

Choices and Requirements of Batteries for EVs, HEVs, PHEVs

A CALSTART Webinar Ahmad A. Pesaran National Renewable Energy Laboratory April 21, 2011

NREL/PR-5400-51474

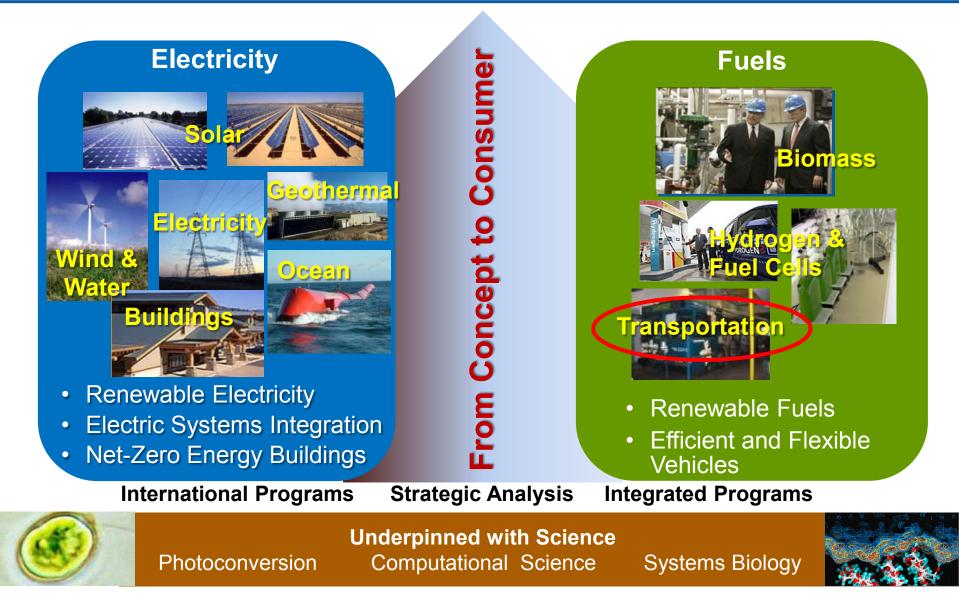
NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Introduction to NREL

Introduction to Electric Drive Vehicles (EDVs)

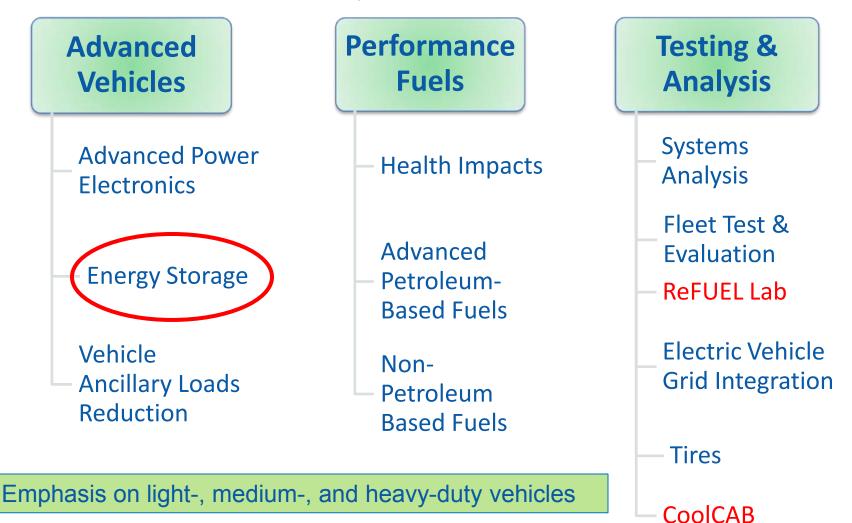

Battery Technologies for Hybrid Electric Vehicles (HEVs), Plug-in Hybrid Electric Vehicles (PHEVs) & Electric Vehicles (EVs)

Battery Requirements for EDVs

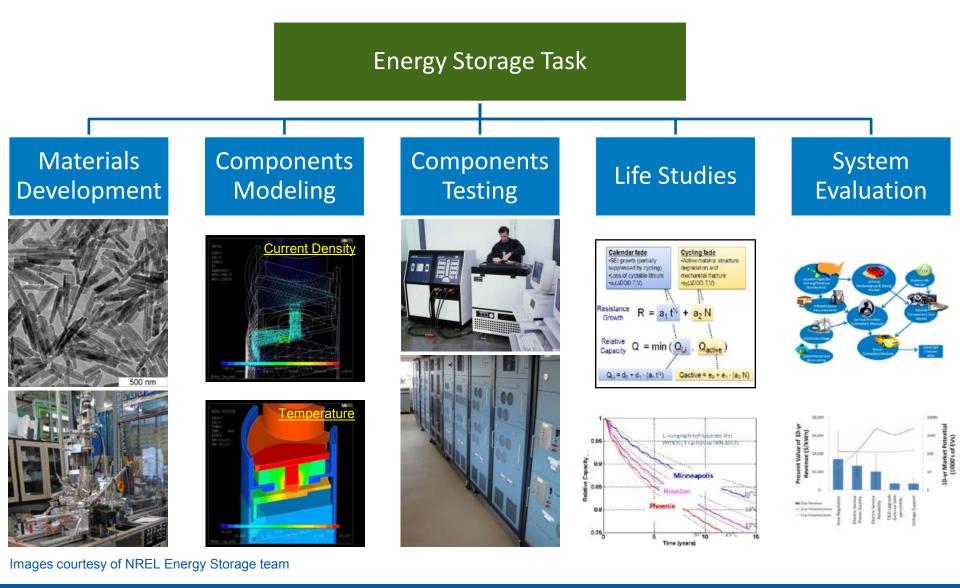

Concluding Remarks

U.S. Department of Energy National Labs

NREL is the only DOE national laboratory dedicated to renewable and energy-efficient technologies



NREL's Portfolio on Energy Efficiency and Renewable Energy


Center for Transportation Technologies and Systems

Supporting DOE's Vehicle Technologies Office and its FreedomCAR and Fuel Partnership and 21st Century Truck Partnership

NREL Energy Storage Projects

Supporting DOE and helping industry to achieve energy storage targets for electrified vehicles

Introduction to NREL

Introduction to Electric Drive Vehicles (EDVs)

Battery Technologies for HEVs, PHEVs & EVs

Battery Requirements for EDVs

Concluding Remarks

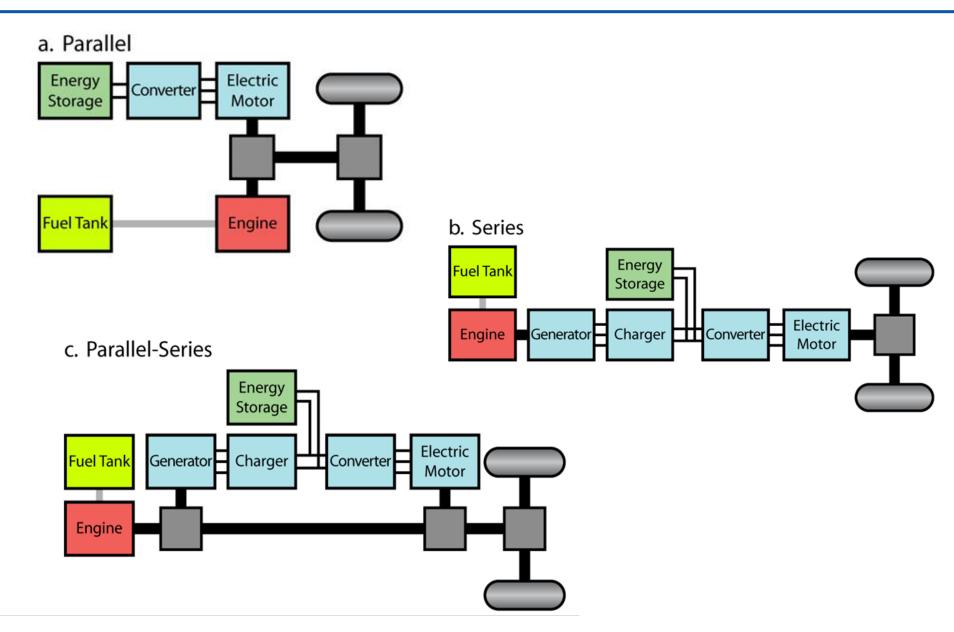
Spectrum of EDV Technologies

Micro hybrids (start/stop)

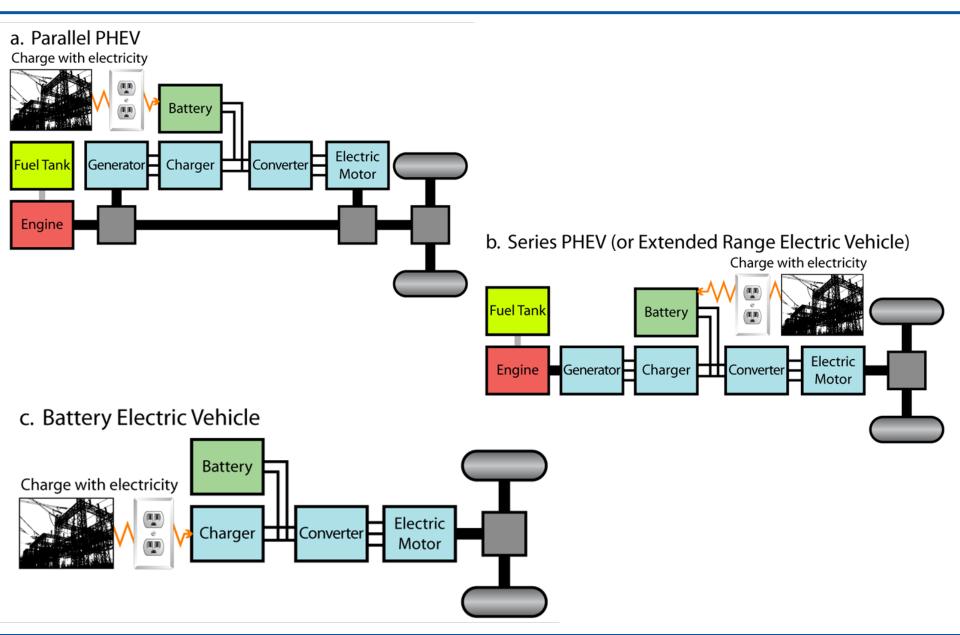
Mild hybrids (start/stop + kinetic energy recovery)

Medium hybrids (mild hybrid + engine assist)

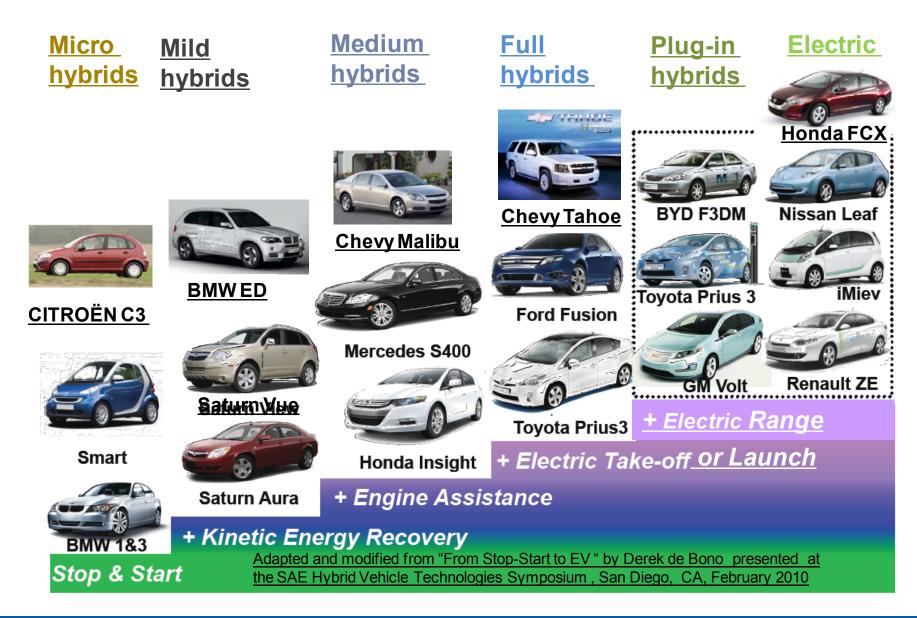
Full hybrids (medium hybrid capabilities + electric launch)


Plug-in hybrids (full hybrid capabilities + electric range)

Axes not to scale


Electric Vehicles (battery or fuel cell)

Size of Electric Motor (and associated energy storage system)


Hybrid Electric Vehicle Configurations

Plug-In Vehicle Configurations

Examples of Light-Duty EDVs in the Market

Battery is the Critical Technology for EDVs

- ✓ Enables hybridization and electrification
- ✓ Provides power to motor for acceleration
- \checkmark Provides energy for electric range and other auxiliaries
- ✓ Helps downsizing or eliminating the engine
- ✓ Stores kinetic and braking energy

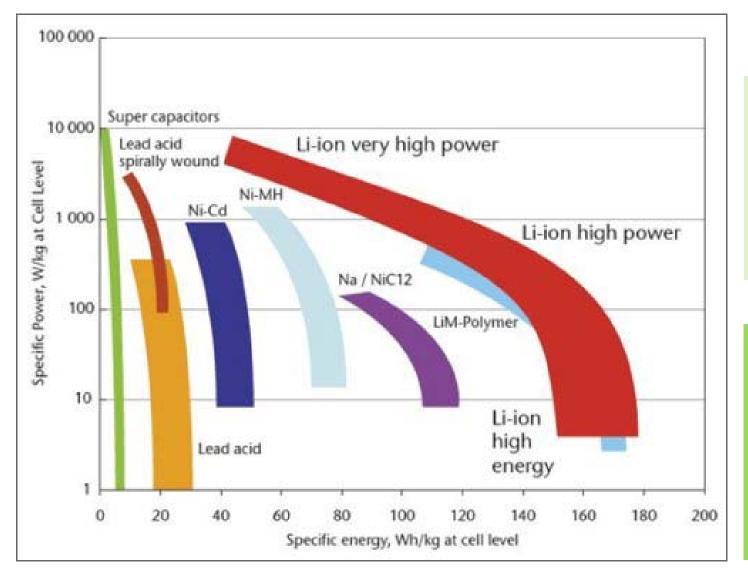
Adds cost, weight, and volume

Decreases reliability and durability

- × Decreases performance with aging
- × Raises safety concerns

Lithium-ion battery cells, module, and battery pack for the Mitsubishi iMiEV (All images courtesy of Mitsubishi)

Saves fuel and reduces emissions Introduction to NREL


Introduction to HEVs, PHEVs and EVs

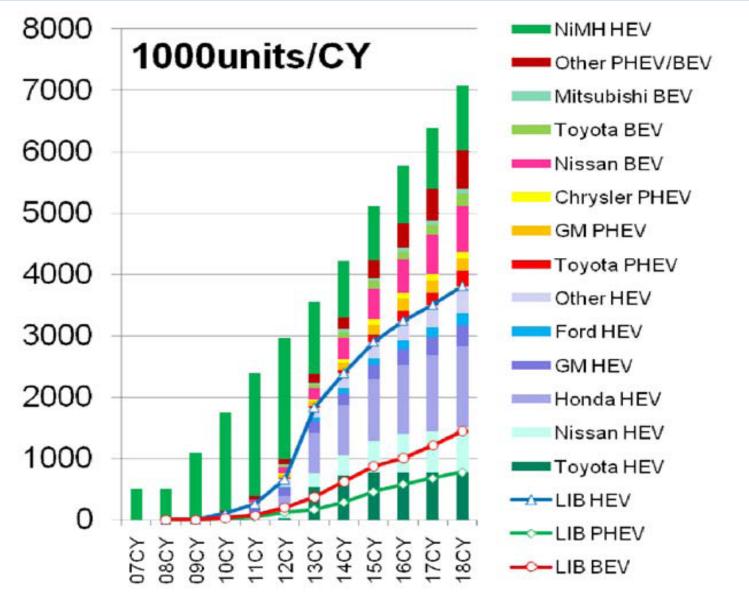
Battery Technologies for HEVs, PHEVs & EVs

Battery Requirements for EDVs

Concluding Remarks

Battery Choices: Energy and Power

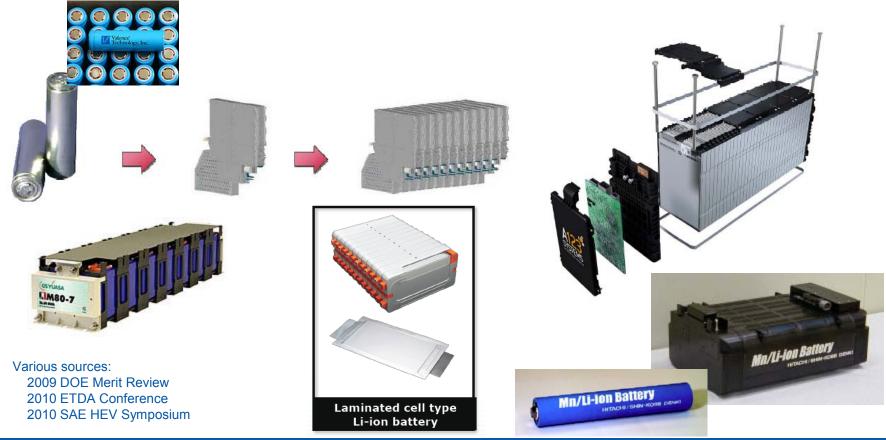
NiMH proven sufficient for many HEVs. Still recovering early factory investments.

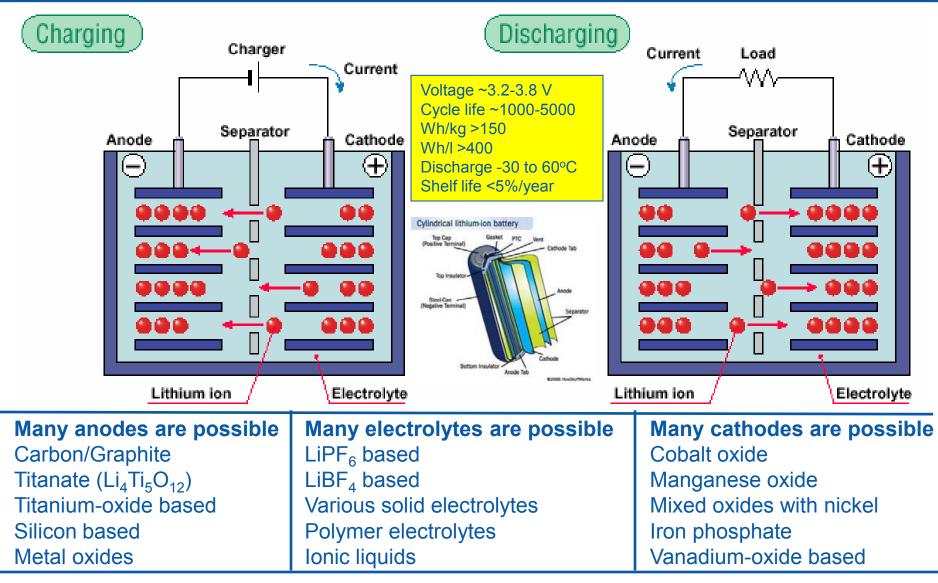

Lithium ion technologies can meet most of the required EDV targets in the next 10 years.

Source: www1.eere.energy.gov/vehiclesandfuels/facts/2010_fotw609.html

Qualitative Comparison of Major Automotive Battery Technologies

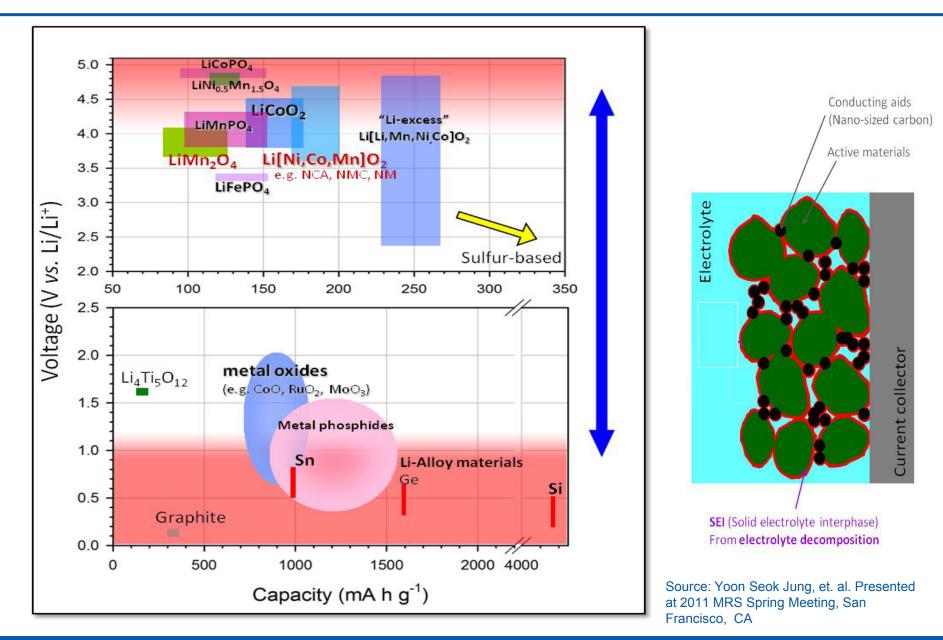
	Attribute	Lead Acid	NiMH	Li-Ion
	Weight (kg)			
	Volume (L)			
	Capacity/Energy (kWh)			
Key	Discharge Power (kW)			
Poor	Regen Power (kW)			
Fair	Cold-Temperature (kWh & kW)			
Good	Shallow Cycle Life (number)			
	Deep Cycle Life (number)			
	Calendar Life (years)			
	Cost (\$/kW or \$/kWh)			
	Safety- Abuse Tolerance			
	Maturity – Technology			
	Maturity – Manufacturing		, , , ,	


Projections for Automotive Batteries


Source: Hiroshi Mukainakano, AABC Europe 2010

Challenges & Opportunities with Li-Ion Technologies for EDVs

- High cost, many chemistries, cell sizes, shapes, module configurations, and battery pack systems.
- Integration with proper electrical, mechanical, safety, and thermal management is the key.
- New developments and potential advances make it difficult to pick winners.



Lithium Ion Battery Technology—Many Chemistries

Source: Robert M. Spotnitz, Battery Design LLC, "Advanced EV and HEV Batteries"

Electrochemical Window in Lithium Ion Batteries

Characteristics of Cathode Materials

Theoretical values for cathode materials relative to graphite anode and LiPF₆ electrolyte

Material	Δx	mAh/g	Avg. V	Wh/kg	Wh/L
LiCoO ₂ (Cobalt)*	0.55	151	4.00	602	3,073
LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ (NCA)*	0.7	195	3.80	742	3,784
LiMn ₂ O ₄ (Spinel)*	0.8	119	4.05	480	2,065
LiMn _{1/3} Co _{1/3} Ni _{1/3} O ₂ (NMC 333)*	0.55	153	3.85	588	2,912
LiMn _x Co _y Ni _z O ₂ (NMC non-stoichiometric)	0.7	220	4.0	720	3,600
LiFePO ₄ (Iron Phosphate)*	0.95	161	3.40	549	1,976

Mixed metal oxide cathodes are replacing cobalt oxide as the dominant chemistry. Mn_2O_4 has been around for many years – good for high power; improvements in high temperature stability reported recently.

LiFePO₄ is now actively pursued by many as the cathode of choice for vehicle applications

- safe on overcharge
- need electronics to accurately determine state of charge (SOC)
- may require larger number of cells due to lower cell voltage

Other high voltage phosphates are currently being considered.

*Source: Robert M. Spotnitz, Battery Design LLC

Many Commercial Cathode Oxide-Based Li-Ion Batteries are Available

Johnson Control-Saft Altair Nanotechnologies LG Chem Electrovaya Dow Kokam SK Innovation **NEC/Nissan GS** Yuasa Sony Sanyo Samsung Panasonic Lishen **Pionics** Other Chinese companies

Mixed metal oxide cathodes (> 200 mAh/g)

CALSTART Energy Storage Compendium

Conhttp://www.calstart.org/Libraries/Publications/Energy _Storage_Compendium_2010.sflb.ashx

Lithium Iron Phosphate (LiFePO₄) Cathodes

- + High stability and non-toxic
- + Good specific capacity
- + Flat voltage profile
- + Cost effective (less expensive cathode)
- + Improved safety

Issues addressed recently:

- Lower voltage than other cathodes

 (Alternate phosphates manganese, vanadium, etc. – are currently being investigated)
- Poor Li diffusion (D_{Li}~ 10⁻¹³ cm²/sec) (Overcome by doping the cathode)
- Poor electronic conductivity (~ 10⁻⁸ S/cm) (Overcome by blending/coating with conductive carbon)

Source: Online brochures from Valence Technology, http://www.valence.com/ucharge.asp

Other approaches used to overcome poor characteristics:

- Use nano LiFePO₄–carbon composite
- Use larger number of cells
- Nano-structured materials

Source: Various papers from the 23rd International Battery Seminar & Exhibit, March 13-16, 2006, Ft. Lauderdale, FL.

Improvements in Phosphate-based Cathodes

Valence Technology 18650 Cells

100 Wh/kg in cell 84 Wh/kg in U Charge module

The battery with standard lead acid battery form factor includes a battery management system.

Specifications		U1-12XP	U24-12XP	
Voltage		ge 12.8 V		
Capacity (Ç/	5)	40 Ah	100 Ah	
Specific energy		84 Wh/kg	82 Wh/kg	
Energy density		110 Wh/I	126 Wh/I	
	Max. cont. current	80 A	150 A	
Standard Discharge	Max. 30 sec. pulse	120 A	300 A	
	Cut-off voltage	10 V	10 V	

Source: 2006 On line brochures from Valence Technology, http://www.valence.com/ucharge.asp

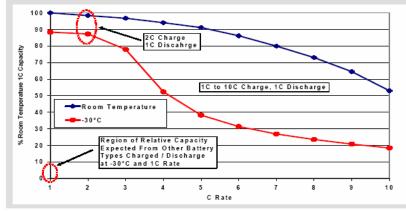
3.2-Ah Real Capacity 15-mOhm

Power Density (<3Ah cy cells)	Weight to discharge @1500W	Safety	Life at 100% DoD 1C rate	Environmental
3600 W/Kg	0.9 lbs	✓	~7000	×

Based on: Novel nano scale doped phosphate active materials (pat. pending) Low impedance cell design and electrolyte (pat. pending)

A123 Systems with 26650 Cells 100 Wh/kg

Source: Andrew Chu (A123 Systems) from the 23rd International Battery Seminar & Exhibit, March 13-16, 2006, Ft. Lauderdale, FL.


NATIONAL RENEWABLE ENERGY LABORATORY

Under R&D

Newer Phosphates	Voltage vs. Li
Iron	3.6 V
Manganese	4.1 V
Cobalt	4.8 V
Nickel	5.1 V

Improvements on the Anode—Titanate

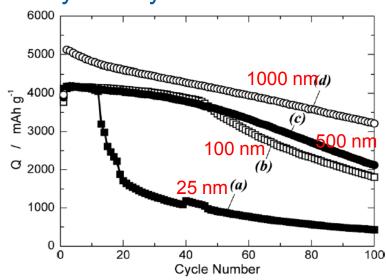
	Traditional	Li Ion Batteries Using
Characteristic	Li Ion Batteries	Altairnano materials
Electrode Materials		
Anode	Graphite	Lithium titanate spinel
Cathode	Cobaltate	Nano-Structured oxides
Performance		
Charge rate	1⁄₂ C	20 C and greater
Discharge rate	4 C	40 C and greater
Cycle life	300-500 cycles	9,000 cycles (full DOD)
Calendar life	2-3 years	10-15 years

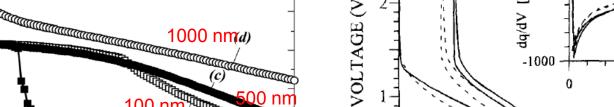


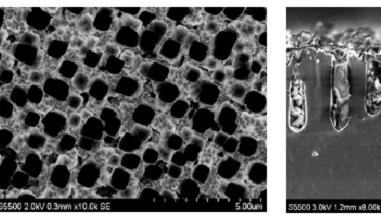
~90% SOC of RT Cell at -30°C and 1-2C Charge Rate!

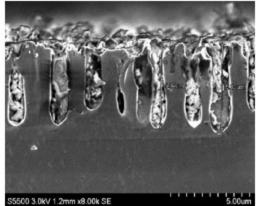
Altair Nanotechnologies Inc.

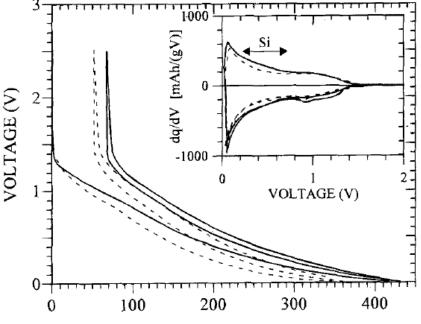
Improved low temperature performance 80–100 Wh/kg 2,000–4,000 W/kg

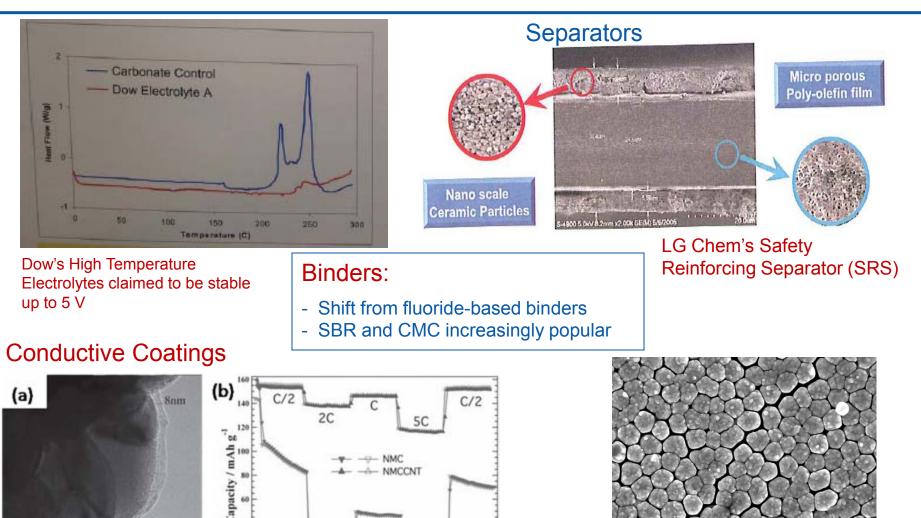

Source: E. House (Altair Nanotechnologies) from the 23rd International Battery Seminar & Exhibit, March 13-16, 2006, Ft. Lauderdale, FL.




Improvements on the Anode—Silicon


Advantages:


- Very high theoretical capacity
- No lithium deposition
- High rate capability
- No need for an SEI
- Issues at hand:
- High volume expansion
- Low cell voltage
- Poor cyclability



CAPACITY (mAh/g)

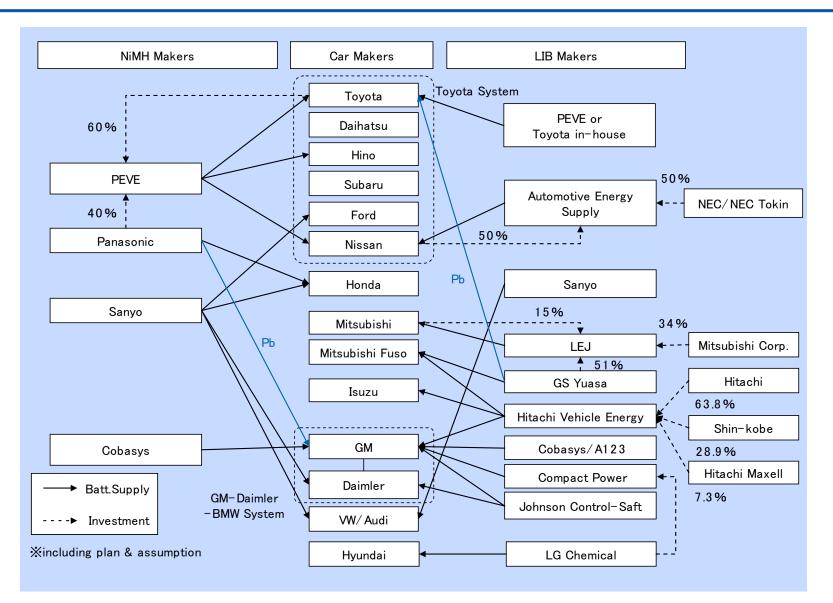
Source: Recent (2011) Reports on SiO Carbon Composite Anodes (Shriram Santhanagopalan-NREL)

Improvements to Other Components

Sources: Shriram Santhanagopalan and Anne Dillon (NREL)

20nm

20 40


60

80

100

8nm

Relationship Between Car Makers and Battery Makers

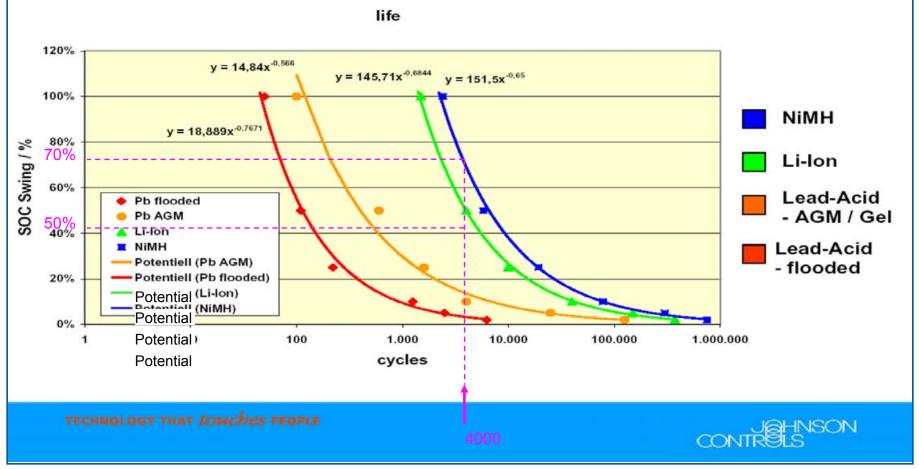
Source: Nomura Research Institute, Ltd.

Anode Aging

Solid/Electrolyte Interphase (SEI) Layer

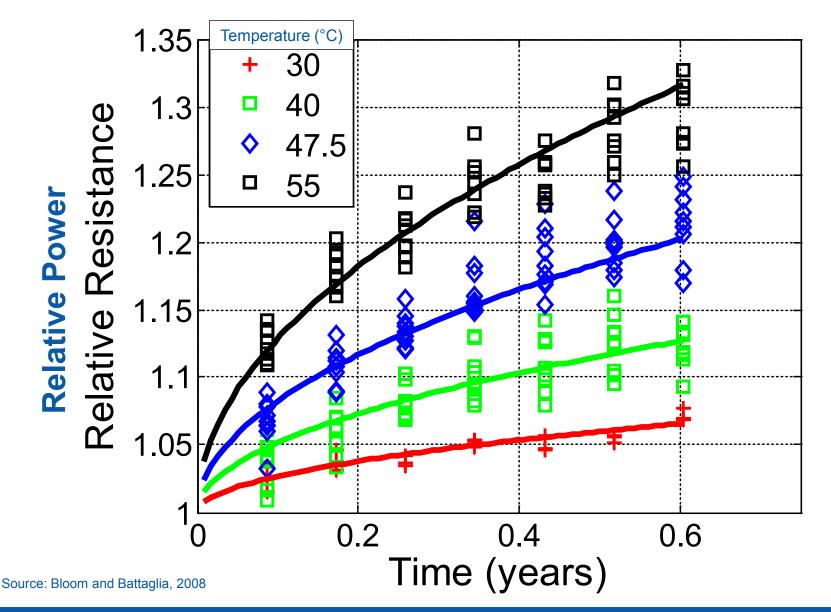
- Passive protective layer, product of organic electrolyte decomposition
- Mostly formed during first cycle of battery, but continues to grow at slow rate
- May penetrate into electrode & separator pores
- High-temperature effects
- Low-temperature effects (during charging)

Changes of Active Material


- Volume changes during insertion/de-insertion (~10%)
- Solvent intercalation, electrolyte reduction, gas evolution inside Li_xC_6 \rightarrow Stress \rightarrow Cracks

Changes of Composite Electrode

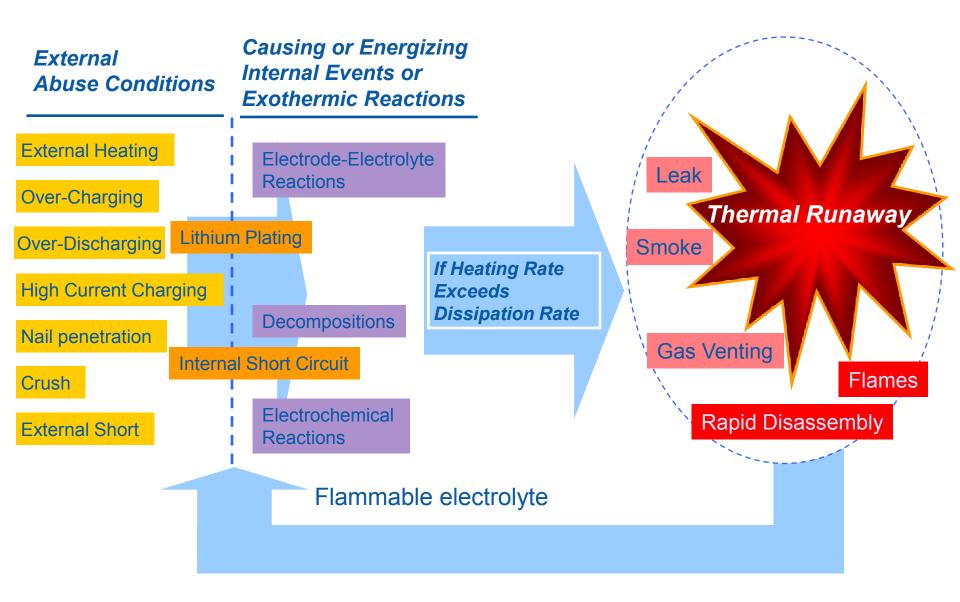
- SEI & volume changes cause:
 - Contact loss between Li_xC₆, conductive binder, and current collector
 - Reduced electrode porosity


Battery Cycle Life Depends on State-of-Charge Swing

- PHEV battery likely to deep-cycle each day driven: 15 yrs equates to 4,000–5,000 deep cycles
- Also need to consider combination of high- and low-frequency cycling

Source: Christian Rosenkranz (Johnson Controls) at EVS 20, Long Beach, CA, November 15-19, 2003

Battery Degrades Faster at Higher Temperatures Calendar (Storage) Fade



Summary of Aging and Degradation

Capacity decreases and resistance increases by:

- Both high and low SOC charge-discharge
- High temperatures
- Low temperatures during charging
- Surface chemistry (anode and cathode)
- Phase transitions/structural changes (cathode)

Safety—Li-Ion Thermal Runaway

Introduction to NREL

Introduction to Electric Drive Vehicles (EDVs)

Battery Technologies for HEVs, PHEVs & EVs

Battery Requirements for EDVs

Concluding Remarks

Energy Storage Requirements

(Power, Energy, Cycle Life, Calendar Life and Cost)

Vehicle size (weight and shape)

Electrification/hybridization purpose

- Start/stop
- Assist or launch
- Electric drive

Degree of hybridization

Driving profiles and usage

Auxiliary or accessory electrification

Expected fuel economy

Electric range

Energy storage characteristics (acceptable SOC range)

Vehicle simulation tools are usually used to estimate power and energy needs. Economics and market needs are used to identify life and cost.

Energy Needs in Light-Duty Electric-Drive Vehicles

Micro Hybrids (12V-42V: Start-Stop, Launch Assist)	Energy Storage Technology NiMH and Li-ion: Yes Ucap: Likely Ucap + VRLA: Possible	Min in use energy needed 15-25 Wh
Mild/Med Hybrids (42V-150V: Micro HEV Function + Regen)	NiMH and Li-ion: Yes Ucaps: Likely if engine is not downsized much Ucaps + VRLA: Possible	25-80 Wh
Full/Med Hybrids (150V-350V: Power Assist HEV)	NiMH and Li-ion: Yes Ucaps: Possible Ucaps + (NiMH or Li-Ion): Possible	70-200 Wh
Fuel Cell Hybrids	NiMH and Li-ion: Yes Ucaps: Likely if fuel cell is not downsized Ucaps + (NiMH or Li-Ion): Possible	70-200 Wh
Plug-in HEV (and EV)	NiMH: No Li-ion: Yes Ucaps + high energy Li-ion: Possible	PHEV: 5-15 kWh (50-90 Wh*) EV: 20-40 kWh

http://www.nrel.gov/vehiclesandfuels/energystorage/pdfs/45596.pdf

* Energy for a ultracapacitor in combination with Li-Ion

NATIONAL RENEWABLE ENERGY LABORATORY

Power Needs in Light-Duty Electric-Drive Vehicles

Micro Hybrids (12V-42V: Start-Stop, Launch Assist)	Energy Storage NiMH and Li-ion: Yes Ucap: Likely Ucap + VRLA: Possible	e Technology Power/Energy use = 200-300	Range of Power needed 3-5 kW
Mild/Med Hybrids (42V-150V: Micro HEV Function + Regen)	NiMH and Li-ion: Yes Ucaps: Likely if engine is no Ucaps + VRLA: Possible	P/E use = 50-200 t downsized much	5-15 kW
Full/Med Hybrids (150V-350V: Power Assist HEV)	NiMH and Li-ion: Yes Ucaps: Possible Ucaps + (NiMH or Li-Ion): Possible		15-50 kW
Fuel Cell Hybrids	NiMH and Li-ion: Yes Ucaps: Likely if Fuel Cell is not downsized Ucaps + (NiMH or Li-Ion): Possible		15-50 kW
Plug-in HEV (and EV)	NiMH: No Li-ion: Yes Ucaps + high energy Li-ion:	P/E use = 3-8 Possible P/E use = 1.5-4	PHEV: 20-50 kW EV: 80-120 kW

http://www.nrel.gov/vehiclesandfuels/energystorage/pdfs/45596.pdf

* Energy for a ultracapacitor in combination with Li-Ion

NATIONAL RENEWABLE ENERGY LABORATORY

USABC/FreedomCAR Battery Requirements

Developed jointly by U.S. DOE (with support from national labs), automotive OEMs (through USABC), with input from battery industry

Requirements and targets are specified to make EDVs eventually competitive with conventional ICE vehicles on a mass-produced scale

Energy Storage Requirements for Micro Hybrids (at End of Life)

System Attributes	12V Start-Stop (TSS)		42V Start-Stop (FSS)		42V Transient Power Assist (TPA)	
Discharge Pulse	4.2 kW	2s	6 kW	2s	13 kW	2s
Regenerative Pulse	1	I/A		N/A	8 kW	2s
Cold Cranking Pulse @ -30°C	4.2 kW	7 V Min.	8 kW	21 V Min.	8 kW	21 V Min.
Available Energy (CP @1kW)	15	i Wh	:	30 Wh	6	0 Wh
Recharge Rate (kW)	0.4	4 kW	2	2.4 kW	2.	6 kW
Cycle Life / Equiv. Road Miles	750k / 150,000 miles		750k / 150,000 miles		750k / 150,000 miles	
Cycle Life and Efficiency Load Profile	UC10		UC10		UC10	
Calendar Life (Yrs)	15		15		15	
Energy Efficiency on UC10 Load Profile (%)	95		95%		95%	
Self Discharge (72hr from Max. V)	<4%		<4%		<4%	
Maximum Operating Voltage (Vdc)		17	48		48	
Minimum Operating Voltage (Vdc)		9	27		27	
Operating Temperature Range (°C)	-30 to +52		-30 to +52		-30 to +52	
Survival Temperature Range (°C)	-46 to +66		-46 to +66		-46 to +66	
Maximum System Weight (kg)	5			10		20
Maximum System Volume (Liters)	4		8		16	
Selling Price (\$/system @ 100k/yr)		40	80		130	

Energy Storage Requirements for Micro Hybrids (at End of Life)

(harge Po kW for 2	
System Attributes		art-Stop (SS)	42V	Stal (FSS)		-5
Discharge Pulse	4.2 kW	2s	6 kW	2s	13 kW	2s
Regenerative Pulse	1	I/A		N/A	8 kW	2s
Cold Cranking Pulse @ -30°C	4.2 kW	7 V Min.	8 kW	21 V Min.	8 kW	21 V Min.
Available Energy (CP @1kW)	Cycle Life:			30 Wh	6	0 Wh
Recharge Rate (kW) 750	,000 (150,	00	2.4		2.6 kW	
Cycle Life / Equiv. Road Miles	miles)	กแรง	750k / 1	150,000	750k / 15	0.000 miles
Cycle Life and Efficiency Load Profile	UC10		UC10 Available		le	
Calendar Life (Yrs)	15			-15 Er	Energy: 30 Wh	
Energy Efficiency on UC10 Load Profile (%)				95%	at 1 kW r	ate
Self Discharge (72hr from Max. V)		dar life:		<4%		4%
Maximum Operating Voltage (Vdc)	15 y	ears		48		48
Minimum Operating Voltage (Vdc)				27 Mas	ss Produ	ced
Operating Temperature Range (°C)		to +52	-3	o (Syste	em Price	: \$80
	nt and	66	-4	6 to 70 (S	\$13.3/kW	/)
Maximum System Weight (kg)	ume			10		20
Maximum System Volume (Liters)	ctions	4		8		16
Selling Price (\$/system @ 100k/yr)		40		80		130

Energy Storage Requirements for Low-Voltage Mild Hybrids

FreedomCAR 42 V Energy Storage System End-of-Life Performance Goals (August 2002)

42 Volt Targets Rev. August 2002	Start-Stop		M-HEV		P-HEV	
Discharge Pulse Power (kW)	6	2 sec	13	2 sec	18	10 sec
Regenerative Pulse Power (kW)	N/A		8	2 sec	18	2 sec
Engine-Off Accessory Load (kW)	3	5 min	3	5 min	3	5 min
Available Energy (Wh @ 3 kW)	250		300		700	
Recharge Rate (kW)	2.4 kW		2.6 kW		4.5 kW	
Energy Efficiency on Load Profile (%)	90		90		90	
Cycle Life, Miles/Profiles (Engine Starts)	150k (450k)		150k (450k)		150k (450k)	
Cycle Life and Efficiency Load Profile	Zero Power	Assist (ZPA)	Partial Power Assist (PPA)		Full Power Assist (FPA)	
Cold Cranking Power @ -30°C (kW)	8	21 V Min.	8	21 V Min.	8	21 V Min.
Calendar Life (Years)	15		15		15	
Maximum System Weight (kg)	10		25		35	
Maximum System Volume (Liters)	9		20		28	
Selling Price (\$/system @ 100k/yr)	150		260		360	
Maximum Open Circuit Voltage (Vdc) after 1 sec	48		48		48	
Minimum Operating Voltage (Vdc)	27		27		27	
Self Discharge (Wh/day)	<20		<20		<20	
Heat Rejection Coefficient (W/°C)	N/A		N/A		>30	
Maximum Cell-to-Cell Temperature Difference (°C)	N/A		N/A		<4	
Operating Temperature Range (°C)	-30 to +52		-30 to +52		-30 to +52	
Survival Temperature Range (°C)	-46 to +66		-46 to +66		-46 to +66	

Energy Storage Requirements for Low-Voltage Mild Hybrids

Low-Voltage Mild Hybrids						arge	
FreedomCAR 42 V Energy Storage System End-of-Life Performance Goal						13 kW	
42 Volt Targets Rev. August 2002	Start	-Stop	M-I	M-HEV		for 2s	
Discharge Pulse Power (kW)	6	2 sec	13	Z sec	18	10 sec	
Regenerative Pulse Power (kW)	N/A		8	2 sec	18	2 sec	
Engine-Off Accessory Load (kW)	3	5 min	3	5 min	3	5 min	
Available Energy (Wh @ 3 kW)	250		300		700		
Recharge Rate (kW)	cle Life:		2.6 kW		Availabl	e	
	50,000		90	E F	Energy: 300		
Cycle Life, Miles/Profiles (Engine Start, (150,	00 miles)		150k (450k)		at 3 kW r		
Cycle Life and Efficiency Load Profile	over	Assist (ZPA)	Partial Powe	r Assist (PPA)		nosist (FPA)	
Cold Cranking Power @ -30°C (kW)	0	21 V Min.	8	21 V Min.	8	21 V Min.	
Calendar Life (Years)	dar Life at		15		15		
NARY Supervised Countering (Marialet / Jun)	: 15 years	\int	25		35		
Maximum System Volume (Liters)	. To years		20		28		
Selling Price (\$/system @ 100k/yr)	150		260 🤜		lass Produ	ced	
Maximum Open Circuit Voltage (Vdc) after 1 sec	10		48		System Pri		
Minimum Operating Volu Weight and	27		27		260 (\$20/k		
Self Discharge (W Vergint and Volume	<20		<20				
Heat Rejection Concerned Restrictions	N/A		N/A		>30		
Maximum Cell-to-Cell Temp	N/A		N/A		<4		
Operating Temperature Range (°C)	-30 to +52		-30 to +52		-30 to +52		
Survival Temperature Range (°C)	-46 to +66		-46 to +66		-46 to +66		

For Medium or Full Hybrids, and Fuel Cell Vehicles (at End of Life)

FreedomCAR Energy Storage System Performance Goals for Power-Assist Hybrid Electric Vehicles (November 2002)

Characteristics	Units	Power-Assist (Minimum)	Power-Assist (Maximum)
Pulse Discharge Power (10s)	kW	25	40
Peak Regenerative Pulse Power (10s)	kW	20 (55-Wh pulse)	35 (97-Wh pulse)
Total Available Energy (over DOD range where power goals are met)	KWh	0.3 (at C ₁ /1 rate)	0.5 (at C ₁ /1 rate)
Minimum Round-trip Energy Efficiency	%	90 (25-Wh cycle)	90 (50-Wh cycle)
Cold Cranking Power at -30°C (three 2-s pulses, 10-s rests between)	kW	5	7
Cycle Life for Specified SOC Increments	cycles	300,000 25-Wh cycles (7.5 MWh)	300,000 50-Wh cycles (15 MWh)
Calendar Life	years	15	15
Maximum Weight	kg	40	60
Maximum Volume	I	32	45
Operating Voltage Limits	Vdc	max ≤ 400, min ≥ (0.55 x V _{max})	max < 400, min > (0.55 x V _{max})
Maximum Allowable Self-discharge Rate	Wh/day	50	50
Temperature Range: Equipment Operation Equipment Survival	°C	-30 to +52 -46 to +66	-30 to +52 -46 to +66
Production Price @ 1,000,000 units/year	\$	500	800

For Medium or Full Hybrids, and Fuel Cell Vehicles (at End of Life)

FreedomCAR Energy Storage System Performance Goals for Power-Assist Hybrid Electric Vehicles (November 2002)

Characteristics	Units	Power-Assist (Minimum)	Power-Assist (Maximum)	
Pulse Discharge Power (10s)	kW	25 Peak	Power Discharge	
Peak Regenerative Pulse Power (10s)	kW	20 (55-Wh pulse)	l0s) = 25 kW	
Total Available Energy (over DOD range where power goals are met)	KWh	0.3 (at C ₁ /1 rate)	0.5 (at C ₁ /1 rate)	
Minimum Round-trip Energy Efficiency	%		ble Energy = 300	
Cold Cranking Power at -30°C (three 2-s pulses, 10-s rests between)	kW	5	h at C ₁ /1 rate	
Cycle Life (charge sustaining) =		300,000 25-Wh cycles (7.5 MWh)	300,000 50-Wh cycles (15 MWh)	
300,000 cycles (150,000 miles)	ears	15	15	
Maximum Weight	kg	40	60	
Calendar Life at 30°C = 15 year	s I	32	45	
Operating voitage Limits	Vdc	max ≤ 400, min ≥ (0.55 x V _{max})	max < 400, min > (0.55 x V _{max})	
Maximum Allowable Self-discharge Rate	Wh/day	50	50	
Cost for Mass Produced System \$500 (\$20/kW)	= °C	-30 to +52 -46 to +66	-30 to +52 -46 to +66	
Production r noc @ 1,000,000 drintoryca	\$	500	800	

USABC Requirements of End of Life Energy Storage Systems for PHEVs

Characteristics at EOL (End of Life)		High Power/Energy Ratio	High Energy/Power Ratio
		Battery	Battery
Reference Equivalent Electric Range	miles	10	40
Peak Pulse Discharge Power (10 sec)	kW	45	38
Peak Regen Pulse Power (10 sec)	kW	30	25
Available Energy for CD (Charge Depleting) Mode, 10 kW Rate	kWh	3.4	11.6
Available Energy for CS (Charge Sustaining) Mode	kWh	0.5	0.3
Minimum Round-trip Energy Efficiency (USABC HEV Cycle)	%	90	90
Cold cranking power at -30°C, 2 sec - 3 Pulses	kW	7	7
CD Life / Discharge Throughput	Cycles/MWh	5,000 / 17	5,000 / 58
CS HEV Cycle Life, 50 Wh Profile	Cycles	300,000	300,000
Calendar Life, 35°C	year	15	15
Maximum System Weight	kg	60	120
Maximum System Volume	Liter	40	80
Maximum Operating Voltage	Vdc	400	400
Minimum Operating Voltage	Vdc	>0.55 x Vmax	>0.55 x Vmax
Maximum Self-discharge	Wh/day	50	50
System Recharge Rate at 30°C	kW	1.4 (120V/15A)	1.4 (120V/15A)
Unassisted Operating & Charging Temperature Range	°C	-30 to +52	-30 to +52
Survival Temperature Range	°C	-46 to +66	-46 to +66
Max. Current (10 sec pulse)	Amps	300	300
Maximum System Production Price @ 100k units/yr	\$	\$1,700	\$3,400

USABC Requirements of End of	Life Energy	V Storage Systems f	or PHP 40 Mile EV
Characteristics at EOL (End of Life)		High Power/Energy Ratio	High E Range
Reference Equivalent E		38 kW	Bat y 40
Peak Pulse Discharge			38
Peak Available Energy = 11.6 k/Mb	$(\Lambda \circ \circ \circ - 7$	(09/)	25
Available Energy = 11.6 kWh		0%)	11.6
Avai Capacity (EOL) = 16.	6 KVVN		0.3
Minimum Round-trip Energy Efficiency (USABC HEV Cycle)	%	90	90
Cold cranking power at -30°C, 2 sec - 3 Pulses	e (charge o	depletina)	7
CD Life / Direhense Threeshout	5,000 cycl		5,000 / 58
CS HEV Cycle Life, 50 Wh Profile		300,000	300,000
Calend			15
Maxim Cycle Life (charge sustaining) =	200K-300	K cycles	120
Maximum System Volume	Liter		80
Maximum Operating Voltage	Lu	100	400
Minimum Operating Voltage Calendar Life at	: 35°C = 15	years nax	>0.55 x Vmax
Maximum Self-discharge	wil/day	50	50
System Recharge Rate at 30°C	kW	1.4 (120V/15A)	1.4 (120V/15A)
Unassisted Operating & Charging Temperature Range	°C	-30 to +52	-30 to +52
Survival Temperature Cost for Mass Produce	d System =	= \$3,400 ₅₆	-46 to +66
Max. Current (10 sec (\$300/kWh avail	able energ	y)	300
Maximum System Production Price @ 100k units/yr	\$	\$1,700	\$3,400

USABC Goals for Advanced Batteries for EVs

Parameter (Units) of Fully Burdened System	Minimum Goals for Long Term Commercialization	Long Term Goal
Power Density (W/L)	460	600
Specific Power – Discharge, 80% DOD/30 sec (W/kg)	300	400
Specific Power – Regen, 20% DOD/10 sec (W/kg)	150	200
Energy Density – C/3 Discharge Rate (Wh/L)	230	300
Specific Energy – C/3 Discharge Rate (Wh/kg)	150	200
Specific Power/Specific Energy Ratio	2:1	2:1
Total Pack Size (kWh)	40	40
Life (Years)	10	10
Cycle Life – 80% DOD (Cycles)	1,000	1,000
Power & Capacity Degradation (% of rated spec)	20	20
Selling Price – 25,000 units @ 40 kWh (\$/kWh)	<150	100
Operating Environment (°C)	-40 to +50 20% Performance Loss (10% Desired)	-40 to +85
Normal Recharge Time	6 hours (4 hours desired)	3 to 6 hours
High Rate Charge	20-70% SOC in <30 min @ 150 W/kg (<20 min @ 270 W/kg Desired)	40-80% SOC in 15 min
Continuous Discharge in 1 Hour – No Failure (% of rated energy capacity)	75	75

USABC Goals for Advanced Batteries for EVs

Parameter (Units) of Fully Burdened System	Minimum Goals for Long Term Commercialization	Long Term Goal
Power Density (W/L)	400	ower Discharge
Specific Power – Discharge, 80% DOD/30 sec (W/kg)	300 (10	S) = 80 kW
Specific Power – Regen, 20% DOD/10 sec (W/kg)	150	200
Energy Density – C/3 Discharge Rate (Wh/L)	230	300
Specific Energy – C/3 Available Energy = 4	l0 kWh at 150	200
Specific Power/Specifi C/3 rate	2:1 Calend	ar Life at 30°C
Total Pack Size (kWh)	40 =	10 years
Cycle Life (full charge depleting) =	10	10
(1,000 cycles (150,000 miles)	1,000	1,000
Power & Capacity Degradation (% of rated spec)	20	20
Selling Price – 25,000 units @ 40 kWh (\$/kWh)	<150	100
Operating Environment (°C)	-40 to +50 reformance Loss (10% Desired)	-40 to +85
Normal Recharge Time	6 hours (4 hours desired)	3 to 6 hours
Cost for Mass Produced System =	20-70% SOC in <30 min @ 150 W/kg (<20 min @ 270 W/kg Desired)	40-80% SOC in 15 min
c\$6,000 (\$150/kWh)(% or rated energy capacity)	75	75

Summary: DOE and USABC Battery Performance Targets

DOE Energy Storage Goals	HEV (2010)	PHEV (2015)	EV (2020)
Equivalent Electric Range (miles)	N/A	10–40	200–300
Discharge Pulse Power (kW)	25	38–50	80
Regen Pulse Power (10 seconds) (kW)	20	25–30	40
Recharge Rate (kW)	N/A	1.4–2.8	5–10
Cold Cranking Power @ -30°C (2 seconds) (kW)	5	7	N/A
Available Energy (kWh)	0.3	3.5–11.6	30–40
Calendar Life (year)	15	10+	10
Cycle Life (cycles)	3,000	3,000–5,000, deep discharge	750+, deep discharge
Maximum System Weight (kg)	40	60–120	300
Maximum System Volume (I)	32	40–80	133
Operating Temperature Range (°C)	-30 to +52	-30 to 52	-40 to 85

Source: David Howell, DOE Vehicle Technologies Annual Merit Review

Introduction to NREL

Introduction to HEVs, PHEVs and EVs

Battery Technologies for HEVs, PHEVs & EVs

Battery Requirements for EDVs

Concluding Remarks

Integrating Cells into Packs

- Safety (abuse tolerance, one cell will have an event)
- Cost/Value
- Long life/Durable
- Manufacturability
- Recyclability
- Diagnostics
- Maintenance/Repair
- Packaging Structural and connections
- Thermal Management life (T), performance (T), safety
 - Impedance change with life impact on thermal management and design for end of life
- Electrical Management balancing, performance, life, safety
- Control/Monitoring
 - Gauge (capacity, power, life)

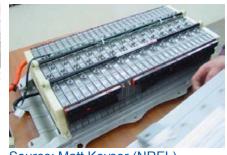
Cylindrical vs. flat/prismatic designs

Many small cells vs. a few large cells

Battery Packaging?

Many small cells

- Low cell cost (commodity market)
- Improved safety (faster heat rejection)
- Many interconnects
- Low weight and volume efficiency
- Reliability (many components, but some redundancy)
- Higher assembly cost
- Electrical management (costly)


Source: EnergyCS

Fewer large cells

- Higher cell cost
- Increased reliability due lower part count
- Lower assembly cost for the pack
- Higher weight and volume efficiency
- Thermal management (tougher)
- Safety and degradation in large format cells
- Better reliability (lower number of components)

Source: Saft America

Source: Matt Keyser (NREL)

Battery Packs in Some EDVs

Chevy Volt

http://autogreenmag.com/tag/chevroletvolt/page/2/

Nissan Leaf

http://inhabitat.com/will-the-nissan-leaf-battery-deliver-all-it-promises/

Prius PHEV

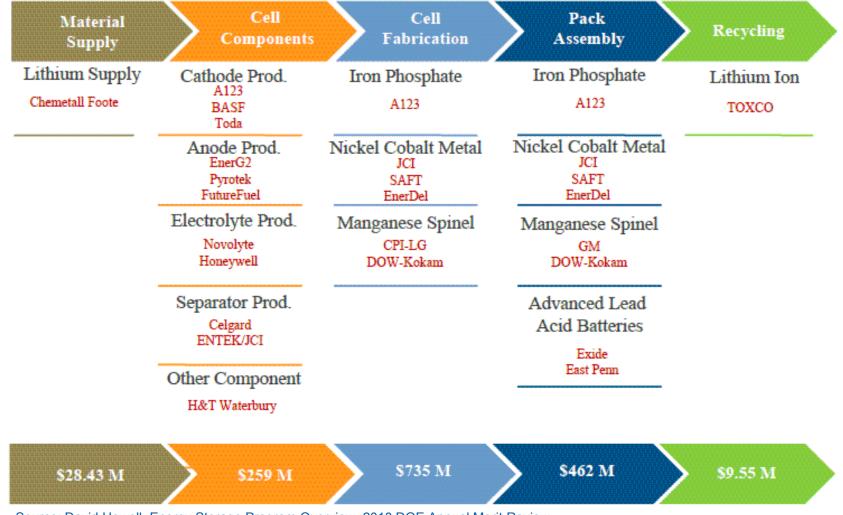
http://www.toyota.com/esq/articles/2010/Lithium_Ion_Battery.html

i-MiEV

http://www.caranddriver.com/news/car/10q4/2012_mitsubi shi_i-miev_u.s.-spec_photos_and_infoauto_shows/gallery/mitsubishi_prototype_i_miev_lithiumion_batteries_and_electric_drive_system_photo_19

Ford Focus

http://www.metaefficient.com/cars/ford-focus-electric-nissan-leaf.html


Fiat 500 EV

http://www.ibtimes.com/articles/79578/20101108/sb-limotive-samsung-sdi-chrysler-electric-car.htm

Investments in Factories to Reduce Battery Cost (based on Recovery and Reinvestment Act of 2009)

\$1.5 Billion for Advanced Battery Manufacturing for Electric Drive Vehicles "Commercial Ready Technologies"

Source: David Howell, Energy Storage Program Overview, 2010 DOE Annual Merit Review

The energy efficiency of light-duty vehicles is about 200 to 400 Wh/mile

- 5 to 12 kWh battery for 30 miles
- 2-Second power: 30 to 60 kW
- P/E from 2 to 15

Sprinter PHEV consumes about 600 Wh/mile in charge-depleting (CD) mode

Heavy-duty vehicles could consume from 1,000 to 2,000 Wh/mile

- 30 to 60 kWh battery for 30-mile range
- Volume, weight, and cost are big issues
- Thermal management is a concern

Examples of Medium- and Heavy-Duty EDVs

http://green.autoblog.com/photos/fedex-hybrid-truck/

http://www.greenoptions.com/forum/thread/20 29/coke-uses-hybrid-electric-trucks

http://articles.sfgate.com/2009-12-06/business/17182903_1_hybrid-garbage-trucks-volvogroup

http://www.gizmag.com/worlds-first-hybrid-refuse-truck-volvo-sweden/9131/

http://green.autoblog.com/2008/01/22/dc-auto-show-1-732-more-orders-for-gm-hybrid-buses/

http://www.hybridcars.com/news/greening-massivegovernment-vehicle-fleet-28337.html

http://www.hybridcars.com/fleets/part-growing-trendups-adds-200-hybrid-trucks-28035.html

http://green.autoblog.com/2007/05/21/walmart-receives-its-first-peterbilt-hybrid-bigrig/

Examples of Medium- and Heavy-Duty EDVs and Their Batteries

http://www.ecogeek.org/automobiles/3375-electric-garbage-trucks-coming-toparis?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+EcoGeek+%28EcoGeek%29

Courtesy of Argonne National Laboratory: http://www.transportation.anl.gov/media_center/transp ortation_images/battery_images.html

http://www.dieselpowermag.com/features/trucks/1103dp_artisan_vehi cle_systems_diesel_hybrid_big_rig/photo_06.html

http://www.hybridcars.com/hybrid-car-battery

http://www.electricenergyonline.com/?page=show_news&id=138652

An Example of an Investigation to Evaluate Medium-Duty Electric Drive Vehicles

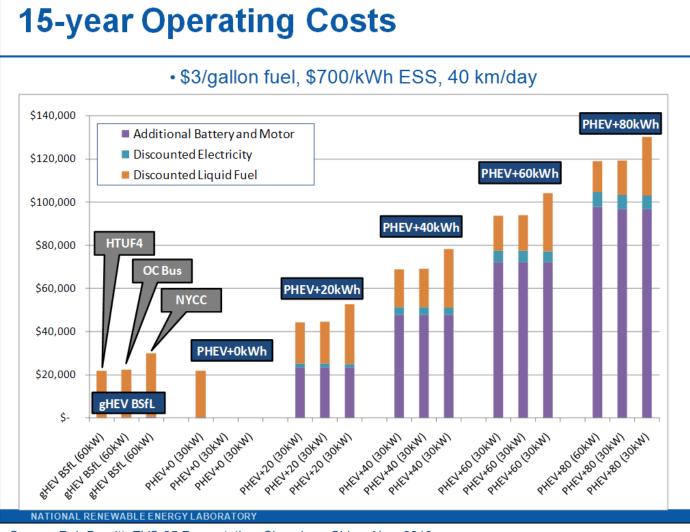
Innovation for Our Energy Future

Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles

Robb A. Barnitt

Paper K5U7P24S

EVS25: Shenzhen, China


November 8, 2010

For more information, see the complete conference paper, NREL/CP-5400-49253

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Example Results Comparing Different Electrification Options for a Medium-Duty Vehicle

Battery and fuel costs dominate economics; lowering battery costs is critical to EDV penetration. Optimizing route (intensity and distance) selection can minimize petroleum use and costs.

Source: Rob Barnitt, EVS-25 Presentation, Shenzhen, China, Nov, 2010

Concluding Remarks

- There are many types of electric drive technologies and thus battery solutions
- Batteries with high power-to-energy ratios are needed for HEVs
- Batteries with low power-to-energy ratios are needed for EVs and PHEVs
- NiMH batteries would be the technology of choice for HEVs for the next 5 years, and then they will be gradually replaced by Li-ion
- Li-ion batteries have the power and energy densities for PHEV and EV applications, but cost is an issue for mass-produced adoption
- There are a number of Li-ion chemistries with prismatic or cylindrical formats that could be mass produced in the market
 - Difficult to predict technology winner
 - Many companies are performing R&D and high-volume manufacturing in the United States, Japan, Korea, and China
- The key barriers to commercialization of PHEVs and EVs are battery life, packaging and cost (Recovery Act funding is expected to reduce battery cost)
- Battery technologies being developed for light duty vehicles can be used for medium- and heavy-duty applications

Acknowledgments

DOE Program Support

- Dave Howell
- Tien Duong
- Brian Cunningham

NREL Technical Support

- Shriram Santhanagopalan
- Anne Dillon
- Matt Keyser
- Kandler Smith
- Gi-Heon Kim
- Jeremy Neubauer

