

Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project

Keith Wipke, Sam Sprik, Jennifer Kurtz, Todd Ramsden, John Garbak

November 8, 2010

EVS-25 Shenzhen, China

NREL/PR-5600-49650

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Outline

- Project Goals
- Vehicle and H2 Station Deployment Status
- Performance Compared to Targets
- Highlights of Latest Results and Progress
- Summary and Future work

Fuel Cell Electric Vehicle Learning Demo Project Objectives, Relevance, and Targets

- Objectives
 - Validate H₂ FC Vehicles and Infrastructure in Parallel
 - Identify Current Status and Evolution of the Technology
- Relevance
 - Objectively Assess Progress Toward Technology Readiness
 - Provide Feedback to H₂ Research and Development

Note: Project extended 2 years to 2011

Burbank, CA station. Photo: NREL

Two Teams Concluded Their Projects in 2009, Three are Continuing through 2011

Ford/BP and Chevron/Hyundai-Kia Concluded in 2009

Daimler, GM, and Air Products Continue to Demonstrate Vehicles/Stations within Project through 2011

Vehicle Status: All 350 bar Vehicles Retired, Only 700 bar Vehicles Continuing

Fueling Station Status: Stations that Continue to Operate are Mostly Delivered Compressed Hydrogen

Out of 24 Project Stations, 15 Are Still Operational (2/3 outside of DOE project)

National Renewable Energy Laboratory

Evaluation Against 3 Primary Metrics: Project Met All Major Technical Goals

Vehicle Performance Metrics	Gen 1 Vehicle	Gen 2 Vehicle	2009 Target
Fuel Cell Stack Durability			2000 hours
Max Team Projected Hours to 10% Voltage Degradation	1807 hours	2521 hours	V
Average Fuel Cell Durability Projection	821 hours	1062 hours	
Max Hours of Operation by a Single FC Stack to Date	2375 hours	1261 hours	
Driving Range	103-190 miles	196- <u>254</u> miles 🍟	250 miles
Fuel Economy (Window Sticker)	42 – 57 mi/kg	43 – 58 mi/kg	no target
Fuel Cell Efficiency at ¼ Power	51 - 58%	53 - <u>59</u> %	60%
Fuel Cell Efficiency at Full Power	30 - 54%	42 - <u>53</u> %	50%
Infrastructure Performance Metrics			2009 Target
<i>H</i> ₂ Cost at Station (early market)	On-site natural gas reformation \$7.70 - \$10.30	On-site Electrolysis \$10.00 - \$12.90	\$3/gge
Average H ₂ Fueling Rate	0.77 kg/min		1.0 kg/min
Outside of this project, DOE independent panels concluded at 500 replicate stations/year: Distributed natural gas reformation at 1500 kg/day: \$2.75-\$3.50/kg (2006) Distributed electrolysis at 1500kg/day: \$4.90-\$5.70 (2009)			

With Fewer Industry Partners Providing Data, Analysis Takes on a New Dimension

80 Spring 2010 Results

- Most comprehensive set we ever published
- Includes durability, range, fuel economy, etc.
- Covers data from all 4 Learning Demo teams + CHIP project over 5 year period
- Majority of these will now stay static, serving as a historical record of Gen 1 & Gen 2 comparisons.

16 Fall 2010 Results

- No "new" CDPs, but we updated 16 previously published CDPs with data from the last 6 months
- Results on most recent durability, range, fuel economy, not yet possible to publish until more data accumulated (in 2011)
- Covers data from 2 Learning Demo OEMs + CHIP project
- Emphasized changes observed in last 6 months through use of gray (old) and colors (new)

Quantified Gen 2 Fuel Cell System Durability* Improvement from Gen 1

* Durability is defined by DOE as projected hours to 10% voltage degradation

Spring 2010

Completed Final Analysis of Gen 1 Fuel Cell System Power Degradation

11

Based on Limited Data from Last 6 Months, Average Fueling Rate Decreased 14%

Fall 2010

Real-World Driving Range Between Refuelings Continues to Improve as Demonstration Progresses

National Renewable Energy Laboratory

Driving Behavior in Last 6 Months Much More Similar to U.S. National Average

Range: NREL/SRNL Verified Toyota FCHV-adv Driving Range >400-Mile (Without Refueling) on June 30, 2009

SRNS-STI-2009-00446 Evaluation of Range Estimates for Toyota FCHV-adv Under Open Road Driving Conditions

Keith Wipke¹, Donald Anton², Sam Sprik¹

August 10, 2009 PTS-05 of SRNS CRADA No. CR-04-003

¹ National Renewable Energy Laboratory ^{*} Savannah River National Laboratory

Page 1 of 17

Summary and Future Work

- Project has completed >5 full years of operation
- Vehicle operation: 114,000 hours, 2.87 million miles, 436,000 trips
- H2 station operation: 134,000 kg produced or dispensed, 27,000 refuelings
- DOE Key Technical Targets Met: FC Durability and Range
- Future Work:
 - Progress to be tracked over final 2 years of project
 - Additional collaboration with remaining auto OEM teams
 - New CA fueling stations planned for inclusion in future results as data becomes available

Questions and Discussion

Project Contact: Keith Wipke, National Renewable Energy Lab 303.275.4451 keith.wipke@nrel.gov

All public Learning Demo papers and presentations are available online at http://www.nrel.gov/hydrogen/proj_tech_validation.html