

Methods for Analysis of Outdoor Performance Data

NREL

Dirk Jordan

2011 Photovoltaic Module Reliability Workshop February 16, 2011 Golden, Colorado

NREL/PR-5200-51120

Outline

- Motivation: Impact of uncertainty in degradation rates (R_d)
- Methodologies
 - 1. IV data taken in discrete intervals
 - 2. Continuous data, PVUSA & Performance Ratio
 - 3. Additional methodologies for continuous data Classical Decomposition, ARIMA

- Historical R_d and what we can learn from it.
 - 1. Methodologies
 - 2. Number of measurements
 - 3. Climate

Motivation

For solar industry to keep growing we need to accurately understand & predict how different technologies behave/change with weather, climate and time.

Change of power output with time is degradation rate (R_d)....uncertainty is very important too.

2 examples from NREL:

Different observation lengths, seasonality etc. \rightarrow Leads to different uncertainties

 R_d (Module 1) = (0.8 ±0.2) %/year R_d (Module 2) = (0.8 ±1.0) %/year

Same R_d but very different uncertainty

R_d Uncertainty Impact on Warranty

Manufacturer Warranty often twofold: 90% after 10 years, 80% after 25 years

$$Energy(Year_N) = \sum_{n=1}^{N} \frac{Energy(Year_1) \cdot (1 - R_d)^n}{(1 + r)^n}$$

1.0 %/year uncertainty = 46% 0.2 %/year uncertainty = 4%

Probability to default warranty:

1.0 %/year uncertainty = 57% 0.2 %/year uncertainty = 24%

Higher R_d **uncertainty significantly increases warranty risk**

Degradation Rate (R_d)- Discrete Points

- 1. Translation to reference conditions (IEC60891)
- 2. Time series to determine degradation rate

$$FF = \frac{P_{\max}}{I_{sc} \cdot V_{oc}} = \frac{I_{\max} \cdot V_{\max}}{I_{sc} \cdot V_{oc}}$$

Quarterly taken I-V curves for degradation

Degradation Rate - Discrete Points

Monocrystalline-Si

Degradation is due to decline in I_{sc} , (V_{oc} & FF are stable) \rightarrow clues to degradation mechanism

Problem: 1. Labor-intensive, has to be clear sky

- 2. Large arrays \rightarrow portable I-V tracer may not be available
- 3. Typically historical data not available

I-V curves provide clues to underlying failure mechanism

PV for Utility Scale Application (PVUSA)

The plant was originally constructed by the Atlantic Richfield oil company (ARCO) in 1983.

Provided electricity, data & experience in the 1980s and 1990s. Plant was dismantled in the late 1990s.

PVUSA Rating Methodology

Improved PVUSA models include Sandia & BEW model**

1. Step: Translation to reference conditions (use a multiple regression approach)

 $P = H \cdot (a_1 + a_2 \cdot H + a_3 \cdot T_{ambient} + a_4 \cdot ws)$

H= Plane-of-array irradiance $T_{ambient}$ =ambient temperature ws= wind speed a_1, a_2, a_3, a_4 = regression coefficients

Reference conditions: PVUSA Test Conditions (PTC): E=1000 W/m², T_{ambient}=20°C, wind speed=1 m/s

2. Step: Time series to determine degradation rate

Need basic weather station to collect $T_{ambient}$ and wind speed on top of irradiance Seasonality leads to required observation times of 3-5 years* \rightarrow long time in today's market

Long time required for accurate R_d

*Osterwald CR et al., Proc. of the 4th IEEE World Conference on Photovoltaic Energy Conversion, Hawaii, 2006. **Kimber A. et al., Improved Test Method to Verify the Power Rating of a PV Project. Proceedings of the 34th PVSC, Philadelphia, 2009.

Signal = Trend + Seasonality + Irregular

Signal = Trend + Seasonality + Irregular

Time (Months)

Signal = Trend + Seasonality + Irregular

Trend 12-month centered-Moving Average

Seasonality

Average of each month for all years of observation

Signal = Trend + Seasonality + Irregular

Determine R_d from Trend graph for higher accuracy

S.G. Makridakis et al., "Forecasting", New York, John Wiley & Sons 1997.

ARIMA

AutoRegressive Integrated Moving Average (ARIMA)

Model trend & seasonality component w/ Linear Combination of weighted differences & averages

2 free software packages, US Census Bureau, Bank of Spain: plug & play, sensitive to outliers!

Many statistical software packages include time series analysis (JMP, Minitab, R etc) Developed script to make model selection less sensitive to outliers.

Use ARIMA to model data, then decompose

Box, GPP and Jenkins, G: Time series analysis: Forecasting and Control, San Francisco: Holden-Day, 1970.

Outliers

Compare sensitivity of 3 methods to outliers

1. Dataset from NREL

2. Introduce outliers sequentially

3. Calculate R_d & study effect on all 3 methodologies

ARIMA most robust against outliers

Procedure:

Data Shifts

Compare sensitivity of 3 methods to data shifts Example: inverter change

- Procedure: 1. Dataset from NREL
 - 2. Introduce a data shift deliberately
 - 3. Multiply shifted section with a scaling factor

4. Calculate R_d & study effect on all 3 methodologies

Correct data shifts by minimizing residual sum of squares

Data Shift Results

Results from induced shift

Real Shift – Blind test

Data shift correction procedure is successful for all 3 approaches.

Data shift cause: Erratic ambient Temp sensor. Misleading degradation rate if R_d calculated after shift.

Residual minimization technique works on real shifts

PVUSA – Weekly Intervals

Multi-crystalline module

PVUSA – Weekly Intervals

Multi-crystalline module

Weekly intervals \rightarrow converges in less time

Performance Ratio

 $Y_f = \frac{E}{P_0}$ Y_f =Final Yield $Y_r = \frac{H}{G}$ Y_r =Reference H=In-plane G=Reference G=Reference G=Reference G

Y_r=ReferenceYield H=In-plane Irradiance G=Reference Irradiation

Can apply same modeling approaches to minimize seasonality

*B.Marion et al., "Performance Parameters for Grid-Connected PV Systems", Proc. 31st PVSC, Orlando, FL 2005.

Data Filtering

PVUSA on 3 different modules

Example on how variable R_d may be depending irradiance filtering (may not be representative)

Filtering interval too tight or broad $\rightarrow R_d$ may be substantially different and uncertainty goes up

A. Kimber paper showed uncertainty may be reduced by using only sunny days

Data filtering has important impact on determined R_d

Kimber A. et al., Improved Test Method to Verify the Power Rating of a PV Project. Proceedings of the 34th IEEE PV Specialist Conference, Philadelphia, 2009.

Discrete vs. Continuous Data

IEC 60891

PVUSA

Quarterly taken IV + IEC translation less uncertainty than PVUSA

PVUSA + Modeling uncertainty is comparable to IEC method

Methodologies - Summary

	Time series	Data Type /# Data Pts.	Data Aqc.	Reference condition	Uncer- tainty	Outliers/ Dt.shifts sensitivity	Impleme ntation	Comments
PVUSA	SLS	continuous	DC, H, T, ws	PTC	ok?	high	easy	
	CD	"	"	"	good	medium	easy	
	ARIMA	"	u	u	best	low	difficult	Software & training required
PR	SLS	continuous	AC, H		ok?	high	easy	
	CD	"	"	"	good	medium	easy	
	ARIMA	u	u	u	best	low	difficult	Software & training required
IV-2	SLS	discrete, 2	I,V, H, T	STC, IEC60891	ok?	high	easy	difficult for larger arrays
IV-3+	SLS	Discrete, >2	"	"	best	low	easy	<i>и</i>

SLS: Standard Least Squares, CD: Classical Decomposition H: in-plane irradiance, T: temperature, ws: wind speed

Contin. Data: Class.Decomp. may be good compromise

Discrete: Better take more than 2 measurements

PERT – Degradation Rates

Performance Energy Rating Testbed = PERT

Photo credit: Warren Gretz, NREL PIX 03877.

More than 40 Modules, > 10 manufacturers, Monitoring time: 2 yrs-16 yrs

Pre: Installed before year 2000 Post: Installed after year 2000

vanunce componenta			
	Var		
Component	Component	% of Total	20 40 60 80
Technology	0.3714	26	
Date of Installation[Technology]	0.6886	47	100
Manufacturer[Technology,Date of Installation]	0.0782	5	
Within	0.3151	22	1 1 1
Total	1.4533	100	

Appears that CdTe, CIGS & multi-Si improved

Variance Components

D.C. Jordan et al., Outdoor PV degradation comparison, Proc. IEEE PVSC, 2010, 2694.

Degradation Rates – Literature Survey

Number of R_d from literature: 1364

ca. 100 publications (see end)

Partitioned by date of installation: Pre- & Post-2000 Red diamonds: mean & 95% confidence interval

Crystalline Si technologies appear to be the same

Thin-film technologies saw significant drop in R_d in last 10 years

NREL CIGS System

Results from this array appears to support findings from literature

Development of Methodologies

Percentage of Indoor IV has increased manifold \rightarrow better tools

Percentage PR has increased \rightarrow more installations, easy to collect AC data, don't necessarily need an entire weather station

Percentage PVUSA decreased significantly → pronounced seasonality & sensitivity to outliers

PVUSA methodology use has significantly declined

R_d literature – Number of measurements

40% take only 1 or 2 measurements

1 Measurement: baseline no longer available or were never taken \rightarrow have to compare to nameplate rating

Procedure:

- 1. Take quarterly I-V data set
- 2.Randomly pick 2 data points & calculate
- Rd \rightarrow repeat many times
- 3. Randomly pick 3 data points & calculate
- $Rd \rightarrow$ repeat many times
- 4.Rd will depend on # of data points & time
- span \rightarrow can create 2D map

More than 40% of all R_d literature take only 1 or 2 measurements

Effect of number of data points and years on R_d

"True Rd"=-0.33 %/year (dark blue)

The curve is very steep for small data points and short time span

Even between 2-3 years can come close to "true Rd" simply by taken a few more data points

Would like to see more data points taken

Degradation Rates around the World

Köppen-Geiger climate map of the world (2007)

Size of circle: number of modules/systems tested

Main climates	Precipitation	Temperature		
A: equatorial	W: desert	h: hot arid	F: polar frost	
B: arid	S: steppe	k: cold arid	T: polar tundra	
C: warm temperate	f: fully humid	a: hot summer		
D: snow	s: summer dry	b: warm summer		
E: polar	w: winter dry	c: cool summer		
	m: monsoonal	d: extremely contin	ental	

No reported degradation rates in many climate zones

Degradation Rates around the USA

Similar picture as from around the world \rightarrow some climate zones have not been investigated

No reported degradation rates in some climate zones

Rainflow Calculations

Steppe, Hot & humid show significantly higher damage than Desert & Continental climate.

Steppe Climate has high damage due to thermal cycling

*Quantifying the Thermal Fatigue of CPV Modules_Bosco__NREL_International Conference on Concentrating Photovoltaics_2010

Analysis of all R_d by climate

Steppe Climate shows significantly higher R_d before 2000

Analysis of R_d by climate – c-Si

Similar but not as distinct trend for c-Si

Use of automated equipment, low stress ribbon effect visible ...?

Steppe Climate shows significantly higher R_d before 2000

PVDAQ Project

PV Data Acquisition

Use data from government-funded and other projects

Performance data accessible on web page

Eliminate blank spots on the map

Conclusion

- Uncertainty can result in significant warranty risk
- Time series Modeling with continuous data (PVUSA, PR ..) can significantly reduce uncertainty
- Cont. Data: Class. Decomp. May be a good compromise between quality of results & ease of implementation.
- Discrete data: better practice to take more than 2 measurements.
- Analysis from literature and our own systems indicate that degradation rates have improved for installations after 2000.
- Have no data from many of the world's climate zones

Conclusion

- Uncertainty can result in significant warranty risk
- Time series Modeling with continuous data (PVUSA, PR ..) can significantly reduce uncertainty
- Cont. Data: Class. Decomp. May be a good compromise between quality of results & ease of implementation.
- Discrete data: better practice to take more than 2 measurements.
- Analysis from literature and our own systems indicate that degradation rates have improved for installations after 2000.
- Have no data from many of the world's climate zones

Need more data!

Acknowledgments

Thank you for your attention!

dirk.jordan@nrel.gov

Thank you to : Sarah Kurtz Ryan Smith John Wohlgemuth Nick Bosco Peter Hacke Bill Marion Bill Sekulic Kent Terwilliger Rest of the NREL reliability team Eric Maass

References

PVUSA progress report_Townsend_Endecon_1995.pdf
11 year field exposure_Reis_Humbold State CA_PVSC_2002.pdf
10 year PV review Rosenthal NM PVSC 1993.pdf
Field test of 2400 PV modules_Hishikawa_Japan_PVSC_2002.pdf
Rd analysis c-Si_Osterwald_NREL_PVSC_2002.pdf
c-Si after 20 years Quintana Sandia PVSC 2000.pdf
Rd c-Si Machida Japan SEM&SC 1997.pdf
PV durability_King_Sandia_PiPV_2000.pdf
27+ years PV_Tang_ASU_2006.pdf
PV performance arctic college_Poissant_Canada_2006.pdf
20 year PV_Alawaji_Saudia Arabia_Renewable Energy Reviews_2001.pdf
Outdoor PV degradation_Vignola_UofOregon_ASES_2009.pdf
Perfromance analysis a-Si_Gregg_United Solar_PVSC_2005.pdf
Long-term performance of 8 PV arrays_Granata_Sandia_2008.pdf
Eff degradation c-Si DeLia Italy 2003.pdf
Long-term stability of the SERF Marion NREL 2003.pdf
double junction a-Si BIPV Ruther Brazil 2003.pdf
Performance losses Mani IPVR 2009.pdf
a-Si in different climates Gottschalg England 2001.pdf
a-Si in Sacramento Osborn Spectrum Energy 2003.pdf
Performance of a-Si in diff climates Rüther Brazil 2006.pdf
PV round robin IEA Task2 Austria 2006.pdf
TISO-20 Jahre ARCO-PP.pdf
Anual report LEEE-TISO Switzerland.pdf
Field test in Mexico Foster New Mexico State 2005.pdf
c-Si of 22 years Dunlop EU 2006.pdf
Common degradation mechanism Quintana Sandia IEEE 2003.pdf
Field test of c-Si in 1990 Sakamoto Japan PVenergycony 2003.pdf
PV degradation King Sandia 2003.pdf
Outdoor PV in Sahara 3months Saok Algeria 2008.pdf
PV Greece Kalykakis Greece 2009.pdf
PV Korea So Korea 2006.pdf
Outdoor PV on Cyprus Makrides Cyprus 2009.pdf
DegRate for c-Si Osterwald NREL 2002.pdf
Outdoor testing at ASU Mani ASU 2006.pdf
PV Power production after 10 years Cereghetti Switzerland 2003.pdf
Degradation of a-Si van Dyk South Africa SEM&SC 2010.pdf
20 year lifetime Dunlop EU 2005.pdf
Predicted long-term PV performance Muirhead Australia PVScienceConf 1996.pdf
Long-term field age Skoczek Italy 2009.pdf
Degradationenergy payback Davis FSEC 2009.pdf
PV Performance analysis Mau Austria 2005.pdf
PV performance after field expsoure King Sandia .pdf
Performance of 100 sites Wolgemuth BP PVSC 2005.pdf
PV performance in different climates_Carr_Australia_SolarEnergy_2003.pdf
Outdoor monitoring_Dhere_FSEC_2005.doc
Energy rating for CPV_Verlinden_Australia_2009.ppt
Sytem performance_Wohlgemuth_IEEE_2002.pdf
performance of First Solar Marion NREL 2001.pdf

Degradation rates from PERT_Osterwald_NREL_2005.pdf
TEP study_Moore_Sandia_PIPV_2008.pdf
Improved Power ratingsd_Kimber_PVSC_2009.pdf
Degradation x-Si_Skoczek_Italy_PPV_2009.pdf
Field PV reliability_Vazquez_Spain_2008.pdf
PV degradation_Moore_Tucson Electric_2007.pdf
Relaibility 1kW a-Si_NREL_Adelstein_2005p.pdf
PV performance parameters_Marion_NREL_PVSC_2005.pdf
6 years 100 sites summary_Ransome_BP_PVSC_2005.pdf
Performance of a-Si in diff climates_Rüther_Brazil_2006.pdf
A-Si in Kenya_Jacobsen_Berkley_ASES_2000
Outdoor testing at ASU_Mani_ASU_2006.pdf
Field PV reliability_Vazquez_Spain_2008.pdf
PV durability_King_Sandia_PiPV_2000.pdf
PV in Saxony_Decker_Germany_1997.pdf
25 yearold PV modules_Hedstroem_Sweden_2006
Sunpower reliability_Bunea_Sunpower_PVSEC_2010.pdf
C-Si degradation_Morita_Japan_PVenergyconv_2003
Rd c-Si_Machida_Japan_SEM&SC_1997.pdf
c-Si after 20 years_Quintana_Sandia_PVSC_2000.pdf
Rd analysis c-Si_Osterwald_NREL_PVSC_2002.pdf
10 year PV review_Rosenthal_NM_PVSC_1993.pdf
11 year field exposure_Reis_Humbold State CA_PVSC_2002.pdf
PVUSA progress report_Townsend_Endecon_1995.pdf
Long-term PV FL_Hickman_FSEC_NRELworkshop_2010.ppt
Degradationenergy payback_Davis_FSEC_2009.pdf
PV degradation in moderate climate_Tetsuyuki_Japan_PiPV_2010
Outdoor PV Degradation comparison_Jordan_NREL_PVSC_2010.pdf
PV module characterization_Eikelboom_Netherlands_2000.pdf
Mean time before failure_Realini_Switzerland_2003.pdf
PV EVA browing Negev Desert_Berman_Israel_SEM&SC_1995.pdf
PV modules Gobi desert_Adiyabat_Mongolia_PVSC_2010.pdf
Degradation rates from PERT_Osterwald_NREL_2005.pdf
PV performance parameters_Marion_NREL_PVSC_2005.pdf
Long-term reliability_Wohlgemuth_BP-2008.pdf
Outdoor Rd wo Irr_Pulver_UofA_PVSC_2010
20+ years PV_Bing_Massachusetts_PVMR2010_2010.pdf
Rd c-Si in Spain_Sanchez_Spain_PiPV_2011.pdf
Degradation Analysis PV plants_Kiefer_Fraunhofer_PVSEC_2010.pdf
Degradationsmessungen_Becker_Munich_2005.pdf
Long-term PV tsting_Hawkins_Australia_PVsec_1996.pdf
PV power at Telstra_Muirhead_Telstra_Au&NZSolar_95.pdf
Field performance a-Si_Osborn_CA_2008.pdf
Power drop rate_Kang_Korea_PVSEC_2010.pdf
PV reliability in 4 climates_Bogdanski_Germany_PVSEC_2010.pdf
Long-term CIS_Musikowski_Germany_PVSEC_2010.pdf
735 c-Si modules after 1 year_Coello_Spain_PVSEC_2010.pdf
PV performance arctic college_Poissant_Canada_2006.pdf

Notation: Title_Author_Institute/Country_Journal/Conference_Year