

Computer-Aided Engineering of Automotive Batteries

The 10th Advanced Automotive Battery Conference Orlando, Florida

Gi-Heon Kim Kandler Smith <u>Ahmad Pesaran</u> National Renewable Energy Laboratory

May 19-21, 2010

David Howell* U.S. Department of Energy

NREL/PR-540-48145

Funded by Energy Storage R&D (David Howell), Vehicle Technologies Program U.S. Department of Energy

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Introduction – Battery CAE

- Computer-aided engineering (CAE) is a proven pathway, especially in automotive industry, to
 - Improve performance by resolving relevant physics in complex systems
 - Shorten product development design cycle and thus reduce cost
 - Provide an efficient manner for evaluating parameters for robust designs
- Most battery CAE models could be enhanced
 - Academic models include relevant physics details, but neglect engineering complexities
 - Industry models include relevant macroscopic geometry and system conditions, but use too much simplification in fundamental physics
- DOE- and private-industry-funded projects have demonstrated the value of battery CAE
 - Most in-house custom model codes, however, require expert-users
- Battery CAE capabilities need to be transferred to industry
 - In time to impact the transition toward sustainable electric mobility
 - Reduce the process of design, build, test, break, redesign, rebuild, retest,...

Multi-Scale Physics in Li-Ion Battery

Various physics interact across wide range of length and time scales

Present industry needs

 Performance & Life Models: Coupling electrode-level performance/life with cell/pack-level heat/current transport
 Safety Models: Coupling electrode-level chemical

- reactivity and cell/pack-level heat transport
- Need to include both <u>science</u> and <u>engineering</u>

•First Principals Material Evaluation •Electrode Architecture Design

NREL Battery Modeling Portfolio

(diverse, but not integrated)

Model	Length Scale pm nm μm mm m	Geometry	Physics / Application
Vehicle/component (PSAT/ANL & Advisor/NREL	.)	Lumped	 Drivetrain power balance / Drive cycle Battery usage & requirements Control strategy design
Battery cost		Lumped	 Empirical System cost (\$/kW, \$/kWh)
Battery life		Lumped	 Empirical Life prediction (<i>t</i>, N_{cyc}, <i>T</i>, ΔDOD, SOC)
Equivalent circuit (e.g. PNGV, FreedomCar)		Thermal/electrical network	 Electrical & thermal Performance, design, safety evaluation
Electro-thermal (FEA) & fluid-dynamics (CFD)		1-D, 2-D, & 3-D	 Electrical, thermal & fluid flow Performance, detailed cooling design Commercial software (restrictive assumptions)
Electrochemical- thermal ("MSMD")		1-D, 2-D & 3-D	 Electrochemical, electrical & thermal Performance, design
Electrochemical- thermal-degradation ("MSMD-life")		1-D, 2-D & 3-D	 Electrochemical, electrical & thermal Cycling- & thermal-induced degradation Performance, design, life prediction
Thermal abuse reaction kinetics		Thermal network, 2-D & 3-D	Chemical & thermalSafety evaluation
Internal short circuit		3-D	 Chemical, electrical, electrochem. & thermal Safety evaluation
Molecular dynamics		3-D	Atomic & molecular interactions Material design

Battery CAE : What Should One Expect?

- Multi-scale Physics Interaction: Integrate different scale battery physics in computationally efficient manner
- Flexibility: Provide a modularized multi-physics platform

 Enable user choice from multiple submodel options
 with various physical/computational complexity
- **Expandability**: Provide an expandable framework to "add new physics of interest" or to "drop physics of insignificance/indifference"
- Validation and Verification: The correct equations are solved and they are solved accurately

Length-Scale Mapping for Li-ion Battery Models

(Examples and not a complete list)

Example **Electrode-Scale Performance Model**

Charge Transfer Kinetics at Reaction Sites

$$j^{Li} = a_{s}i_{o} \left\{ \exp\left[\frac{\alpha_{a}F}{RT}\eta\right] - \exp\left[-\frac{\alpha_{c}F}{RT}\eta\right] \right\}$$

$$i_{0} = k(c_{e})^{\alpha_{a}}(c_{s,\max} - c_{s,e})^{\alpha_{a}}(c_{s,e})^{\alpha_{c}} \quad \eta = (\phi_{s} - \phi_{e}) - U$$

Species Conservation

$$\begin{split} \frac{\partial c_s}{\partial t} &= \frac{D_s}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial c_s}{\partial r} \right) \\ \frac{\partial (\varepsilon_e c_e)}{\partial t} &= \nabla \cdot \left(D_e^{eff} \nabla c_e \right) + \frac{1 - t_+^o}{F} j^{\text{Li}} - \frac{\mathbf{i}_e \cdot \nabla t_+^o}{F} \end{split}$$

Charge Conservation $\nabla \cdot \left(\sigma^{\text{eff}} \nabla \phi_{\epsilon} \right) - j^{\text{Li}} = 0$ $\nabla \cdot \left(\kappa^{\text{eff}} \nabla \phi_{e} \right) + \nabla \cdot \left(\kappa_{D}^{\text{eff}} \nabla \ln c_{e} \right) + j^{\text{Li}} = 0$

Energy Conservation $\rho c_p \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + q'''$ $q''' = j^{Li} \left(\phi_s - \phi_e - U + T \frac{\partial U}{\partial T} \right) + \sigma^{eff} \nabla \phi_s \cdot \nabla \phi_s + \kappa^{eff} \nabla \phi_e \cdot \nabla \phi_e + \kappa_D^{eff} \nabla \ln c_e \cdot \nabla \phi_e$

- Pioneered by Newman's group (*Doyle, Fuller*, and Newman 1993) – Dualfoil (cchem.berkeley.edu/jsngrp/fortran files/Intro Dualfoil5.pdf)
- Captures lithium diffusion dynamics and charge transfer kinetics – porous media
- Predicts current/voltage response of a battery ۲
- Provides design guide for thermodynamics, kinetics, and transport across electrodes
- Difficult to resolve heat and electron current transport in large cell systems

Extending Newman's model to Thermal-EChem 3D NREL's Multi-Scale Multi-Dimensional (Domain) Model Approach

Virtual Design Evaluation Integrated Battery – Vehicle Approach

Need to Develop Modular Plug-and-Play Modeling Design Concepts

Future Plans – Battery CAE

- Integrating various models in one single platform for industry to use
- Bottom-up model validation and demonstration study
- Enhancing physics models

• Enhancing solver capability & solution schemes

A New Activity – CAE for Batteries

- In the last several years, DOE's Vehicle Energy Storage Program has been funding battery modeling as part of its
 - Exploratory Battery Activity (BATT)
 - Applied Battery Research Activity (ABR)
 - Battery Development Activity
- DOE has been evaluating approaches to <u>integrate</u> these battery modeling activities and make them more <u>accessible</u> as <u>design tools</u> for industry
- In April 2010, DOE initiated implementing the Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) activity
 - Objective is to incorporate existing and new models into software battery modeling suites/tools
 - Goal is to shorten design cycle and optimize batteries (cells and packs) for improved thermal uniformity, safety, long life, low cost

CAEBAT Operating Structure and Plans

- Operate similarly to BATT and ABR activities
- Include several National Laboratories
- One Lab coordinating the activities for DOE (NREL for CAEBAT)
- Include <u>competitive</u> collaborations with universities and industry (cell developers, pack integrators, vehicle makers, and software venders)
- Include structured tasks and subtasks dealing with materials/components, cells, packs, and open software architecture
- Seek collaboration with federal, state, and private organizations for leveraging resources
- Conduct annual planning, progress, and review meetings

Elements of CAEBAT Structure

CAEBAT Program

Planned Activities – CAEBAT Program

- Interact with other, National Labs, industry, and universities
- Develop detailed description of tasks and overall program plan
- Conduct model development and integration in National Labs and later by industry and universities
- Issue Request for Proposals (RFP) in July, receive proposals, review them, and select awardees by end of September
 - Multi-year, multi-partner projects
- More to come.....