

A Technoeconomic Analysis of Biomethane Production from Biogas and Pipeline Delivery

Ali Jalalzadeh-Azar

Hydrogen Technologies and Systems Center

NREL/PR-5600-49629

Renewable Resources for Fuel Cells Workshop San Antonio, TX October 18, 2010

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Objectives

- Develop a cost-analysis model, H2A Biomethane, focusing on biogas upgrading process and pipeline delivery with post compression.
- Collect, qualify, and analyze data:
 - GIS data for California—geo-spatial biogas potential from landfills, dairy farms, and sewage treatment plants; distances of biogas sites from the natural gas pipelines and load centers; and energy consumption.
 - Cost data—biogas purification/upgrading systems and pipeline transport of biomethane.
- Perform techno-economic analyses focusing on:
 - Biomethane production from biogas.
 - Export of the product gas to the natural gas grid.
 - Cost structure of biomethane production and pipeline delivery.

The project objectives have been achieved.

Drivers and Benefits

- Fuel cells operating on biomethane or on hydrogen derived from biomethane can mitigate energy and environmental issues and provide an opportunity for their commercialization.
- The availability of incentives and requirements for renewables such as:
 - California RPS requirements: 20% by 2010 and 33% by 2020
 - SB1505 renewable content requirement for hydrogen production.
 - Self-generation incentive program (SGIP)
- The project can provide valuable insights and information to the stakeholders—utilities, municipalities, and policy makers (macrolevel) and producers of biogas (micro-level).

Approach

- Developed the new analysis tool based on the vetted H2A Production and H2A Delivery models.
- Interacted with the industry and experts for input:
 - Held an introductory panel discussion with the stakeholders in November 2009 to facilitate information/data gathering.
 - Obtained cost data on biogas upgrading system from vendors and publications.
 - Completed the first round of the external review process for the H2A Biomethane via a webinar in August 2010.
- Applied the H2A Biomethane Model to scenario analyses for dairy farms.

Approach: Project Concept

Shaded areas represent the boundaries of the current project.

Approach: Qualification of Cost Data

The differences are reflective of the uncertainties in the estimates.

Model: Key Input Data / Assumptions

System Characterization

- Feed biogas chemical composition.
- Product Biomethane chemical composition.
- Process electricity usage: kW/ Nm³ biogas.
- Reference capital cost and scaling factor.
- Operating capacity factor and life span.

Economic Assumptions

- Internal rate of return, inflation rate, and tax rates.
- Analysis period, depreciation type, etc.

Default values are provided for upgrading biogas from dairy farms.

Model: Output Metrics

Key Results		Biomethane Cost Sensitivity								
Costs	Cost components and relative values	Biogas Price (\$2.9/GJ,\$7.6/GJ,\$11/GJ)								
	Total unit cost of bio-methane	Biogas Usage (-/+ 5%)								
Energy	Process energy usage	Total Direct Capital Cost (-/+ 10%)					ī			
	Upstream energy usage									
	Process energy efficiency	Operating Capacity Factor (95%,90%,85%)								
Emissions	Process emissions	Electricity Price (-/+ 10%)								
	Upstream emissions	Electricity Usage (-/+ 5%)								
Sensitivity	Tornado chart depicting sensitivity of bio-methane cost to key variables.	\$6.00 \$7.00 \$8.00 \$9.00 \$10.00 \$12.00 \$13.00 \$14.00 \$15.00 Biomethane Cost (\$/GJ)								

- The results are normalized (e.g., \$/kg and \$/GJ)
- Key variables for sensitivity analysis: biogas cost, biogas usage, capital cost, capacity factor, electricity price, and electricity usage.

Model: Exploratory Analyses

- Energy efficiency takes on greater importance at larger capacities.
- Clustering sources of biogas may be imperative to achieving economy of scale.
- Impact of system life on the economics.
- Significant uncertainty in life span is reflected in vendors' data and literature.

The model can lend itself to exploratory or "what-if" analyses for valuable insights.

GIS Analysis

- Select biogas resources: Landfills, sewage treatment plants, and dairy farms.
- Landfills offer greater biogas potential.
- Transmission lines are reasonably accessible to most of biogas sources.
- Majority of GIS data are for the central valley due to systematic tracking.
- Data were unavailable for a number of dairy farms in California.

GIS Analysis (cont.)

- ➤ Landfills have the dominant share at 75%, followed by dairy farms at 22%.
- > Total biomethane potential is about 5% of NG consumption.

GIS Analysis: Clustering Dairy Farms for Economy of Scale

- Bio-methane potentials:
 C1: 2,020,000 Nm³/yr (~ 80,200 GJ/yr.)
 C2: 1,316,000 Nm³/yr (~ 52,200 GJ/yr.)
 C3: 1,860,000 Nm³/yr (~ 73,800 GJ/yr.)
- Achieving economy of scale for biogas upgrading can be challenging for dairy farms.

Scenario Analysis—Key Assumptions

- Facility: Bio-methane production from dairy farm biogas.
- Feed biogas capacity: Varies
- > Overall capacity factor = 90%.
- Length of pipeline from production site to NG transmission line = 10 miles.
- > Bio-methane pressure at the output of purification system = \sim 8 bar (abs.)
- > NG transmission line pressure = \sim 40 bar.
- \blacktriangleright Rate of return = 10%
- \succ Inflation rate = 1.9%
- System Life = 20yrs.

Cost Estimates—Biogas Cost

Upgrading biogas from dairy-farm anaerobic digesters (AD)

AD Type	Reported elec. gen. costs*	Estimated biogas*cost	Biomethane Cost = AD + Upgrade Cost	<u>Remarks / Assumptions</u> Estimates are in 2010 USD.				
Covered lagoon	\$12.59/GJ (\$0.045 /kWh)	\$2.9 / GJ	~ \$6 / GJ	Upgrading cost of \$3.2/GJ of biomethane was used for aggregate feed biogas				
Plug-flow	\$34.82 (\$0.13/kWh)	\$7.6 / GJ	~ \$11 / GJ	capacity of about 2,000 Nm³/h.				
Mixed	\$52.39 (\$0.19/kWh)	\$11.0 / GJ	~ \$14 / GJ	Ancillary (e.g., storage) costs are not included.				

* <u>Source</u>: "An Analysis of Energy Production Costs from Anaerobic Digestion Systems on U.S. Livestock Production Facilities," Technical Note No. 1, Natural Resources Conservation Service, USDA, October 2007.

Cost Estimates—Impact of Biogas Capacity

- Export of biomethane from individual dairy farms or limited aggregates is not economical without incentives.
- Clustering sources of biogas (e.g., dairy farms) may be imperative for economic competition.
- If permissible, injection of biomethane into a distribution pipeline can reduce the transport cost (due to shorter distance and lower pressure).

Price of natural gas (residential) is approx. \$9.5/GJ for CA and \$11.7 for U.S. based on EIA data: <u>http://tonto.eia.doe.gov/state/state_energy_profiles.cfm?sid=CA</u>

Cost Estimates: Relative Contributions

- Depending on the source, feed biogas cost can take on greater significance at high capacities.
- Pipeline delivery cost is dominant at low feed capacities (e.g., < 2,000 Nm³/h).
- The relative contribution of the cleanup-system cost does not significantly change with the feed biogas capacity.

Note: Costs of ancillary components (e.g., storage) are not included.

Conclusions

- Through the economy of scale, biomethane production via purification of biogas from dairy farms can be economically competitive for on- or near-site utilization even without incentives.
- The economics of pipeline delivery of biomethane to the natural gas grid or another end-use site are influenced by the distance and the operating pressure at the point of delivery—incentives may be necessary for economic justification.
- Clustering farms to facilitate use of a semi-central upgrading system is imperative for achieving the economy of scale.
- Landfills can provide low-cost biogas, favorable economy of scale for biomethane production, and an opportunity for emissions control. However, sustainability of biogas supply, biomethane quality requirements for end-use applications, and restrictive guidelines for grid interconnection are among the prevailing challenges.
- The H2A Biomethane Model can lend itself to analyses of biomethane production and delivery scenarios and assist the stakeholders in their decision making process.

Potential Future Work

- Include the waste-stream oxidization and sequestration aspects of the biogas upgrading process in the model from the economic, energy, and environmental standpoints.
- Explore the possibility of formulating a correlation between the cost of the biogas upgrading system and the purification requirements.
- Investigate the effect of combining biogas products from multiple sites/sources on temporal variation of the feed chemical composition for the clean-up process.

Implication:

 Possible mitigation of variation in the impurity level of feed biogas for upgrading process—in addition to achieving the economy of scale.

Acknowledgement

The efforts of Genevieve Saur in development of the H2A Biomethane Model and Anthony Lopez in the GIS data collection and analysis are greatly appreciated.

Questions / Comments?

Thank You!

Ali.Jalalzadeh@nrel.gov