Western Renewable Energy Zones

Meeting Transmission Challenges in the Rocky Mountain Region

Jeff Hein

June 21, 2011

NREL/PR-5500-52000

Composite photo created by NREL
Presentation Outline

• WREZ Vision;
• Chronology;
• WREZ Initiative Overview;
• Generation and Transmission Model;
• Lessons Learned;
• Future Activities.
WREZ Vision

• Western Governors’ Association and U.S. Department of Energy initiated effort to develop renewable energy resources and reduce GHG emissions.

• Develop a high level “screening tool” to identify potential projects that allows industry stakeholders to analyze and compare economics of multiple projects.

• Find the high quality, developable renewable resource zones (based on NREL data).

• Assume incremental transmission expansion to bring generation to load.

• Identify the areas where there are impediments.
WREZ: Why was it developed?

- **U. S. Utilities Must Install More Renewable Energy Generation**

 Nine western states have adopted targets for the percent of all electricity generation that must come from renewable energy:

 1. Arizona 15% by 2025
 2. California 33% by 2020
 3. Colorado 30% by 2020
 4. Montana 15% by 2015
 5. Nevada 20% by 2015
 6. New Mexico 20% by 2020
 7. Oregon 25% by 2025
 8. Utah 20% by 2025
 9. Washington 15% by 2020

- **Western states work together to develop most economical resources**

Note: British Columbia is seeking renewables for all new generation.
WREZ Chronology of Events

• 2005-2006 Western Governors’ Association Clean and Diversified Energy Initiative;

• 2007 - WREZ Concept Emerges (based largely on TX Competitive Renewable Energy Zones effort);

• 2008 – DOE WREZ Grant to WGA;

• 2009 – Transmission Planning FOA funds;

• 2010 – WREZ findings incorporated into interconnection-wide transmission planning (WECC).
WREZ Four Phases

- **Phase 1**: Identify renewable energy zones (REZs), estimate quantity of REZ resources, estimate busbar cost of REZ resources;

- **Phase 2**: Develop modeling tool to estimate delivered cost of energy from any REZ to any major load center in the West; submit scenarios to WECC for detailed study;

- **Phase 3**: Identify zones of common interest to multiple LSEs (foster regional renewable generation and transmission projects);

- **Phase 4**: Institution-building, address transmission siting and cost allocation issues.
WREZ Phase 1

• Include all states and provinces in the Western Interconnection

• “Filters” applied to eliminate certain land types (national parks, urban areas, etc.)

• Areas identified represented large resources, smaller areas still show potential for smaller local loads.
 – Wind Class Threshold
 – Solar DNI Threshold

• **Standard economic assumptions**
 • Capital cost of each technology
 • Capacity factor
 • Operation and maintenance costs

• Estimate typical annual production (MWh) - each technology at each quality level.
Western Renewable Energy Zones Initiative (WREZ)
Renewable Energy Zones

• A zone has no real boundary. Grid lines do not limit development. They are for the analytical purpose of estimating resources and deciding how large to build the transmission system.

• A hub is the center of a zone. It represents a transmission substation where the zone’s resources are collected and get onto the grid.

• All of the resources in the vicinity of the hub that passed screening are used to estimate the capacity available at the hub.
WREZ Phase 2

• Create Generation and Transmission Model (GTM)

• Calculates cost of delivered energy from 54 zones to 20 load centers in WECC.

• High level “screening tool” that performs a simplified economic analysis for quick project comparison.

• Easy-to-use spreadsheet downloadable from web.

• Anybody can download and use – LSEs, PUCs, Industry Stakeholders – and yes your dog.
WECC Load Centers – GTM Screenshot

Identify Load Area

Select Load Area

Use dropdown or select from map on left

Load Area Assumptions

<table>
<thead>
<tr>
<th>Integration Costs</th>
<th>Local Delivery costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind integration ($/MWh)</td>
<td>$50</td>
</tr>
<tr>
<td>Solar Integration ($/MWh)</td>
<td>$25</td>
</tr>
<tr>
<td>Solar Thermal</td>
<td>$25</td>
</tr>
<tr>
<td>Solar Thermal with Storage</td>
<td>$50</td>
</tr>
<tr>
<td>Photovoltaic</td>
<td>$25</td>
</tr>
</tbody>
</table>

Resource Adequacy Cost

$194/year

Financing Assumptions

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Jan	60	59	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78
Feb	60	59	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78
Mar	59	58	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77
Apr	58	57	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76
May	57	56	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Jun	56	55	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74
Jul	55	54	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73
Aug	54	53	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72
Sep	53	52	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Oct	52	51	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70
Nov	51	50	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69
Dec	50	49	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68

Multiply the above profile by 12.

Select Peers

- Phoenix
- San Diego
- Albuquerque

National Renewable Energy Laboratory
Resource Selection

• Build resource portfolio
 – Unlimited resources from 5 Zones or less
 – Resource energy profile exists and can be viewed (as shown)
 – Select zone, then resource

California West

<table>
<thead>
<tr>
<th>ID</th>
<th>Tech</th>
<th>Capacity Left (MW)</th>
<th>Capacity Factor</th>
<th>Busbar Cost ($/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA_WE.B_5</td>
<td>Biogas</td>
<td>76</td>
<td>85%</td>
<td>$1.32</td>
</tr>
<tr>
<td>CA_WE.S_1</td>
<td>Solar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermal Dry</td>
<td>26%</td>
<td>$1.71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermal Wet</td>
<td>20%</td>
<td>$1.71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermal Stor Dry</td>
<td>20%</td>
<td>$1.71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermal Stor Wet</td>
<td>26%</td>
<td>$1.71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tracking PV</td>
<td>26%</td>
<td>$1.71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fixed PV</td>
<td>26%</td>
<td>$1.71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Capacity</td>
<td>2019</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CA_WE.W_1 | Wind | 58 | 47% | $47
CA_WE.W_2 | Wind | 437 | 38% | $85
CA_WE.W_3 | Wind | 1235 | 31% | $167
CA_WE.W_4 | Wind | 1311 | 26% | $130
CA_WE.W_5 | Wind | 345 | 23% | $128

CA_CT_5_6
Technologies: Solar Thermal
Capacity: 1,628 MW
Price: $160.71
Capacity Factor: 2796
Annual Generation: 3,888 GWh
Custom Resource Design – User Defined

- Users can enter custom resources at either generation point or load point.
- Multiple renewable technologies available.
Custom Resource Design – Conventional Generation

- Users can enter custom conventional resources at either generation point or load point.
- Multiple technologies available.

Conventional Generation

<table>
<thead>
<tr>
<th>Resource Name</th>
<th>Define</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>Other</td>
</tr>
<tr>
<td>Delivery Node</td>
<td>REPUECO</td>
</tr>
<tr>
<td>Capacity</td>
<td>160 MW</td>
</tr>
</tbody>
</table>

Cost of Carbon
- Carbon Price ($/tonCO2): $35
- Carbon Intensity ($/tonCO2/MMBTU): 0.58
- Additional cost: $14

Pre-Loaded Conventional Inputs
- Load CC Profile
- Load GT Profile

Busbar Cost
- User Defined Busbar Cost ($/MWh): $111
- Model-Defined Busbar Cost ($/MWh): $112
- Model-Defined Busbar Cost with Carbon Cost ($/MWh): $125

<table>
<thead>
<tr>
<th>Degradation</th>
<th>Cap Cost ($/kW)</th>
<th>FOM ($/kW/yr)</th>
<th>VOM ($/kW/yr)</th>
<th>Fuel Cost ($/MMBTU)</th>
<th>Heat Rate (BTU/kWh)</th>
<th>PTC (kW-hr)</th>
<th>PTC Term (yr)</th>
<th>Depreciation Schedule</th>
<th>Econ Life (yr)</th>
<th>Debt % 6%</th>
<th>Debt Term (yr)</th>
<th>Cost Equity</th>
<th>Tax Rate</th>
<th>Disc Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>120</td>
<td>10</td>
<td>5</td>
<td>8</td>
<td>670</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>25</td>
<td>20</td>
<td>12.5</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>1%</td>
<td>121</td>
<td>11</td>
<td>6</td>
<td>9</td>
<td>671</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>25</td>
<td>20</td>
<td>12.5</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>2%</td>
<td>122</td>
<td>12</td>
<td>8</td>
<td>10</td>
<td>672</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>25</td>
<td>20</td>
<td>12.5</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>3%</td>
<td>123</td>
<td>13</td>
<td>10</td>
<td>12</td>
<td>673</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>25</td>
<td>20</td>
<td>12.5</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>4%</td>
<td>124</td>
<td>14</td>
<td>12</td>
<td>14</td>
<td>674</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>25</td>
<td>20</td>
<td>12.5</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>5%</td>
<td>125</td>
<td>15</td>
<td>14</td>
<td>16</td>
<td>675</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>25</td>
<td>20</td>
<td>12.5</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

Generation Profile

<table>
<thead>
<tr>
<th>Month</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>35%</td>
</tr>
<tr>
<td>1%</td>
<td>35%</td>
</tr>
<tr>
<td>2%</td>
<td>35%</td>
</tr>
<tr>
<td>3%</td>
<td>35%</td>
</tr>
<tr>
<td>4%</td>
<td>35%</td>
</tr>
<tr>
<td>5%</td>
<td>35%</td>
</tr>
</tbody>
</table>

0.5% Capacity Factor
Resource Portfolio

- Shows specifics of resource portfolio.
- Graphic representation of energy profile, capacity, and annual energy.
- Specific resources can be removed from portfolio (enter 0 for Cap (MW)).
Identify Incremental Transmission Path(s): REZ(s) to Load

- Select Point-to-Point or Multi-Area Transmission Path(s).
- User may define the route for each resource(s)

User defined Route: Select "Click" on Segments

Point-to-Point

Multiple-Area

Select Resource(s)

Save Route
Selected Transmission Route(s) Design

- Highlighted line segments shown.
- Line segment characteristics can be changed – all blue fields.
- Transmission costs combined with resource portfolio costs to estimate project cost.

<table>
<thead>
<tr>
<th>Line</th>
<th>Type</th>
<th>Capacity</th>
<th>No. lines</th>
<th>Project Cap</th>
<th>Utilization (%)</th>
<th>Distance (mile)</th>
<th>Cost per mile</th>
<th>Cap Cost</th>
<th>ROW Cost</th>
<th>Cost ($M)</th>
<th>Cost per kW</th>
<th>Leve Cost</th>
<th>Losses</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLYTHE to DEVERS</td>
<td>500 kV AC Single</td>
<td>1500</td>
<td>4</td>
<td>6000</td>
<td>40.7%</td>
<td>114</td>
<td>$1,800</td>
<td>$205,400</td>
<td>$25,900</td>
<td>$231,300</td>
<td>$39</td>
<td>$2</td>
<td>1%</td>
</tr>
<tr>
<td>HARQUAHALA to WESTWING</td>
<td>500 kV AC Single</td>
<td>1500</td>
<td>4</td>
<td>6000</td>
<td>33.5%</td>
<td>54</td>
<td>$1,800</td>
<td>$37,414</td>
<td>$12,283</td>
<td>$109,698</td>
<td>$18</td>
<td>$1</td>
<td>0%</td>
</tr>
<tr>
<td>NEW SUB 31 to LAMAR</td>
<td>500 kV AC Single</td>
<td>1500</td>
<td>1</td>
<td>1500</td>
<td>12.3%</td>
<td>57</td>
<td>$1,800</td>
<td>$102,308</td>
<td>$12,900</td>
<td>$115,208</td>
<td>$77</td>
<td>$13</td>
<td>0%</td>
</tr>
<tr>
<td>TORTOLITA to GREENLEE</td>
<td>500 kV AC Single</td>
<td>1500</td>
<td>4</td>
<td>6000</td>
<td>33.5%</td>
<td>126</td>
<td>$1,800</td>
<td>$227,534</td>
<td>$28,691</td>
<td>$256,225</td>
<td>$43</td>
<td>$3</td>
<td>1%</td>
</tr>
<tr>
<td>SANTA ROSA to WESTWING</td>
<td>500 kV AC Single</td>
<td>1500</td>
<td>4</td>
<td>6000</td>
<td>33.5%</td>
<td>62</td>
<td>$1,800</td>
<td>$111,284</td>
<td>$14,032</td>
<td>$125,316</td>
<td>$21</td>
<td>$1</td>
<td>0%</td>
</tr>
<tr>
<td>DEVERS to SERRANO</td>
<td>600 kV AC Single</td>
<td>1600</td>
<td>4</td>
<td>6000</td>
<td>12.8%</td>
<td>70</td>
<td>$1,800</td>
<td>$126,324</td>
<td>$15,929</td>
<td>$142,253</td>
<td>$24</td>
<td>$1</td>
<td>0%</td>
</tr>
<tr>
<td>MOUNTAIN to DEVERS</td>
<td>500 kV AC Single</td>
<td>1500</td>
<td>1</td>
<td>1500</td>
<td>7.3%</td>
<td>85</td>
<td>$1,800</td>
<td>$153,176</td>
<td>$19,315</td>
<td>$172,490</td>
<td>$115</td>
<td>$32</td>
<td>1%</td>
</tr>
<tr>
<td>PISGAH to SERRANO</td>
<td>500 kV AC Single</td>
<td>1500</td>
<td>2</td>
<td>3000</td>
<td>20.8%</td>
<td>104</td>
<td>$1,800</td>
<td>$187,557</td>
<td>$23,850</td>
<td>$211,207</td>
<td>$70</td>
<td>$7</td>
<td>1%</td>
</tr>
<tr>
<td>HARQUAHALA to BLYTHE</td>
<td>500 kV AC Single</td>
<td>1500</td>
<td>4</td>
<td>6000</td>
<td>33.5%</td>
<td>92</td>
<td>$1,800</td>
<td>$164,848</td>
<td>$20,786</td>
<td>$185,634</td>
<td>$31</td>
<td>$2</td>
<td>1%</td>
</tr>
<tr>
<td>STERLING to LAMAR</td>
<td>500 kV AC Single</td>
<td>1500</td>
<td>1</td>
<td>1500</td>
<td>12.3%</td>
<td>172</td>
<td>$1,800</td>
<td>$309,502</td>
<td>$39,026</td>
<td>$348,529</td>
<td>$232</td>
<td>$38</td>
<td>1%</td>
</tr>
<tr>
<td>NEW SUB 31 to NEW SUB 28</td>
<td>500 kV AC Single</td>
<td>1500</td>
<td>4</td>
<td>6000</td>
<td>33.5%</td>
<td>214</td>
<td>$1,800</td>
<td>$384,712</td>
<td>$48,510</td>
<td>$433,221</td>
<td>$72</td>
<td>$4</td>
<td>2%</td>
</tr>
<tr>
<td>GREENLEE to NEW SUB 28</td>
<td>500 kV AC Single</td>
<td>1500</td>
<td>4</td>
<td>6000</td>
<td>33.5%</td>
<td>275</td>
<td>$1,800</td>
<td>$434,888</td>
<td>$62,400</td>
<td>$557,288</td>
<td>$83</td>
<td>$6</td>
<td>2%</td>
</tr>
<tr>
<td>SANTA ROSA to TORTOLITA</td>
<td>500 kV AC Single</td>
<td>1500</td>
<td>4</td>
<td>6000</td>
<td>33.5%</td>
<td>50</td>
<td>$1,800</td>
<td>$90,736</td>
<td>$11,441</td>
<td>$102,178</td>
<td>$17</td>
<td>$1</td>
<td>0%</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Project Results – Generation Resource & Transmission

- Supply curve shows levelized cost of electricity to load from portfolio ($/MWh):
 - Detailed resource cost;
 - Detailed transmission cost.
Regional Transmission Scenarios

- Zone hubs and their supply curves went into a conceptual delivered cost model:
 - Excel-based;
 - Populated with busbar costs from Phase 1, but may be customized to capture user-defined projects or scenarios;
 - Delivered costs estimated on the basis of user-selected load hub and user-selected REZ hub;
 - Available to load-serving entities and regulators to test scenarios.
Western Renewable Energy Zones

• WREZ on the Western Governors’ web site:
 http://www.westgov.org/wga/initiatives/wrez/

• GIS portal for WREZ maintained by NREL:
 • http://mercator.nrel.gov/wrez/
 – Login “wrez”
 – Password “guest”
WREZ Phases 1 & 2 Lessons Learned / Impediments

• Transmission is the biggest obstacle to installing large amounts of new renewable energy generation.

• Wildlife sensitivity analysis did not get developed adequately, and is an impediment. Accordingly, this issue is not in the Phase 1 report.

• Wildlife issues can overwhelm renewable energy potential.

• The WREZ took on significant importance to developers and others.

• In the end, the policies of the individual states can drive project outcomes.
Multiple LSEs may benefit from the same regional transmission and REZ(s) project.

LSE and PUC interviews are completed:
- Regulatory Assistance Project;
- NREL/LBNL.

Initial finding – local resources sufficient to meet RPS requirements.

Funding under FOA 68, Area of Interest 2, 2010.
WREZ Phase 4 – Fostering Interstate Cooperation

• Develop environment for regional interstate transmission and REZ(s) projects.

• Address policy and regulatory obstacles to interstate transmission projects, such as:

 – Siting
 • Federal lands, protected lands, sensitive lands, etc.

 – Cost allocation
 • Energy recipient(s)
 • Reliability beneficiary(s)
WREZ General Lessons Learned:

• Most LSEs and states prefer to use in-state/local renewable resources due to transmission timing and state economic benefits.

• States with energy export potential want to see G&T projects developed in order to bring the resource to market.

• Disturbed lands with valuable renewable resources should be a priority.

• Renewable resources will increase if:
 – They are economical or required:
 • Greenhouse gas emissions;
 • Renewable portfolio standards;
 • Price signals;
 • Technology breakthrough.
WREZ Continuing Efforts:

• Update wildlife and water issues into the generation data.

• Improve the WREZ model:
 – Improved GTM functionality;
 – Improved annotation;
 – Updated/Improved data (e.g., replacing 50-m wind data w/ 80 m).

• Improved DG integration.

• Outreach to LSEs and states.
WREZ Additional Information:

• Data, Presentations, and Reports

• Questions?
 – Email: jeff.hein@nrel.gov
 – 303-384-7090
Questions / Comments