

Wind Turbine Generator System Power Quality Test Report for the Gaia Wind 11-kW Wind Turbine

Amy Curtis and Vahan Gevorgian

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Technical Report NREL/TP-5000-51477 July 2011

Contract No. DE-AC36-08GO28308

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

U.S. Department of Energy Office of Scientific and Technical Information

P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: <u>mailto:reports@adonis.osti.gov</u>

Available for sale to the public, in paper, from:

U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: orders@ntis.fedworld.gov online ordering: http://www.ntis.gov/help/ordermethods.aspx

Cover Photos: (left to right) PIX 16416, PIX 17423, PIX 16560, PIX 17613, PIX 17436, PIX 17721 Printed on paper containing at least 50% wastepaper, including 10% post consumer waste.

Wind Turbine Generator System

Power Quality Test Report

for the

Gaia Wind 11-kW Wind Turbine

in

Boulder, CO

Conducted for

National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401

Conducted by

Wind Energy Program DOE / NREL

Amy Curtis, Vahan Gevorgian

October 12, 2010

Notice

This report was prepared as an account of work sponsored by an agency of the United States government. The test results documented in this report define the characteristics of the test article as configured and under the conditions tested.

The United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Nor do they assume legal liability or responsibility for the performance of the test article or any similarly named article when tested under other conditions or using different test procedures.

Neither Midwest Research Institute nor the U. S. Government shall be liable for special, consequential or incidental damages. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

NREL is a National Laboratory of the U. S. Department of Energy, and as an adjunct of the U. S. Government, cannot certify wind turbines. The information in this report is limited to NREL's knowledge and understanding as of this date.

NREL is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with the NREL's terms of accreditation unless stated otherwise in the report.

This report shall not be reproduced, except in full, without the written approval of Alliance or successor operator of NREL.

Approval By:	7/18/11
Amy Ourths, NREL Test Engineer	/ Date
Review By: mul Menutor	1/1/1
Ismael Mendoza, NREL Test Engineer	Date

Table of Contents

1.0 Background	5
2.0 Test Summary	5
3.0 Continuous Operation Test Results	6
3.1 Wind Turbine Data	6
3.2 Active Power, Reactive Power and Power Factor	7
3.3 Line Voltage Distortions	
3.4 Current Harmonics	11
3.5 Current Interharmonics	13
3.6 Current Distortions	14
3.7 Current and Voltage Imbalance	15
3.8 Continuous Operation Flicker	16
4.0 Switching Operation Tests Results	
4.1 Turbine starts and stops	
5.0 Exceptions	
Appendix A. Test Matrix	
Appendix B. Post Calibration Report	

List of Tables

6
6
6
7
0
0
1
3
4
8
8
7
7
7
8

List of Figures

Figure 1: Turbulence intensity vs. wind speed	. 7
Figure 2: Active and reactive power vs. wind speed	. 8
Figure 3: Power factor vs. active power	. 9
Figure 4: Reactive Vs. Active Power	. 9
Figure 5: Current TDD Vs. Power	12
Figure 6: Voltage Imbalance Vs. Power	15
Figure 7: Current imbalance Vs. Power	15
Figure 8: P_{st} vs. power for 30° network impedance angle	16
Figure 9: P _{st} vs. power for 50° network impedance angle	16
Figure 10: P _{st} vs. power for 70° network impedance angle	17
Figure 11: P _{st} vs. power for 85° network impedance angle	17
Figure 12: Cut-in wind (4.8 m/s) start: current waveforms (August 19, 2009)	19
Figure 13: Cut-in wind (4.8 m/s) start: power and RMS voltage (August 19, 2009) 2	20
Figure 14: Rated wind (10.5 m/s) start, current waveforms (December 31, 2009)	21
Figure 15: Rated wind (10.5 m/s) start, power, and RMS voltage (December 31, 2009) 2	22
Figure 16: Cut-in wind (3.4 m/s) stop, current waveforms (August 19, 2009)	23
Figure 17: Cut-in wind (3.4 m/s) stop, power, and RMS voltage (August 19, 2009) 2	24
Figure 18: Rated wind (10.0 m/s) stop: current waveforms (December 31, 2009)	25
Figure 19: Rated wind (10.0 m/s) stop: power and RMS voltage (December 31, 2009).	26
1	

1.0 Background

This test is being conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the NWTC as a part of this project. Power quality testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and duration tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification.

2.0 Test Summary

This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Measurement and Assessment of Power Quality Characteristics of Grid Connected Wind Turbines, IEC61400-21, First Edition, 2001-12.

The power quality test for the Gaia Wind 11-kW wind turbine began on July 23, 2009 and ended on January 15, 2010. About 9,995 10-min intervals of data were collected while the turbine was available. The IEC 61400-21 Power Quality Standard requires at least five 10-min average data points for each 1 m/s wind speed bin for the wind turbulence intensity between 8 and 16%. This condition reduced the valid data to 1,021 10-min intervals. The highest bin filled (with no wind speed normalization) was the 14 m/s bin. When the data is binned by percent of rated power, more than five data points were recorded for each bin. According to the IEC 61400-21, not enough data was collected to fill the 15 m/s bin due to high turbulence intensity for the data points collected in the 15 m/s bin. The test matrix is given in Appendix A.

The test was conducted in accordance IEC 61400-21 Power Quality Standard and MEASNET procedures, and the following are the test results required by the standard and are included in this report:

- Maximum measured power (60-sec and 0.2-sec), reactive power demand
- Voltage fluctuations (flicker)
- Voltage harmonics, current harmonics, interharmonics and distortions
- Turbine start and stop tests

3.0 Continuous Operation Test Results

3.1 Wind Turbine Data

Turbine make, model, serial number, production year	Gaia-Wind 11-kW, 10711114, 2007
Wind turbine type	Horizontal axis
Number of blades	2
Hub height (m)	18.2
Blade control	None
Rotor diameter (m)	13
Speed control	Constant speed
Generator type and rating	Induction, 11 kW
Converter type	n/a

Table 1: Gaia Wind 11-kW wind turbine general data

Table 2: Wind turbine rated data

Rated power, P_n (kW)	11
Rated wind speed, V_n (m/s)	9.5
Rated apparent power, S_n (kVA)	13
Rated reactive power, Q_n (kvar)	9.6
Rated current, $I_n(A)$	16
Rated voltage, V_n (V)	480

Table 3: Maximum permitted power

Peak continuous power, P_{mc} (kW)	20
Normalized value, $p_{mc} = P_{mc}/P_n$	1.2

3.2 Active Power, Reactive Power and Power Factor

The relationship between active and reactive power was measured at the wind turbine low voltage (480 VAC) terminals. Only 10-min data points, with turbulence intensity within 8-16% range, were used for this analysis (Figure 1). Power measurements were sampled during continuous operation only, and taken so that at least five 10-min time series of power were collected for each 1 m/s wind speed (according to IEC 61400-21). The sampled data was transferred to 10-minute average data by applying block averaging for each 10-min period (Table 4 and Figure 2). The power factor (Figure 3) was calculated using active and reactive power values. The reactive power demand is shown in Figure 4.

Figure 1: Turbulence intensity vs. wind speed

Wind Speed Bin, m/s	Number of Valid 10 min Data Points
0 to 1	0
1 to 2	0
2 to 3	0
3 to 4	142
4 to 5	346
5 to 6	220
6 to 7	112

Table 4: Number of data points per 1 m/s wind speed bins

7 to 8	61
8 to 9	54
9 to 10	29
10 to 11	15
11 to 12	17
12 to 13	16
13 to 14	6
14 to 15	1

Figure 2: Active and reactive power vs. wind speed

Figure 3: Power factor vs. active power

Figure 4: Reactive Vs. Active Power

The 10-min average data was sorted according to the method of bins so that the reactive power could be specified for 0, 10,, 90, 100% of rated power (Table 5). The maximum active power was measured both as 60-sec (P60) and 0.2-sec average (P0.2)

values. The reactive power at P_{mc} , P_{60} , and $P_{0.2}$ was determined by extrapolation of the measured relation between the active and reactive power (Table 6).

Power Bin	Number of 10-min	Output power,	Reactive power,
(% of rated power)	data points per bin	bin-mean-value (kW)	bin-mean-value (kVAR)
-5 to 5	161	0.238	-6.118
5 to 15	223	1.111	-5.695
15 to 25	182	2.180	-5.682
25 to 35	97	3.266	-5.844
35 to 45	86	4.325	-6.088
45 to 55	59	5.473	-6.493
55 to 65	43	6.594	-6.870
65 to 75	35	7.677	-7.116
75 to 85	38	8.795	-7.383
85 to 95	24	9.909	-7.807
95 to 105	25	10.932	-8.202
105 to 115	24	12.210	-8.792

Table 5: Data binned by real power

Table 6: Maximum instantaneous real and reactive power

Max. permit <i>P_{mc}</i> :	ted power,	60-sec average:		0.2-sec average:	
P _{mc} , kW 15.00	$p_{mc} = P_{mc}/P_n$ 1.36	P ₆₀ , kW 13.94	$p_{60} = P_{60}/P_n$ 1.27	P _{0.2} , kW 19.62	$p_{0.2} = P_{0.2} / P_n$ 1.78
<i>Q_{mc} at P_{mc},</i> <i>kVAR</i> -10.51	$q_{mc} = Q_{mc}/P_n$ -0.96	Q ₆₀ at P ₆₀ , kVAR -9.78	$q_{60} = Q_{60}/P_n$ -0.89	$Q_{0.2} at P_{0.2}, kVAR$ -15.77	$q_{0.2}=Q_{0.2}/P_n$ -1.43

Note 1: Data were not normalized to sea-level density.

Note 2: The active power curve shown in Figure 2 may not be used for the Gaia Wind 11kW wind turbine power performance evaluation. The official power curve will be published in the Gaia Wind 11-kW Power Performance Test Report.

3.3 Line Voltage Distortions

The average voltage Total Harmonic Distortions (THD) measured during the test are shown below for each phase:

Phase A – **2.028** % Phase B – **1.798** % Phase C – **1.734** % The maximum voltage THDs measured during the test are shown below for each phase:

Phase A - 4.163 %

Phase B - 4.028 %

Phase C - 3.595 %

All voltage THDs were calculated from harmonic voltages. The harmonic voltages were subgrouped according to Section 5.6 of IEC 61000-4-7/CDV. The window width used during measurements $T_w=12$.

3.4 Current Harmonics

The individual harmonic currents during continuous operation were measured as 10-min average data for each harmonic order (up to 50th) at the output power giving the maximum individual harmonic current. The harmonic data and the maximum current Total Demand Distortion (TDD) values as a percentage of nominal current I_n are shown in Table 7. Figure 5 shows the plots of 10-min average data for maximum current TDD (% of I_n) as a function of output power.

	Phase	Α	Phase	В	Phase	С
Order	Power	Harm. current	Power	Harm. current	Power	Harm. current
	(kW)	(%)	(kW)	(%)	(kW)	(%)
1	11.665	115.845	11.665	115.995	11.665	115.717
2	1.424	1.267	13.228	0.597	1.424	1.507
3	1.424	9.443	1.424	10.264	1.721	4.519
4	1.424	0.702	1.424	0.479	1.424	0.412
5	6.304	5.410	7.088	4.198	2.307	6.006
6	1.424	0.486	1.424	0.273	1.424	0.424
7	7.752	4.204	7.752	4.482	7.552	3.781
8	1.424	0.372	1.424	0.292	4.310	0.217
9	1.721	1.103	1.037	1.312	1.721	0.990
10	11.446	0.257	11.446	0.222	11.446	0.208
11	4.513	6.854	4.513	5.849	4.513	5.838
12	0.956	0.226	1.669	0.213	1.970	0.215
13	4.109	6.692	7.782	4.816	4.109	6.492
14	3.504	0.532	3.504	0.449	3.504	0.512
15	2.256	1.563	1.410	1.533	4.709	0.898
16	4.310	0.681	4.310	0.665	4.310	0.728
17	7.782	2.590	7.782	3.611	6.759	3.639
18	4.310	1.588	4.310	1.624	4.310	1.781
19	4.310	4.030	4.310	3.817	4.310	3.915
20	4.310	3.112	4.310	3.603	4.310	3.475
21	4.310	4.473	4.310	4.992	4.310	4.747
22	4.310	5.335	4.310	5.438	4.310	5.855
23	4.310	7.574	4.310	7.016	4.310	6.085
24	4.310	5.017	4.310	4.138	4.310	4.303
25	4.310	7.064	4.310	4.774	4.310	6.356
26	4.310	3.218	4.310	2.731	4.310	2.568
27	4.310	2.729	4.310	2.323	4.310	2.058
28	4.310	2.334	4.310	1.935	4.310	1.933

Table 7: Maximum Current Harmonics (10 min averages)

29	4.310	2.4	44	4	1.310	2.0	54	4.310		1.937	
30	4.310	1.7	75	4	1.310	1.4	94	4.310		1.518	
31	4.310	1.6	34	4	1.310	1.3	44	4.310		1.361	
32	4.310	1.4	88	4	1.310	1.1	88	4.310		1.239	
33	4.310	1.3	78	4	1.310	0.9	98	4.310		1.083	
34	4.310	1.2	55	4	1.310	0.9	01	4.310		1.010	
35	4.310	1.3	54	0).189	1.1	95	4.310		1.023	
36	4.310	0.9	20	4	.310	0.6	74	4.310		0.755	
37	4.310	0.7	58	4	.310	0.5	96	4.310		0.654	
38	4.310	0.6	36	4	.310	0.5	08	4.310		0.531	
39	4.310	0.5	00	4	1.310	0.4	41	4.310		0.389	
40	4.310	0.4	41	4	.310	0.3	79	4.310		0.373	
41	7.771	0.5	55	4	1.447	0.4	54	4.447		0.536	
42	4.310	0.3	03	4	.310	0.2	73	4.310		0.251	
43	12.112	0.2	88	1	2.112	0.2	88	4.310		0.212	
44	4.310	0.2	16	4	.310	0.1	98	4.310		0.179	
45	12.112	0.2	07	1	2.112	0.2	01	4.310		0.137	
46	4.310	0.1	57	4	.310	0.1	45	4.310		0.128	
47	4.447	0.2	32	1	.627	0.1	99	0.845		0.252	
48	4.310	0.1	14	4	.310	0.1	09	4.310		0.091	
49	11.579	0.1	26	1	1.579	0.1	49	4.622		0.112	
50	4.310	0.0	86	4	1.310	0.0	82	6.731		0.079	
Max. phase A o	current TDD (%	of I_n):	16.823		Output power at max current THD (kW):			12.780			
Max. phase B current TDD (% of I_n): 15.113				Output power at max current THD (kW):			12.780				
Max. phase C current TDD (% of I_n): 15.3			15.316		Output p	ower at 1	max cur	rent THD (kW):	12.780	

The harmonic currents were subgrouped according to Section 5.6 of IEC 61000-4-
7/CDV. The window width used during measurements was $T_w = 12$.

Figure 5: Current TDD Vs. Power

3.5 Current Interharmonics

The individual interharmonic currents below 2 kHz are given in Table 8 as 10-min average values for each frequency at the output power giving the maximum individual interharmonic current.

	Phase	Α	Phase B		Phase C		
f	Power	Interhar.	Power	Interhar.	Power	Interhar.	
		current		current		current	
(Hz)	(kW)	(%)	(kW)	(%)	(kW)	(%)	
90	10.868	2.399	10.868	2.428	10.868	2.410	
150	0.280	0.728	0.280	0.664	0.280	0.814	
210	0.280	0.539	0.280	0.542	0.280	0.457	
270	0.280	0.393	0.280	0.332	0.280	0.454	
330	0.280	0.328	0.280	0.296	0.280	0.448	
390	2.141	0.313	2.141	0.279	0.280	0.290	
450	0.736	0.404	0.736	0.380	0.736	0.381	
510	0.736	0.271	0.736	0.260	0.736	0.257	
570	0.736	0.208	0.736	0.198	0.736	0.201	
630	2.735	0.260	2.735	0.241	2.735	0.244	
690	2.735	0.321	2.735	0.282	2.735	0.291	
750	6.127	0.549	6.127	0.496	6.127	0.499	
810	6.127	0.628	6.127	0.559	4.257	0.463	
870	0.736	0.442	0.736	0.411	0.736	0.431	
930	0.736	0.592	0.736	0.551	0.736	0.605	
990	0.736	0.827	0.736	0.787	0.736	0.862	
1050	0.736	1.231	0.736	1.199	0.736	1.315	
1110	0.736	1.745	0.736	1.832	0.736	1.917	
1170	0.736	2.380	0.736	2.733	0.736	2.636	
1230	0.736	3.299	0.736	3.855	0.736	3.759	
1290	0.736	4.413	0.736	4.923	0.736	5.014	
1350	0.736	5.123	0.736	4.980	0.736	5.221	
1410	0.736	5.086	0.736	4.348	0.736	4.464	
1470	0.736	4.210	0.736	3.548	0.736	3.341	
1530	0.736	3.417	0.736	2.884	0.736	2.609	
1590	0.736	2.817	0.736	2.402	0.736	2.136	
1650	0.736	2.434	0.736	2.065	0.736	1.898	
1710	0.736	2.091	0.736	1.768	0.736	1.664	
1770	0.736	1.821	0.736	1.552	0.736	1.499	
1830	0.736	1.597	0.736	1.343	0.736	1.343	
1890	0.736	1.452	0.736	1.189	0.736	1.221	
1950	0.736	1.324	0.736	1.054	0.736	1.104	
2010	0.736	1.234	0.736	0.927	0.736	1.001	
2070	0.736	1.082	0.736	0.798	0.736	0.866	
2130	0.736	0.958	0.736	0.696	0.736	0.///	
2190	0.736	0.812	0.730	0.606	0.730	0.654	
2250	0.736	0.672	0.736	0.528	0.736	0.551	
2310	0.736	0.554	0.736	0.460	0.736	0.459	
2370	0.730	0.438	0.730	0.39/	0.730	0.382	
2430	0.730	0.374	0.730	0.341	0.730	0.31/	
2490	0.730	0.323	0.730	0.297	0.730	0.270	
2550	0.730	0.271	0.730	0.232	0.730	0.233	
2670	12 778	1.001	12 778	1.040	12 778	1.012	
2070	0.726	0.175	0.726	0.164	6 127	0.162	
2730	12 779	1 216	12 779	1 202	12 779	1.066	
2790	12.//0	1.210	12.//0	1.302	12.//0	1.000	

 Table 8: Current Interharmonics

2850	6.127	0.146	6.127	0.135	6.127	0.153
2910	6.127	0.141	6.127	0.131	6.127	0.149
2970	6.127	0.138	6.127	0.128	6.127	0.145
3030	12.778	0.817	12.778	0.734	12.778	0.700

The interharmonic currents were subgrouped according to Annex A of IEC 61000-4-7/CDV. The window width used during measurements $T_w=12$.

3.6 Current Distortions

The individual current distortions in the range 2 kHz up to 9 kHz are given in Table 9 as 10-min average values for each frequency at the output power giving the maximum individual current distortion.

	Phase A		Phase	В	Phase C		
f	Power	Interhar. current	Power	Interhar. current	Power	Interhar. current	
(kHz)	(kW)	(%)	(kW)	(%)	(kW)	(%)	
0.1	12.793	117.017	12.793	117.322	12.793	119.634	
0.3	4.644	6.863	4.644	5.452	4.644	6.972	
0.5	7.752	4.236	7.752	4.502	7.552	3.803	
0.7	1.037	8.403	1.037	6.910	4.109	7.523	
0.9	2.149	3.642	2.149	3.749	2.149	3.807	
1.1	1.231	11.490	1.231	12.014	1.231	11.859	
1.3	2.149	47.437	2.149	56.479	2.149	40.754	
1.5	2.149	38.814	2.149	29.895	2.149	31.273	
1.7	1.231	11.770	1.231	10.320	1.231	8.660	
1.9	1.231	6.658	1.231	5.841	1.231	5.816	
2.1	2.149	14.726	2.149	13.327	2.149	14.368	
2.3	2.149	14.279	2.149	11.802	2.149	11.549	
2.5	2.149	2.349	2.149	1.851	2.149	1.890	
2.7	1.231	2.275	1.231	2.106	1.231	2.077	
2.9	2.149	7.109	2.149	6.443	2.149	6.227	
3.1	1.231	1.477	1.231	1.445	1.231	1.358	
3.3	2.149	0.463	2.149	0.378	2.149	0.417	
3.5	2.149	1.189	2.149	1.062	2.149	1.146	
3.7	2.149	0.911	1.231	0.784	2.149	0.792	
3.9	2.149	0.265	2.149	0.234	2.149	0.197	
4.1	2.149	0.346	2.149	0.256	1.231	0.276	
4.3	1.231	1.019	1.231	0.735	1.231	0.862	
4.5	2.149	0.307	1.231	0.284	2.149	0.239	
4.7	1.231	0.254	1.231	0.267	1.231	0.208	
4.9	1.231	0.610	1.231	0.659	1.231	0.656	
5.1	1.231	0.621	1.231	0.619	1.231	0.424	
5.3	1.231	0.145	1.231	0.162	1.231	0.151	
5.5	1.231	0.193	1.231	0.198	1.231	0.169	
5.7	1.231	0.322	1.231	0.273	1.231	0.301	
5.9	1.231	0.268	1.231	0.289	1.231	0.196	
6.1	1.231	0.135	1.231	0.113	1.231	0.111	
6.3	1.231	0.090	1.231	0.100	1.231	0.086	
6.5	1.231	0.128	1.231	0.136	1.231	0.129	
6.7	2.149	0.070	2.149	0.074	1.231	0.060	
6.9	2.149	0.065	1.231	0.065	1.231	0.055	
7.1	2.149	0.078	2.149	0.079	2.904	0.077	
7.3	2.149	0.086	2.149	0.073	2.149	0.069	
7.5	2.149	0.060	2.149	0.061	1.231	0.050	
7.7	2.149	0.064	2.149	0.063	2.149	0.055	
7.9	2.149	0.087	2.149	0.083	2.149	0.076	
8.1	2.149	0.062	2.149	0.065	2.149	0.054	
8.3	2.149	0.057	1.231	0.059	1.231	0.049	
8.5	1.231	0.064	2.149	0.064	2.149	0.063	

Table 9: Current Distortions (2 - 9 kHz range)

8.7	2.149	0.064	2.149	0.063	2.149	0.055
8.9	2.149	0.053	2.149	0.054	1.231	0.047

The current distortions were measured and evaluated according to Annex B of IEC 61000-4-7/CDV. The window width used during measurements $T_w=12$.

3.7 Current and Voltage Imbalance

Figure 6 and Figure 7 show the voltage and current imbalance observed during the testing. The current and voltage imbalance was calculated for each 10-min period. The values are plotted against the average power of each 10-min data set.

Figure 6: Voltage Imbalance Vs. Power

Figure 7: Current imbalance Vs. Power

3.8 Continuous Operation Flicker

The flicker coefficients $C(\Psi_k, V_a)$ were determined according to procedures listed in IEC61400-21. The flicker measuring and analysis methods are described in the standard. Total number of 10-min interval data collected for this test: N_{bin} =1021.

Figure 8, Figure 9, Figure 10, and Figure 11 show the graphs of fictitious grid flicker coefficients as a function of 10-min average active power for four different impedance phase angles $(30^{\circ}, 50^{\circ}, 70^{\circ} \text{ and } 85^{\circ})$. The resulting flicker coefficients for continuous operation are shown in Table 10. The ratio between three-phase short circuit apparent power of the fictitious grid $S_{k,fic}$ and turbine rated apparent power S_n used for the analysis is 50. During the power quality test there was a nearby dynamometer test and a neighboring turbine test that were both known to affect the power quality on the grid. These tests may have contributed to the variations in P_{st}.

Figure 8: P_{st} vs. power for 30[°] network impedance angle

Figure 9: P_{st} vs. power for 50° network impedance angle

Figure 10: P_{st} vs. power for 70[°] network impedance angle

Figure 11: P_{st} vs. power for 85[°] network impedance angle

The simulated flicker values P_{st} depend on $S_{k,fic}$ and the grid impedance angle. To reduce this dependence, IEC 61400-21 defines flicker coefficients $C(\Psi_k, V_a)$ which are calculated as a normalized quantity according to Equation 6 of the standard (Ψ_k - network impedance phase angle, V_a – annual average wind speed). The flicker coefficient of the wind turbine for the actual Ψ_k and V_a at the site, may be found from the Table 10 by applying linear interpolation.

Network impedance phase angle, Ψ_k (deg)	30°	50°	70 °	85°			
Annual average wind speed, <i>V_a</i> (m/s)	Flicker coefficients, $C(\Psi_k, V_a)$						
6.0	98.42	116.35	125.85	122.40			
7.5	97.77	116.35	122.18	119.08			
8.5	97.18	116.35	121.93	118.65			
10.0	96.37	116.35	120.92	117.95			

Table 10: Resulting flicker coefficients in continuous operation

4.0 Switching Operation Tests Results

4.1 Turbine starts and stops

Normal start tests were conducted at cut-in, moderate, and rated wind speeds. The wind speed was recorded during the tests along with voltage and current waveforms, and 10-min average wind speed during the switching operation was within ± 2 m/s of the required wind speed. The measurements were taken for a period long enough to ensure that the transient of the switching operation was abated, though limited to exclude possible power fluctuations due to turbulence. Table 11 lists the figure numbers for the current waveforms for all starting and stopping cases.

Wind Regime	Starts	Stops
Cut-in	Figure 12, Figure 13	Figure 16, Figure 17
Rated	Figure 14, Figure 15	Figure 18, Figure 19

Table 11: Table of Figures for transient waveforms

The active and reactive powers were calculated for each start and stop case. The time series RMS voltage for Phase A also are shown for each case to illustrate voltage fluctuations during switching operations.

The voltage and current time series were combined in Equation 1 of the standard to simulate fictitious voltage time series $u_{fic}(t)$ for four different network impedance angles. The flicker step factors and voltage change factors were determined for each switching operation for four impedance angles (Table 12-15).

Figure 12: Cut-in wind (4.8 m/s) start: current waveforms (August 19, 2009)

Figure 13: Cut-in wind (4.8 m/s) start: power and RMS voltage (August 19, 2009)

Figure 14: Rated wind (10.5 m/s) start, current waveforms (December 31, 2009)

Figure 15: Rated wind (10.5 m/s) start, power, and RMS voltage (December 31, 2009)

Figure 16: Cut-in wind (3.4 m/s) stop, current waveforms (August 19, 2009)

Figure 17: Cut-in wind (3.4 m/s) stop, power, and RMS voltage (August 19, 2009)

Figure 18: Rated wind (10.0 m/s) stop: current waveforms (December 31, 2009)

Figure 19: Rated wind (10.0 m/s) stop: power and RMS voltage (December 31, 2009)

The maximum number of switching operations for 10-min and 120-min intervals (N_{10} and N_{120}) for each type of switching operation was not provided by the turbine manufacturer. So, the N_{10} and N_{120} values were assumed based on the method given by IEC61400-21. The flicker step factor and voltage change factors were determined as the average results of five values are shown in the tables below.

Case of switching operation:	Start at cut-in wind speed					
Maximum number of switching operations, N_{10} :	10					
Maximum number of switching operations, N_{120} :	120					
Network impedance angle, Ψ_k	30°	50°	70°	85°		
Flicker step factor, $k_f(\Psi_k)$:	4.165	4.956	5.128	4.856		
Voltage change factor, $k_U(\Psi_k)$:	0.095	0.071	0.049	0.056		

Table 12	Characteristics	of start at	t cut-in wind	speed
----------	------------------------	-------------	---------------	-------

Table 13. Characteristics of stop at cut-in wind speed

Case of switching operation:	~			
	Stop at cut-in wind speed			
Maximum number of switching operations, N_{10} :	10			
Maximum number of switching operations, N_{120} :	120			
Network impedance angle, Ψ_k	<i>30</i> °	50°	70°	85 [°]
Flicker step factor, $k_f(\Psi_k)$:	1.167	1.067	0.892	0.753
Voltage change factor, $k_U(\Psi_k)$:	0.029	0.039	0.048	0.048

Table 14. Characteristics of start at rated wind speed

Case of switching operation:				
	Start at rated wind speed			ed
Maximum number of switching operations, N_{10} :	1			
Maximum number of switching operations, N_{120} :	12			
Network impedance angle, Ψ_k	<i>30</i> °	50°	70°	85 [°]
Flicker step factor, $k_f(\Psi_k)$:	4.100	4.851	5.022	4.773
Voltage change factor, $k_U(\Psi_k)$:	0.082	0.064	0.051	0.066

Case of switching operation:						
	Stop at rated wind speed					
Maximum number of switching operations, N_{10} :	1					
Maximum number of switching operations, N_{120} :	12					
Network impedance angle, Ψ_k	<i>30</i> °	50°	70°	85°		
Flicker step factor, $k_f(\Psi_k)$:	1.544	1.171	1.001	1.046		
Voltage change factor, $k_U(\Psi_k)$:	0.056	0.062	0.066	0.067		

Table 15. Characteristics of stop at rated wind speed

The flicker step factor and voltage change factor of the wind turbine for the actual Ψ_k at the site can be found from the above tables by applying linear interpolation.

5.0 Exceptions

Exceptions to IEC61400-21:

- The current and voltage sensors used for this testing do not meet the Standard requirements for compliance with the IEC 60044-1 and IEC 60186 respectively, but they do exceed the minimum accuracy required by the Standard. This should have no effect on results or uncertainty.
- The 15 m/s wind speed bin was not filled because it is difficult for our site to have high wind speed within the 8% to 16% turbulence intensity required in the standard due to our diverse terrain.

Appendix A. Test Matrix

Test Type	Measured	Required by IEC 61400-21 and MEASNET
Continuous operation:		
number of 10 min intervals	5 for each bin, except 15 m/s bin	At least 5 for each 1 m/s wind speed bin
Switching operation:		
number of wind turbine starts (cut- in wind speed)	5	At least 5
Switching operation:		
number of wind turbine stops (cut- in wind speed)	5	At least 5
Switching operation:		
number of wind turbine starts (rated wind speed)	5	At least 5
Switching operation:		
number of wind turbine stops (rated wind speed)	5	At least 5

Appendix B. Post Calibration Report

Calibration Standard:	Rotek Current Calibrator		
	Model: 8000A	Calibration Date: 7/29/05	
	Serial #: 267	Calibration Due Date: 7/29/06	
	DOE Tag: 126314		
	Fluke Voltage Calibrator		
	Model: 5520A	Calibration Date: 8/3/05	
	Serial #: 7930013	Calibration Due Date: 8/3/06	
	DOE Tag: 126410		
	Accuracy		
	Current (<50A): 0.03	6 % of setting + 0.005 % of range	
	Current (>50A): 0.0	5 % of reading + 0.008 % of range	
	Voltage: 0.0	13 % of reading + 0.01 ∨	
	Full Scale Settings		
	Rotek 8000A Current:	200 A	
	Fluke 5520A Voltage:	700 V	
	-		
Unit Under Test (UUT):	Current sensors		
	Model: SR759		
	Accuracy: 0.3 % of F.S.		
	Full scale: -100 10	0 A Output: -1 to 1 V	
		Nominal Slope: 100	
		Nominal Offset: 0	
	Voltage sensors Model: LEM CV 2 1500	Output: 10 to 10 V	
	Accuracy: 0.2 % of E.S.	Nominal Slope: 150.00	
	Eull scale: 1500 150	Nominal Stope, 150.00	
	-1500 150	o v Nominal Orset. U	
	Communication unit	<u>A/D Converter</u>	
	Model: NI 9127	Model: NI-9233	
	Filter cut-off: 2	5 kHz	
	Combined accuracy of A/D Conve	rter: 0.02 % of F.S.	
	L		

Uncertainty of UUT:	Current Total Uncertainty =	0.30 A
	Voltage Total Uncertainty =	3.01 V

<u>Note:</u> 1. The Test Uncertainty Ratio (TUR) = The uncertainty of the unit under test (UUT) divided by the uncertainty of the standard.

2. All uncertainties are calculated using the Volt or Amper values, not percentages.

3. The total uncertainty for the UUT is calculated as the RSS of the uncertainties of the current and voltage sensors, and A/D converter

7/5/2011

PQ Sampling System Cal Report (sn PQ04) 090206.xls

Page 2 of 6

Current Measurements

ROTEK 8000A	Within	Unit Under Test							
RMS Current	Tolerance?	Phase 1		Phase 2		Phase 3		TUR	
Α		V	Error, A	V	Error, A	V	Error, A		
0	Yes	0.000	0.02	0.000	0.01	0.002	0.19	30	
2	Yes	0.020	0.01	0.020	0.01	0.020	-0.01	28	
4	Yes	0.040	0.01	0.040	0.01	0.040	-0.01	26	
6	Yes	0.060	0.01	0.060	0.00	0.060	-0.02	25	
8	Yes	0.080	0.00	0.080	0.00	0.080	-0.02	23	
10	Yes	0.100	0.00	0.100	-0.01	0.100	-0.02	22	
12	Yes	0.120	-0.01	0.120	-0.01	0.120	-0.02	21	
14	Yes	0.140	-0.01	0.140	-0.01	0.140	-0.02	20	
16	Yes	0.160	-0.01	0.160	-0.02	0.160	-0.03	19	
18	Yes	0.180	-0.02	0.180	-0.02	0.180	-0.03	18	
20	Yes	0.200	-0.02	0.200	-0.03	0.200	-0.03	17	
30	Yes	0.3	-0.04	0.301	0.05	0.3	-0.04	14	
40	Yes	0.401	0.05	0.401	0.03	0.4	-0.05	12	
50	Yes	0.501	0.03	0.501	0.01	0.501	0.04	11	
60	Yes	0.601	0.01	0.601	-0.01	0.601	0.03	10	
70	Yes	0.701	-0.01	0.701	-0.03	0.701	0.02	9	
80	Yes	0.801	-0.02	0.801	-0.05	0.801	0.01	8	
90	Yes	0.901	-0.04	0.902	0.03	0.901	0.00	7	
100	Yes	1.002	0.04	1.002	0.01	1.001	-0.01	7	
	Calculated s	slope and off	set:					TUR is al	ways >4
	Slope:	99.83		99.80		99.90		Ι	
								T	

Frequency Measurements

Fluke 5520A	Within	Unit under test				
Frequency	Tolerance?	Wind Speed	Input			
Hz		Hz	Error, Hz			
100	Yes	100.000	-0.01			
200	Yes	199.999	-0.01			
300	Yes	300.009	0.00			
400	Yes	400.009	0.01			
500	Yes	500.004	0.00			
600	Yes	600.006	0.00			
800	Yes	800.008	0.01			
1000	Yes	999.988	-0.01			
Calculated slope and offset:						
	Slope:	1.00				
	Offset:	-0.0067166				

7/5/2011

PQ Sampling System Cal Report (sn PQ04) 090206.xls

Page 3 of 6

.

Voltage Measurements

Line-to-neutral or line-to-ground measurements								
Within		Unit Under Test						[
Tolerance?	Phase 1		Phase 2		Phase 3		TUR	
	V	Error, V	V	Error, V	V	Error, V		
Yes	1.6	-0.03	1.6	-0.03	1.601	0.03	31	
Yes	1.667	0.01	1.667	0.01	1.668	0.07	30	
Yes	1.734	0.06	1.734	0.06	1.734	-0.04	29	
Yes	1.8	-0.05	1.8	-0.05	1.801	0.00	28	
Yes	1.847	0.00	1.847	0.00	1.847	-0.10	27	
Yes	1.867	0.00	1.867	0.00	1.868	0.04	27	
Yes	1.934	0.04	1.934	0.04	1.934	-0.06	26	
Yes	2	-0.06	2	-0.06	2.001	-0.02	26	1
Yes	2.067	-0.02	2.067	-0.02	2.068	0.02	25	
Yes	2.134	0.03	2.134	0.03	2.135	0.06	24	
Calculated slope and offset:							TUR is al	ways >4
Slope:	149.92 149.92			149.88				
Offset:	0.0902444		0.09024		0.07042			
	to-ground m Within Tolerance? Yes Yes Yes Yes Yes Yes Yes Yes Calculated s Slope: Offset:	to-ground measurements Within Tolerance? Yes Yes 1.667 Yes 1.734 Yes 1.87 Yes 1.847 Yes 1.847 Yes 1.847 Yes 1.847 Yes 1.847 Yes 1.934 Yes 2.067 Yes 2.134 Calculated slope and off Slope: 149.92 Offset: 0.0902444	to-ground measurements Within Image: Colspan="2">Tolerance? Phase 1 Image: Colspan="2">Error, V Yes 1.66 0.03 Yes 1.667 0.01 Yes 1.734 0.06 Yes 1.847 0.00 Yes 1.847 0.00 Yes 1.847 0.00 Yes 1.934 0.04 Yes 2.067 -0.02 Yes 2.134 0.03 Calculated slope and offset: Slope: 149.92 Offset: 0.0902444	to-ground measurements Within Tolerance? Phase 1 Phase 2 V Error, V V Yes 1.66 0.03 1.6 Yes 1.667 0.01 1.667 Yes 1.734 0.06 1.734 Yes 1.847 0.00 1.847 Yes 1.847 0.00 1.847 Yes 1.934 0.04 1.934 Yes 2.067 -0.02 2.067 Yes 2.134 0.03 2.134 Calculated slope and offset: 149.92 149.92 149.92 Offset: 0.0902444 0.090244 0.090244	to-ground measurements Within Tolerance? Phase 1 Phase 2 V Error, V V Error, V Yes 1.6 -0.03 1.6 -0.03 Yes 1.667 0.01 1.667 0.01 Yes 1.734 0.06 1.734 0.06 Yes 1.867 0.00 1.847 0.00 Yes 1.847 0.00 1.867 0.00 Yes 1.934 0.04 1.934 0.04 Yes 2.0067 -0.02 2.006 2.002 Yes 2.134 0.03 2.134 0.03 Galculated slope and offset: 149.92 149.92 149.92	to-ground measurements Within Tolerance? Phase 1 Phase 2 Phase 3 V Error, V V Error, V V Error, V V Yes 1.66 -0.03 1.66 -0.03 1.66 Yes 1.667 0.01 1.667 0.01 1.668 Yes 1.734 0.06 1.734 0.06 1.734 Yes 1.847 0.00 1.847 0.00 1.847 Yes 1.847 0.00 1.847 0.00 1.847 Yes 1.934 0.04 1.934 0.04 1.934 Yes 2.067 -0.02 2.067 -0.02 2.068 Yes 2.134 0.03 2.134 0.03 2.135 Calculated slope and offset: Slope: 149.92 149.92 149.88	to-ground measurements Within Tolerance? Phase 1 Phase 2 Phase 3 V Error, V V Error, V V Error, V Yes 1.66 0.03 1.66 0.03 1.601 0.03 Yes 1.667 0.01 1.667 0.01 1.668 0.07 Yes 1.734 0.06 1.734 0.06 1.734 0.00 Yes 1.867 0.00 1.847 0.00 1.847 0.00 Yes 1.847 0.00 1.847 0.00 1.847 0.00 Yes 1.934 0.04 1.934 0.04 1.934 0.06 Yes 1.934 0.04 1.934 0.04 1.934 0.06 Yes 2.067 0.02 2.067 0.02 2.068 0.02 Yes 2.134 0.03 2.134 0.03 2.135 0.06 Galculated slope and offset: 149.92 149.92 1	to-ground measurements Within Phase 1 Phase 2 Phase 3 TUR Point Phase 2 Phase 3 Phase 3 TUR Yes 1.66 0.03 1.66 0.03 1.601 0.03 31 Yes 1.667 0.01 1.667 0.01 1.668 0.07 30 Yes 1.734 0.06 1.734 0.06 1.734 0.04 29 Yes 1.867 0.00 1.847 0.00 1.847 0.00 28 Yes 1.847 0.00 1.847 0.00 1.847 0.00 28 Yes 1.847 0.00 1.847 0.00 1.847 0.00 28 Yes 1.934 0.04 1.934 0.04 1.934 0.04 27 Yes 2.067 0.02 2.067 0.02 2.066 22 2.066 22 2.05 24

7/5/2011

PQ Sampling System Cal Report (sn PQ04) 090206.xls

Page 4 of 6

Page 5 of 6

Page 6 of 6