Numerical and Experimental Investigation of Internal Short Circuits in a Li-ion Cell

PI: Matthew Keyser, Gi-Heon Kim
Presenter: Gi-Heon Kim
Energy Storage Task Lead: Ahmad Pesaran

Contributors:
Matthew Keyser, Dirk Long, John Ireland, YoonSeok Jung, Kyu-Jin Lee, Kandler Smith, Shriram Santhanagopalan

National Renewable Energy Laboratory
Eric Darcy
National Renewable Energy Laboratory (Jan-Sep, 2010)
NASA-JSC

NREL/PR-5400-50917

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID: ES109
Overview

Timeline
• Project Start: 2009
• Project End: 2014
• Ongoing

Barriers
• Li-ion abuse tolerance and reliability
• Li-ion performance

Budget
• FY10: $500K
• FY11: Anticipated $500K

Partners
• NASA-JSC
• Dow Kokam
• Battery Safety Consulting Inc.
• Battery Design LLC
• Sandia National Laboratories (SNL)
• U.S. Navy

Funded by Dave Howell, Energy Storage R&D
Vehicle Technology Program, U.S. Department of Energy
Internal Short Circuit (ISC), a Major Concern

- Because of its high specific energy and power density, the Li-ion battery (LIB) is a promising candidate to date for electric energy storage in electric drive vehicles (EDVs)

- Safety concerns regarding violent failure of the LIB system are a major obstacle to overcome for fast market acceptance of EDV technologies

- Thermal instability and flammability of the LIB components make them prone to catastrophic thermal runaway under some rare ISC conditions

- Many safety incidents that take place in the field are due to an ISC that is not detectable or predictable at the point of manufacture
Motivation

Barriers for Addressing Failures Due to ISC

- Evolving during Life: Latent defect gradually evolves to create an ISC while the battery is in use; inadequate design and/or off-limit operation causes Li plating, stressing separator

- Difficulty of Early Detection: Electrical and thermal signals of early stage ISCs are not easily detected in large-capacity LIB systems

- Complex Physics with Numerous Sensitive Factors: Behavior of a LIB with an ISC depends on various factors, including nature of the short; cell characteristics such as capacity, chemistry, electrical and configuration; and attributes of the pack where the cell is integrated

- Poor Reproducibility: To date, no reliable and practical method exists to create an on-demand ISC in Li-ion cells that produces a response that is relevant to the ones produced by field failures
Objectives

1. **Model Investigation**: Enhance knowledge of the complex physics of evolution and development of an ISC and subsequent cell responses using NREL’s **multiphysics ISC model**

2. **Test Method Development**: Establish a relevant ISC test method by developing an **on-demand short activation device** to produce representative and reproducible ISCs in an active cell and relevant cell responses

3. **Model+Test**: Perform a synergistic study with combination of modeling and experimental approaches
Milestones

FY10 Milestone Report

- Matthew Keyser, Dirk Long, Ahmad Pesaran, “NREL Internal Short Circuit Simulator Development Summary”

FY11 Milestone Report – Due in September 2011

- “Li-Ion Abuse Response Modeling and Internal Short Circuit Simulation”
Approach

Focus of Modeling Study

- Multiphysics ISC modeling
- Understanding cell behaviors

Lead Investigator: Gi-Heon Kim

Focus of Testing Study

- Develop relevant ISC in active cell
- Provide consistent and reproducible results

Lead Investigator: Matthew Keyser

- Confirm Model Assumptions
- Provide Model Input

Model Validation

- Identify Critical Parameters
- Provide Complete Data Set for Non-Measurable Quantities

Experiment Design

Photo Credits: Dow Kokam – Ben McCarthy

Photo Credits: NREL – Dirk Long
Approach – Modeling

- **Internal Short Circuit Modeling**
 - Perform multiphysics ISC model study using NREL’s electrochemical, electrothermal, and abuse reaction kinetics models
 - Predict cell responses and onset of thermal runaway corresponding to the nature of the short and cell characteristics

Cases for Short Path

- ISC between metal (Al & Cu) current collector foils
- ISC between electrode (cathode & anode) layers
- ISC between Al to anode – short bypassing cathode
- Impact of cell size
- Impact of ISC location
Internal Short Circuit Instigator Device Development

- Small, low-profile and implantable into Li-ion cells, preferably during assembly
- Consistent and repeatable activation of internal short
- Electrolyte-compatible phase change material (PCM) for key component
- Triggered by heating the cell above PCM melting temperature

Spiral wound battery shown – can also be applied to prismatic batteries.
Previous Accomplishments

- Three-dimensional LIB abuse kinetics model was developed in support of DOE’s ATD program, and the development was continued in the DOE’s ABR program

- Previous study
 - Focused on understanding the interaction between heat transfer and exothermic abuse reaction propagation for a particular cell/module design
 - Provided insight on how thermal characteristics and conditions can impact safety events of LIBs

Note: Since NREL did not participate in 2010 AMR, this poster presentation include some of the project accomplishments done before May, 2010.
Accomplishments

ISC Model Investigation
Impact of Cell Capacity

Initial cell heating pattern under ISC varies with cell capacity

- Shorted area: 1 mm x 1 mm
- Short between Al and Cu foils

20 Ah cell

- $R_{\text{short}} \approx 10 \, \text{m} \Omega$
- $I_{\text{short}} \approx 300 \, \text{A (15 C-rate)}$

0.4 Ah cell

- $R_{\text{short}} \approx 7 \, \text{m} \Omega$
- $I_{\text{short}} \approx 34 \, \text{A (85 C-rate)}$

- A small-capacity cell is heated globally
- ISC heating in a large cell is likely local
- Thermally triggered “shut-down separator” may function effectively in a small cell

Temperature evolving with time

- Temperature at 10 sec after short
- Temperature at 7 sec after short
- Temperature at 8 sec after short

Exothermic Reaction Heat [kW]

Temperature at 10 sec after short

Surface temperature

Internal temperature

Temperature at 10 sec after short

Temperature at 7 sec after short

Temperature at 8 sec after short
Impact of Separator Integrity

Maintaining integrity of separator seems critical to delay evolution of the short.

- Short between anode to cathode
- 20 Ah capacity cell

Shorted area: 1 mm x 1 mm

- $R_{\text{short}} \sim 20 \, \Omega$
- $I_{\text{short}} \sim 0.16 \, A \ (< 0.01 \, \text{C-rate})$

Shorted area: 3 cm x 3 cm

- $R_{\text{short}} \sim 30 \, m\Omega$
- $I_{\text{short}} \sim 100 \, A \ (5 \, \text{C})$

- Thermal signature of the short is hard to detect from the surface
- The short for simple separator puncture is not likely to lead to an immediate thermal runaway

![Graph showing current density field near short](image)

Surface Temperature:
- $25.5^\circ C$
- $43.1^\circ C$

![Graph showing temperature at 1 min after short](image)
Impact of Short Paths

Technical Accomplishments

Electrical resistance of ISC varies with short path across electrodes

- 20 Ah capacity cell

Short between Al & Cu foils

- \(R_{\text{short}} \sim 10 \, \text{m}\Omega \)
- \(I_{\text{short}} \sim 300 \, \text{A (15 C-rate)} \)

Short between anode and cathode

- \(R_{\text{short}} \sim 20 \, \Omega \)
- \(I_{\text{short}} \sim 0.16 \, \text{A (<0.01 C-rate)} \)

Short between anode and Al foil

- \(R_{\text{short}} \sim 2 \, \Omega \)
- \(I_{\text{short}} \sim 1.8 \, \text{A (<0.1 C-rate)} \)

Temperatures at 10 sec after short
- Surface temperature: 800°C
- Internal temperature: 25°C

Temperatures at 20 min after short
- Surface temperature: 43.1°C
- Internal temperature: 25.5°C

Temperatures at 1 hr after short
- Surface temperature: 250°C
- Internal temperature: 37°C

- ISC bypassing cathode is likely to evolve into a hard short in relatively brief time
Impact of Short Location

Cell response varies with short location and cell electrical configuration

- For low-resistance ISC, near-tab ISC results in a smaller resistance because of shorter short-current path through shorting layers
- Pattern of local heating for convergence of short-current varies with location of short and internal electrical configuration of a cell
Accomplishments

ISC Test Method Development
NREL developed an on-demand activation device creating representative ISC

- **NREL’s ISC instigator design**

 - **Anode to Cathode ISC**
 - **Anode to Al ISC**

 ![Diagram of ISC device](image)

 - Activated short with PCM wicked by battery separator
 - Photo Credit: Dirk Long, NREL

 This device is applied for patent

 - Triggered by heating the cell above PCM melting temperature (presently 40°C – 60°C)
 - Initial device design focus is on anode-to-cathode active material short
 - Improved device design focus is on anode-to-Al short
Characterizing the ISC Device

Model helps to understand characteristics of ISC device and short triggered

Axis symmetry geometry

Property	**Al pad**	**Cu pad**	**Cu piece**	**Positive current collector**	**Negative current collector**	**Cathode electrode**	**Anode electrode**	**Separator**
Electric conductivity [S/m] | 3.541×10^7 | 5.8×10^7 | 5.8×10^7 | 3.541×10^7 | 5.8×10^7 | 5 | 58 | 1×10^{-15}

Graphic not drawn to scale

Electric potential contour

- Cathode layer is the most resistive part in the short current path
- Short current is mostly carried by metal foils

Current density norm contour
ISC Device Function Test

Technical Accomplishments

NREL ISC device consistently activated a short in laboratory testing

- Impedance test
- Coin cell test

Consistent Short Impedance ~ 0.5 mΩ

Reliable ISC Trigger in Coin Cells – 100% Success Rate

- In laboratory testing, the activated device can handle currents in excess of 200 A to simulate hard shorts (<5mΩ).
- Phase change from non-conducting to conducting has been 100% successful during trigger tests.
- Separator is an excellent wick for melted PCM.
- Nine of nine coin cells shorted with new ISC device design, shown here using a 42°C – 44°C melting PCM.

Photo Credit: Dirk Long, NREL
Implantation of NREL ISC device does not impact electrochemical performance of 8-Ah Dow Kokam cells.

Device has negligible impact on cell performance.
Cell 11 capacity = 7.862 Ah
Cell 12 capacity = 7.864 Ah
Cell 13 capacity = 7.789 Ah

4-amp discharge voltage curves from initial cycle data Dow Kokam 8-Ah pouch cells with anode-Al ISC device.
Implanting Anode-to-Cathode ISC in 8-Ah cells

Technical Accomplishments

ISC was consistently activated in 8-Ah stacked cells using NREL’s ISC device

Implantation of ISC Device for Anode to Cathode short

Voltage Response to ISC

- Thermal runway was not observed due to high impedance of the ISC between anode-to-cathode electrode surfaces

Photo Credits: Dow Kokam – Ben McCarthy

Shown here implanted inside a Dow Kokam 8-Ah pouch cell
Implanting Anode-to-Al ISC in 8-Ah cells

Technical Accomplishments

Anode-to-Al ISC implanted yielded lower impedance shorts in a 8-Ah cell

Implantation of ISC Device for Anode-to-Aluminum short

Dow Kokam lightly glued the custom ISC device to the modified cathode, lined up the separator hole with a template to center the separator hole, and then allowed stacking to proceed.

Voltage, Temperature Response to ISC

- Detected a 55°C temperature rise in 80 seconds
- NREL’s ISC device was easily implanted during the manufacturing process on DK’s automated production line
Severe heat-affected zones were observed near the implanted short, subsequently creating separator holes in the adjacent layers.

Unfolding the cell after the anode-to-Al short:

- Severe heat-affected zones in eight electrode layers in vicinity of ISC device and on inside of pouch laminate side near short.
- Tabs stayed intact.
- Anode and cathode sandwiching the ISC were not yet separated to prevent damage.

Photos courtesy of Ben McCarthy, Dow Kokam
Collaborations

Dow Kokam
• Dow Kokam assembled ISC-implanted cells and tested them to evaluate NREL’s ISC instigator device

NASA Johnson Space Center
• Eric Darcy of NASA-JSC, awarded by NASA’s Innovation Ambassador Program, joined NREL’s energy storage team (Jan ~ Sep 2010) and participated in the invention of NREL’s ISC instigator device
• NASA-JSC also tested the ISC device at its facilities in Houston, Texas

Battery Safety Consulting, Inc.
• Dr. Daniel Doughty of Battery Safety Consulting, Inc. was subcontracted to submit a recommendation of Li-ion “Safety Roadmap” to DOE
• This document analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would support DOE’s mission
Collaborations

Battery Design LLC
• NREL researchers are collaborating with Robert Spotnitz of Battery Design LLC to expand NREL’s exothermic kinetics (empirical) model inventory

Sandia National Laboratories
• NREL researchers continue to discuss using SNL’s test data for NREL’s model development and validation with Christopher Orendorff of SNL

U.S. Navy
• NREL researchers continue to discuss using Naval Surface Warfare Center (NSWC) test data for NREL’s model development and validation with Clint Winchester of NSWC’s Carderock division
Future Work

- **NREL ISC Device**
 - Test cathode-to-Cu and Al-Cu collector shorts in stacked cells
 - Implant and test ISC device in 18650 cylindrical cell designs (with NASA)
 - Test the effectiveness of battery management systems in preventing collateral damage to cells neighboring the cell with an ISC
 - Partner with cell manufacturers and auto industry to help them design safer LIB systems, which appears critical to realizing technologies for green mobility

- **ISC Evolution Study**
 - Understand initial evolution of an ISC using a controllable test fixture
 - Investigate factors and conditions affecting the time scale for ISC development
 - Quantify the sensitivity of the factors
Future Work

- **Pressure Model**
 - Predict pressure evolving inside a battery container during thermal runway
 - Understand cell venting mechanism
 - Based on empirical correlations between temperature and volume of gas evolved from abuse reactions

- **Modeling Overcharge Mechanism**
 - Cathode Instability: Changes in the composition and lattice structure of the cathode host matrix during overcharge will be simulated
 - Electrolyte Decomposition: The electrolyte decomposes due to the high voltage. The reactions taking place during this process will be included in the safety model
 - Lithium Deposition: Lithium deposition during overcharge is usually assumed to take place when the anode voltage goes below 0V vs. lithium, whereas in this work we will explore the factors leading to the drop in the anode voltage
Summary – Model Investigation

- *The multiphysics ISC model study was performed using NREL’s electrochemical, electrothermal, and abuse reaction kinetics models*

- Initial cell heating pattern under ISC varies with cell capacity

- Maintaining integrity of separator seems critical to delay evolution of the short

- The short for simple separator puncture is not likely to lead to an immediate thermal runaway

- Electrical resistance of ISC varies with short path across electrodes

- ISC bypassing cathode is likely to evolve into a hard short in relatively short time

- Cell thermal runaway response varies with short location and cell electrical configuration

- For low-resistance ISC, near-tab ISC results in a smaller resistance in a stacked cell because of shorter short-current path through shorting layers

- Pattern of local heating for convergence of short current varies with the location of the short and the internal electrical configuration of the cell
Summary – Test Method Development

- **NREL has developed a small, low profile device for simulating ISCs in active Li-Ion cells** *(applied for a patent)*

- The ISC device was proven to activate a short consistently and repeatedly in laboratory tests

- To date, anode-cathode and anode-Al short-circuit cases have been tested in Li-ion coin and stacked pouch cells

- Implantation of NREL ISC device does not impact electrochemical performance of 8-Ah Dow Kokam cells

- The ISC device has shown great potential to produce results relevant to field failures caused by internal cell defects
 - Evaluation of ISC response of a cell no longer has to rely on less-relevant crush tests
 - Results show promise to guide and focus cell production line defect and contamination mitigation measures
 - Comparison of the abuse tolerance of various cell designs will be possible

Current abuse test methods may not be relevant to field failures

Penetration and Crush Tests Methods

- Army/Navy/FBI use nail/bullet penetration tests.\(^1\)
- NASA uses a crush test with a rounded rod.\(^2\)
- Underwriters Laboratory (UL) uses a blunt nail crush test.\(^3\)
- Motorola/Oak Ridge National Laboratory use a pinch (crush) test on pouch cells.\(^4\)

Reliable, but not representative of field failures

2. Jeevarajan, J., 2008 NASA Aerospace Battery Workshop, Huntsville, AL.
3. Chapin, T., and Wu, A., 2009 NASA Aerospace Battery Workshop, Huntsville, AL.
Current abuse test methods may not be relevant to field failures

Contamination Test Methods

- BAJ5 and Celgard6 retrofitted a Ni particle into the jellyroll of a cell and triggered the event using a crush test.
- Sandia National Laboratories has tried several methods7,8,9:
 - Building cells with Ni particle contamination and combined with sonication, thermal ramp, or overcharge to trigger the short
 - Implanting low-melting indium (In) alloy in the separator combined with heat trigger.
- TIAX retrofitted a metallic particle into the jellyroll of a cell and triggered the event by repeated charge/discharge cycling.10

More relevant, but with reliability and reproducibility challenges

Laboratory Test Fixture

- Mass
- Acrylic guide tube
- Copper buss bars
- Internal short circuit simulator
- Varying mass yields pressures between 1 and 15 psi
- Power cables to a battery cycler

Photo Credit: Dirk Long, NREL
Test Setup for Triggering ISC Implanted in a Cell

- Cell is charged to the appropriate state of charge.
- Hot plate provides the heating source.
- Cell is placed under compression (~1.6 psi).
- Al plate between hot plate and cell has an embedded thermocouple (TC).
- Thermocouple placed cell side opposite hot plate.
- Thin foam pad and Lexan plate placed between cell top and 25-lb weight.
- Thin particulate bag encapsulates cell and its top TC (not shown for clarity).
Improving Interface Contact Resistance

- Cathode active material contact resistance with the pure Al foil pad of our ISC is on the order of ~1 Ω and is driving the resistance of the anode-to-cathode short.
 - A metallic contaminant pressed into the cathode material during manufacturing would have much better contact resistance, as field failures have demonstrated.

- Looking at advanced materials for improving contact resistances
 - Carbon/polyvinylidenefluoride (PVDF) deposited on Al (pictured)
 - High-conductivity micro-carbon fibers (pictured)

- Bonding Al disc onto the cathode active material during electrode coating.

Photo Credit: Bobby To, NREL
Photo courtesy of ESLI