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ABSTRACT 

We demonstrate how advanced exploratory data analysis 
coupled to data-mining techniques can be used to 
scrutinize the high-dimensional data space of 
photovoltaics in the context of thin films of Al-doped ZnO 
(AZO), which are essential materials as a transparent 
conducting oxide (TCO) layer in CuInxGa1-xSe2 (CIGS) 
solar cells. AZO data space, wherein each sample is 
synthesized from a different process history and assessed 
with various characterizations, is transformed, 
reorganized, and visualized in order to extract optimal 
process conditions. The data-analysis methods used 
include parallel coordinates, diffusion maps, and 
hierarchical agglomerative clustering algorithms combined 
with diffusion map embedding. 

INTRODUCTION 

Recent advances in wide variety of synthetic routes and 
characterizations in photovoltaics (PV) have created a 
critical need to understand complex synthesis/growth-
mechanism relationships in terms of process-property-
performance relationships (PPPRs.) Inherent in this 
process is dealing with the high-dimensional (i.e., having 
myriad variables) PV data space, which creates greater 
challenges for visualizing and exploring such relationships. 

In TCO development, for instance, process parameters in 
sputtering processes include multiple film growth 
conditions such as target composition, substrate 
temperature, and atmosphere of the chamber. 
Characterizing TCOs as a baseline mainly involves 
various structural, transport, and optical parameters 
termed as primary descriptors, which often comprise 
thickness of structure, Hall measurement for transport 
mechanisms, and analysis such as refractive 
index/extinction coefficient for the materials’ optical 
responses. Further advanced analysis for a more physical 
interpretation can be performed with other metrology tools 
such as photoluminescence. 

On the other hand, it is common that the information from 
the above-mentioned characterizations performed 
independently is not sufficient to fully understand growth 
mechanisms in terms of synthesis history. For this reason, 
it is often necessary to include non-measurable 
characteristics such as structural disorder or figures of 
merit, which are termed secondary descriptors. Here, the 
secondary descriptors are combinations achieved through 

mathematical and theoretical transformations of the 
primary descriptors. 

Therefore, it is highly desirable to develop tools for high-
dimensional data explorations, merging process 
conditions, various characterization data, and properties to 
gain a complete insight into physical phenomena such as 
growth mechanisms of complex PV materials. Augmenting 
this type of knowledge could inform a functional 
understanding of PV materials in terms of targeted 
properties, optimize process controls for desired 
performance, and contribute to shifting the current PV 
manufacturing industry to implementing better low-cost 
materials and processes. 

In this paper, we demonstrate approaches to exploring PV 
data in a more meaningful way for better PV design. This 
is done in the context of a case study on the data of AZO 
films generated from different process histories involving 
sputtering methods. 

EXPERIMENTAL 

An example of the challenges faced in PV research is the 
development of the CIGS solar cell. The immediate goal of 
CIGS device designers is to achieve bench-scale results 
(~20% efficiency), but increasing the efficiency of CIGS is 
difficult based on the complexity of its multiple layers. 
Therefore, it is critical to use components of the PPPRs for 
each layer—from the molybdenum back contact to the 
AZO transparent front contact—and fuse them together for 
an entire device. An AZO layer with its superior optical and 
electric properties is a key component as the TCO layer 
for CIGS. The multiple requirements for good AZO, based 
on a 20%-efficient CIGS device, are: (i) carrier density of 
5.6×1020 cm-3, (ii) mobility of 13 cm2/V⋅sec, and (iii) 
thickness 1200 Å [1]. 

Syntheses of AZO Layer  

AZO thin films were synthesized onto Corning Eagle 2000 
glass with various RF sputtering conditions. From the 
syntheses, we chose one isolated set of AZO data, which 
consists of 40 samples. The selected samples do not 
represent best properties for reference AZO. Rather, they 
possess the wide variety of TCO properties that needs to 
be enhanced via fine-tuning of process conditions. For 
baseline measurements, each film was analyzed with a 
four-point probe and Hall measurement for electric 
properties and n&k analysis for optical properties. 
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High-Dimensional AZO Data Generation 

With an eye toward meeting above-mentioned multi-
functional needs of the AZO layer, numerous studies have 
examined the effects of process conditions on the 
properties of thin films (e.g., [2, 3].) However, most 
attempts describe correlations between only two or three 
variables to circumvent the difficulty of simultaneously 
exploring multiple properties of AZO materials. 

Our current research on TCO layers in CIGS devices aims 
at practically optimizing the properties and then finding 
standard recipes for synthesizing the layer by tuning 
process variables to achieve the final desired optical and 
electrical requirements simultaneously. Therefore, it is 
valuable to evaluate AZO qualities with a wide variety of 
characterizations as well as secondary descriptors 
generated from miscellaneous physical theories. For 
example, it is typical to investigate defects, structural 
disorder, or optical energy gap with the absorption edge of 
distinct regions based on the single oscillator model [4]. 

Having baseline film properties, we chose and compiled 
various secondary descriptors of TCOs (Table 1). The 
details of secondary descriptors are not described here, 
but the reader is referred to numerous texts in the field as 
shown in Table 1. High-dimensional AZO data incorporate 
various theoretical and phenomenological secondary 
descriptors into primary descriptors and process 
conditions to delineate characteristics of engineered TCO 
materials in minute detail. 

APPROACH 

High-dimensional AZO data are explored with various 
exploratory data analysis tools to uncover PPPRs between 
multiple variables in Table 1. Assuming that variables in 
the AZO data are intimately correlated, the exploration 
used to extract meaningful information is threefold: 

• Direct visualization without data treatment 
• Non-linear dimensionality reduction 
• Data reorganization for revealing hierarchical data 

structure. 

Direct Data Visualization Using Parallel Coordinates 

The AZO data space can be explored using parallel 
coordinates that visualize high-dimensional information 
directly into two-dimensional space [5]. The advantage of 
using a simple yet powerful algorithm is that it extracts 
hidden correlations without transforming the original 
multivariate data set, and therefore leads to uncomplicated 
data interpretation. It maps an N-dimensional data space 
onto the two-dimensional space by drawing N parallel 
axes. The abscissa in parallel coordinates represents 
each variable, whereas the ordinate represents different 
levels of variables (e.g., ten different levels in this study).  

Factor Description 

Process 
Condition 

Base pressure (PBase), forward power of 
target (WTarget), process pressure 
(PProcess), heater temperature (TEHeater), 
Ar flow rate (FLAr), 2% O2/Ar flow rate 
(FL2% O2/Ar), scan speed (νScan), number 
of pass (NOPass), and crystal rate 
(XtalRate)  

Primary 
Descriptor 

Thickness of film (t), sheet resistance by 
4-point probe (Rs-4pp), sheet resistance 
by Hall measurement (Rs-Hall), electrical 
resistivity by 4-point probe (ρ4pp), 
electrical resistivity by Hall measurement 
(ρHall), mobility (µ), free carrier 
concentration (ne), and optical responses 
as spectral data (i.e. transmittance, 
reflectance, refractive index, and 
extinction coefficient)  

Secondary 
Descriptor 

Electronic mean free path (l1 [6] and l2 
[7]), Urbach tail energy (E0), dispersion 
energy (Ed), single oscillator energy 
(EOsc), long wavelength refractive index 
(n∞), n∞ squared (ε∞), average oscillator 
wavelength (λ0), average oscillator 
strength (S0), optical band gap energy 
from Tauc’s plot (Eg(Tauc)), refractive 
index at 500 nm (n500nm), extinction 
coefficient at 500 nm (k500nm), real 
dielectric constant at 500 nm (ε1-500nm), 
imaginary part of dielectric constant at 
500 nm (ε2-500nm), position of the maxima 
of the first derivative of the transmission 
((dT/dλ)Max-eV), absorption coefficient at 
(dT/dλ)Max-eV (α(dT/dλ)Max-eV), overall 
transmittance between 400 and 900 nm 
(TAvg. (400-900nm)), degree of inhomogeneity 
of refractive index ((∆n/ñ)%), measure of 
TCO performance at 500 nm ((σ/α)500nm), 
and figure of merit of TCO at 550 nm 
(φTC-550nm) [8-13] 

Table 1. High-dimensional data space of AZO films. 

The parallel-coordinates system is particularly suitable for 
mapping AZO data. First, it enables one to discriminate 
among samples having similar process conditions in the 
space of nine process variables, because the AZO data 
set contains many samples repeatedly synthesized with 
process conditions that are quite similar, but not identical. 
Second, the point of view to explore the data set is 
interchangeable among processing conditions, properties, 
and performance. For instance, the effects of processing 
conditions on properties of AZO films are shown in Fig. 1, 
in which it is also possible to visualize the effects of 
properties such as ρHall on processing conditions. This 
approach of changing viewpoints is often far more 
effective than other approaches for choosing targeted 
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levels of specific properties to scrutinize the control of 
processing conditions in inverse engineering. 

Diffusion Maps for Dimensionality Reduction 

Because of the limitations of human perception, low-
dimensional representation of high-dimensional data is of 
great importance to science, including the PV area. For 
instance, principal component analysis (PCA) is a global 
method of characterizing covariance in a high-dimensional 
data set to find the low-dimensional space that delineates 
high-dimensional data with minimal loss of information. It 
uses linear projections that minimize the least-squares 
error for a given number of components by rotating the 
original coordinate system for high-dimensional data so as 
to maximize the variance in the data, while minimizing the 
loss of information. However, the dependence of PCA on 
linear projections is not suitable for all data sets. In 
particular, if the data points lie on a nonlinear surface, 
linear projections may not lead to proper dimensionality 
compression because the projection planes may not 
coincide with the surface of interest. Linear projection-
based analysis is often inadequate for TCO data, because 
the PV data may be interrelated nonlinearly. 

A recently developed alternative to PCA is diffusion map 
embedding [14,15]. Unlike PCA, which projects the data 
onto linear subspaces, diffusion maps construct a graph 
(or network) on the data in which features are connected 
by weighted edges. A common choice of weight function is 
the Gaussian or heat kernel, 

wij = exp{
−ρ(xi , xj )

2

ε
}   (1) 

where ρ is a function measuring the distance between 
features xi and xj, and ε is a non-negative parameter. 
Because the Gaussian kernel decays quickly, the resulting 
graph places a high emphasis on local distances and can 
therefore lead to discovery of nonlinear relationships 
between the features. Computationally, the weight matrix 
W is row normalized, yielding a row-stochastic Markov 
matrix  

P = D−1W     (2) 

where D is diagonal with elements  

Dii = wijj∑     (3) 

The eigenvalues (λk) and eigenvectors (ϕk) of P are then 
computed as a coordinate system of the original data set, 
and the data are embedded into a low-dimensional 
subspace corresponding to the first, say r, eigenvectors 
that are considered efficient data representatives. The 
eigenbasis corresponds to modes of a random walk (or 
diffusion) on the data, so points that are nearby on the 
graph will also be close in the embedded space. Like 

PCA, this procedure can lead to drastic dimension 
reduction when the number of eigenvectors needed for the 
embedding is small. It differs, however, in the sense that 
local, and potentially nonlinear, relationships between 
features may become apparent in the embedding that 
would be missed if only linear projections were used. 

Diffusion maps are commonly used for clustering: a typical 
algorithm embeds the data into a low-dimensional 
subspace, and then applies a standard clustering 
algorithm to the embedded data. 

Hierarchical Clustering with Diffusion Maps 

It is often the case that scientific data are obtained in such 
a way that no clear ordering of either the variables or the 
samples is apparent at first glance. In AZO design, for 
example, it is far more useful to have a clearer 
organization of the data matrix (and hence visualization of 
the data) in order of “similarity,” which elucidates 
relationships between both the processing conditions and 
properties via a hierarchical tree structure known as a 
dendrogram. To this end, cluster analysis (CA) can be 
applied to explore similarities of the data space and 
partition them into a number of clusters where 
observations or variables in the same cluster are “similar,” 
whereas dissimilar samples/variables are in different 
clusters. 

Among CA approaches, hierarchical clustering algorithms 
provide a simple and systematic way to organize and 
visualize discrete data. In this study, we consider only 
bottom-up algorithms in which smaller clusters are 
successively combined in larger ones. Given a data matrix 
with m samples or observations (rows) and n features, 
characteristics, or responses (columns), the goal of 
agglomerative algorithms is to iteratively merge clusters 
according to their similarity. The way in which this is 
achieved depends fundamentally on the choice of: 

• A non-negative distance or dissimilarity function 
between two clusters A and B, denoted by ρ(A,B) 

• A linkage rule for recomputing the distance between 
old and new clusters. 

In particular, given the distance function ρ(A,B), we first 
compute the pairwise distances between all of the 
features. Next, the minimal pairwise distance is identified 
and recorded, the corresponding features are merged, and 
the distance between this new cluster and the remaining 
clusters is computed according to the linkage rule 
selected. Three common linkage rules are single, 
complete, and average [16]. After (n-1) steps, all features 
are contained in a single cluster, and the algorithm stops. 

Diffusion mapping can be incorporated for more clearly 
understanding cluster structures by placing emphasis on 
local distances between points in the feature space. In 
particular, given a distance function ρ(A,B), the similarity 
between clusters is described by weights in a data-derived 
network as shown in Eq. 1. This formalism is easily 
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adapted to the hierarchical clustering schemes described 
above. In particular, given a probability of transition 
between A and B (i.e., element P(A,B) of the Markov 
matrix), we define a new distance function by, for 
example,  

ρ(A, B) = 1− PAB    (4) 

where 0≤ρ≤1 because 0≤P≤1. The advantage of this 
approach compared to CA is its emphasis on local 
distances, which intuitively may be a more natural setting 
to search for meaningful clusters. Given the diffusion map 
distance defined above, any of the linkage rules can be 
applied. 

RESULTS AND DISCUSSION 

Parallel Coordinates 

As shown in Fig.1, associations of processing conditions 
and TCO responses are visualized by the brushing 
technique in parallel coordinates. In this way, once specific 
levels of a variable are selected or brushed with color 
(e.g., red), it automatically provides all the levels for other 
variables, which allows one to quickly monitor qualities of 
films in terms of the processing conditions. Note that blue 
polygons in Fig. 1 represent the reference AZO film for a 
20%-efficient CIGS device [1], and the discontinuous 
polygons imply the missing values of corresponding 
variables. Prior to applying an algorithm for parallel 
coordinates, each variable of the compiled AZO data is 
scaled from maximum and minimum between 0 and 1. 

In Fig. 1 (a), the selected low levels of WTarget 
automatically provide the corresponding process 
conditions performed, such as low PProcess and high 
TEHeater. For the given conditions of low values of WTarget 
and PProcess as in Fig. 1 (a), the increase in t and μ with 
decreasing resistivities is noticeable and therefore results 
in increased performance, (σ/α)500nm and φTC-550nm, of the 
AZO films. Under the reverse conditions, Fig. 1(b) shows 
that the behaviors of t, ρ4pp, ρHall, and μ are somewhat 
opposite to the identified results in Fig. 1(a). In addition, 
the values of E0 in Fig. 1(b) show that films synthesized 
with high values of WTarget and PProcess have more 
structural disorder [17]. Moreover, it is obvious that long l1 
and l2 in Fig. 1 (a) implies good-quality films, which 
corresponds to the decrease in values of resistivities [18],  
because the physical interpretation of l1 and l2 is typically 
made in terms of scattering mechanisms between grains 
and grain size that is correlated with t [19]. 

According to the results of Das et al. [20], low WTarget gives 
rise to slow deposition rates and more stoichiometric films, 
which lead to more resistive films. The same effects are 
provided at a high PProcess, which results from increased 
scattering between particles and a strong decrease in μ 
[21]. Likewise, it is known that the increase in WTarget as 
the PProcess decreases makes the deposition rate fast 
enough, non-stoichiometric, and less resistive [20]. 

Taken overall, it seems that the effect of lowering PProcess 
is more significant than controlling WTarget to enhance 
conductivity as well as performance of AZO films. Under 
the condition of low WTarget and low PProcess with relatively 
low deposition rates (νScan and XtalRate) as in Fig. 1(a), 
therefore, the increase in t is attributed to relatively low 
PProcess. Although we do not show various examples of 
parallel coordinates as a way of finding PPPRs, we could 
identify various interesting behaviors of film properties and 
the effects of process conditions with parallel 
coordinates—behaviors and effects that are almost 
impossible to identify using a traditional bivariate 
approach. 

(a)  

(b)  

Figure 1. Parallel coordinates representing the effects 
of (a) low regions and (b) high values of WTarget and 
PProcess on properties of AZO films. 

Diffusion Maps 

In diffusion mapping, variables or samples are visualized 
in low-dimensional diffusion space. As an example, 
grouping of variables is shown in Fig. 2. Processing 
conditions such as TEHeater, FLAr, NOPass, and PBase sit in 
the middle of two groups, upper left and lower right. The µ, 
l1, and l2 are grouped with AZO performance ((σ/α)500nm 
and φTC-550nm) in the group at the upper left. We can see 
that processing conditions such as PProcess, WTarget, and 
νScan are grouped with film resistivities that are related 
negatively to performance of TCO materials. It is worth to 
compare Fig. 1 and Fig. 2 for thorough study. 

Hierarchical Clustering 

Hierarchical agglomerative clustering (HAC) algorithms 
combined with diffusion map embedding were performed 
in order to reorganize and transform the TCO data space 
based on similarities between variables/samples within 
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high-dimensional space. To elucidate linear/nonlinear 
process-property relationships of TCOs, the adapted HAC 
algorithm in this study is a much more robust and 
systematic data analysis technique than the conventional 
HAC approach. The reason is that the adapted algorithm 
emphasizes local distance between points in the high-
dimensional variable space and captures nonlinearities in 
the data via diffusion map embedding [14, 15]. The results 
are summarized with heat-map representation to identify 
interdependencies between all variables with each role of 
the variables (Fig. 3). Figure 3(a) is a heat-map 
representation of original AZO data with no clustering 
applied. The heat map here can be considered as a color-
coded data table for representing raw data. In heat maps, 
an intersection of a pair of rows and columns creates a 
grid associated with a pair of sample and property. 

 
Figure 2. Low-dimensional embedding of AZO 
variables using the top three nontrivial eigenfunctions 
in diffusion space. Four processing conditions 
shaded with a blue ellipse form a boundary that 
separates the two groups. 

Figure 3(a) provides raw AZO data, but they need to be 
organized in a more meaningful way. Figure 3(b) is a heat 
map after the order of the AZO samples and variables 
determined in terms of dissimilarity measure by 
hierarchical cluster analysis. With this data visualization, 
the domain scientist can quickly identify critical regions 
and interdependencies between AZO films or variables by 
combining heat-map representation with dendrograms 
(Fig. 3 (c)) from cluster analysis. We chose the average 
linkage rule and ρ(xi , xj ) = 2 − 2corr(xi , xj )  as our 

dissimilarity function with ε=4. The color of each rectangle 
corresponds to a scaled value in the AZO films. 

CONCLUSIONS AND FUTURE WORK 

We have demonstrated how the merger of high-
dimensional visualization with complex PV data sets such 
as AZO data provides a significant “value added” level to 
simultaneously find hidden PPPRs for optimizing the AZO 
layer and enhancing process controls. 

(a)  

(b)  

(c)  

Figure 3. (a) Heat map of the original AZO data without 
CA; (b and c) heat map and dendrogram of the AZO 
data arranged by HAC according to the dissimilarity 
measure from the diffusion map, respectively. 
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Based on the identified correlations, we can expand our 
approaches to linear/nonlinear regression techniques, 
leading to explicit optimization of the desired features. 

In addition, we will expand our discussion to the concept 
of virtual metrology as unique “information probes” for 
exploring characterization data sets across different length 
scales by exposing relationships between diverse types of 
data. This is data exploitation to correlate, predict, and 
ultimately control measurable parameters such as 
thickness, as well as non-measurable properties such as 
structural disorder for better process controls toward 
achieving high-efficiency solar devices. 
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