data sets, which are typically large.)  

• It is sensitive to the initialization of control 
parameters; however, it is not difficult to select default 
parameters that function well across a wide range of 
input data sets.  

• It rarely identifies cluster edges perfectly.  

• It is unsuited to data sets with adjacent or overlapping 
clusters because the density-based clustering process 
cannot distinguish between them.  

• It does not extend readily to data sets of high 
dimensionality. Increasing the dimensionality by one 
order decreases the number of data points per bin 
(reducing histogram smoothness), squares the number 
of bins required to produce sharp cluster edges, and 
doubles the number of search directions (increasing 
computational cost). Therefore, in practice the HH 
technique is limited to clustering in only a few 
dimensions. 

V. PERFORMANCE EVALUATION 
To evaluate the HH technique’s performance with respect 

to electrical load data, we used the R environment for statistical 
computing [22] to implement and test it. During controlled 
testing, we compared the HH techniques with three other 

clustering methods: K-means, EM-based normal mixture 
modeling (MClust) [23], and DBSCAN [24]. We also applied 
the HH technique to 163 sets of recorded MELs data to gauge 
performance with real data.  

A. Performance Testing 
During controlled testing, we performed three distinct tests: 

algorithm sensitivity, quality, and speed. The results of the 
sensitivity test determined the default algorithm parameters 
used in the remaining tests. 

1) Sensitivity: This test measured the sensitivity of the HH 
algorithm results to changes in the control parameters. 
Preliminary testing showed that the data classification 
stopping point has little effect on the clustering results as long 
as it is set below the level of the noise. In the test we varied 
the number of bins and the bin height threshold while keeping 
the data classification threshold constant at 99%. The test 
showed that the HH algorithm is robust across a wide range of 
input parameters. The number of bins may vary from 
approximately 30 to 3000 and the data classification threshold 
from approximately 0.1% to 10% without significantly 
altering the clustering results. Furthermore, the domain of 
input parameters corresponding to consistent results varied 
little among differing MELs data sets. Default values exist for 
these input parameters that perform well with diverse data: we 
selected 250 histogram bins and a threshold level of 1.0% for 
the speed and quality tests. 

2) Speed: The speed test evaluated execution time of each 
algorithm using an identical set of control data. The HH 
algorithm is the fastest of those tested due to its simplicity (see 
Figure 3). HH algorithm execution time scales linearly with 
data set size. 

Figure 3.  Comparison of histogram heuristic execution time with three other 
clustering algorithms. 
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3) Quality: The quality test compared the quality of output 
among the four clustering algorithms. Figure 4 displays a 
qualitative comparison of the four algorithms as applied to the 
vending machine data of Figure 1. K-means and MClust 
artificially split the uppermost mode and combine two of the 
lower modes; only the HH and DBSCAN algorithms return 
groupings that closely match the inuitive visual power modes. 
However, HH fails to correctly capture the lower bound of the 
highest power mode and DBSCAN artificially introduces 
several small clusters at that bound. 

In order to quantify clustering accuracy numerically, we 
constructed a set of control data with three distinct modes 
(clusters) plus 1% white noise. (The data was constructed to 
resemble the observed behavior of a beverage refrigerator.) 
We initialized each algorithm according to recommended 
practice, including specifying the number of clusters for the K-
means algorithm. We then calculated accuracy by matching 
indentified and true clusters via best matching of cluster 
centers and computing the percentage of correctly clustered 
points. Table I summarizes the results. The HH and DBSCAN 
algorithms both achieved excellent accuracy. However, 
DBSCAN identified several small, spurious clusters that the 
HH algorithm did not (similar to its behavior in Figure 4). 

B. Application: Miscellaneous Electrical Load Data 
We applied the HH algorithm to 163 MELs data sets, 

plotting each with color-coded modes for rapid visual 
inspection (not shown in this paper). We inspected the plots, 
qualitatively assessing the accuracy of the algorithm compared 
with intuitive groupings. Of the data sets analyzed, 26 were 
single mode devices and 137 were multimodal. The algorithm 
properly identified all single-mode devices. In 75% of the 
multimodal cases, the clusters returned were sufficiently 
similar to manually identified clusters to be considered 
accurate. The most common misidentifications (61%) were a 
failure of the algorithm to capture mode edges accurately (as in 
Figure 4) or the identification of too many modes. An 

TABLE I.  CLUSTERING ACCURACY WITH RESPECT TO CONTROL DATA 

Algorithm Num. Clusters Found Accuracy 

Histogram Heuristic 3 + Noise 99.9% 

K-means 3 88.7% 

MClust 6a 84.9% 

DBSCAN 9 + Noise 99.8% 

a. MClust classifies noise as an independent cluster 

Figure 4.  Comparison of clustering results for vending machine load data returned from four clustering algorithms: 
Histogram Heuristic, K-means, MClust, and DBSCAN. 
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additional 14% of the errors represent the lumping of two 
visually distinguishable modes into one because of close or 
overlapping clusters. 

The remaining errors were mostly the result of loads with 
spiking power use (for example, microwave ovens) for which 
increased time resolution is needed or mode extraction may not 
be an appropriate method of characterizing device behavior. In 
general, the HH technique rapidly and effectively identified the 
same modes produced by visual inspection. Although a 
significant number of misidentifications can be corrected by 
altering the input parameters on a case-by-case basis, doing so 
is time consuming and demonstrates the need to further refine 
the default input parameters. In cases where the algorithm 
performed particularly poorly, visual inspection of the data 
often revealed either that little or no logical clustering was 
possible or the presence of some type of data corruption. 

In future work, the algorithm could be improved by 
implementing automatic detection of corrupt data. Other areas 
for improvement include developing techniques to set the input 
parameters based on the characteristics of the input data, 
allowing user-guided searches, and implementing correction by 
cross-correlation to other data parameters, such as voltage or 
ambient temperature. 

VI. CONCLUSIONS 
The HH technique can effectively identify and extract 

operating modes from electrical load data, performing 
significantly faster than other, more general clustering 
algorithms or manual analysis. This allows rapid, automated 
analysis of electrical load data in preparation for load 
modeling. The HH technique provides a foundation on which 
to build a fully automated electrical mode detection system. 
The technique provides a path for large-scale MELs 
characterization, a critical step in decreasing the amount of 
energy used by MELs in buildings. 
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