Evaluation Study for Large Prismatic Lithium-Ion Cell Designs Using Multi-Scale Multi-Dimensional Battery Model

Gi-Heon Kim and Kandler Smith
National Renewable Energy Laboratory
Golden, Colorado
NREL/PR-540-46076

This research activity is funded by the U.S. Department of Energy

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.
Batteries for Electrified Vehicles

Electrified drive-train vehicles such as PHEVs and EVs with range-extenders are believed to be near-term technologies that are
- displacing significant petroleum use in the transportation sector
- diversifying energy sources for mobility

Advances in batteries are critical to realize green mobility technologies

DOE’s Energy Storage System Performance Targets for PHEVs

<table>
<thead>
<tr>
<th>Characteristic of Use (End-of-Life)</th>
<th>Minimum PHEV Battery</th>
<th>Maximum PHEV Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Equivalent Electric Range</td>
<td>10 miles</td>
<td>40 miles</td>
</tr>
<tr>
<td>Peak Discharge Power (C sec 10 sec)</td>
<td>kW</td>
<td>240-348</td>
</tr>
<tr>
<td>Peak Repeat Pulse Power (10 sec)</td>
<td>kW</td>
<td>20-25</td>
</tr>
<tr>
<td>Max. Current (10 sec pulse)</td>
<td>A</td>
<td>140-160</td>
</tr>
<tr>
<td>Available Energy for CD Charge-Dephasing Mode, 10 kW Race</td>
<td>kWh</td>
<td>3.4-11.6</td>
</tr>
<tr>
<td>Available Energy for CD Charge-Sustaining Mode, 10 kW Rate</td>
<td>kWh</td>
<td>0.6-3.3</td>
</tr>
<tr>
<td>Minimum Round trip Energy Efficiency (CS 50 Wh profile)</td>
<td>%</td>
<td>50-60</td>
</tr>
<tr>
<td>Cold cranking power at -30°C, 2 sec, 3 Peaks</td>
<td>kW</td>
<td>5-7</td>
</tr>
<tr>
<td>CD Life/Discharge Throughtput</td>
<td>Cycles/MWh</td>
<td>5,000 / 17</td>
</tr>
<tr>
<td>CS HV Cycle Life 50 Wh Pulse</td>
<td>Cycles</td>
<td>100,000</td>
</tr>
<tr>
<td>Calendar Life, 57°C</td>
<td>Year</td>
<td>9 - 11</td>
</tr>
<tr>
<td>Maximum System Weight</td>
<td>kg</td>
<td>60-120</td>
</tr>
<tr>
<td>Maximum System Volume</td>
<td>Liter</td>
<td>40-80</td>
</tr>
<tr>
<td>Maximum Operating Voltage</td>
<td>Vdc</td>
<td>480-640</td>
</tr>
<tr>
<td>Maximum Operating Voltage</td>
<td>Vdc</td>
<td>480-640</td>
</tr>
<tr>
<td>Maximum Self-discharge</td>
<td>Wh/kg</td>
<td>10-50</td>
</tr>
<tr>
<td>Maximum System Recharge Rate at 30°C</td>
<td>kW</td>
<td>1.4 (120V/150A)</td>
</tr>
<tr>
<td>Unusual Operating & Charging Temperature Range</td>
<td>°C</td>
<td>-30 to +65</td>
</tr>
<tr>
<td>Survival Temperature Range</td>
<td>°C</td>
<td>-65 to +166</td>
</tr>
<tr>
<td>Maximum System Production Price</td>
<td>$/100 Wh units</td>
<td>$1,700-5,000</td>
</tr>
</tbody>
</table>

Table 1. Energy Storage System Performance Targets for Plug-In Hybrid Electric Vehicles (January 2007)
Batteries for Electrified Vehicles

Electrified drive-train vehicles such as PHEVs and EVs with range-extenders are believed to be near-term technologies that are
- displacing significant petroleum use in the transportation sector
- diversifying energy sources for mobility

Advances in batteries are critical to realize green mobility technologies

DOE’s Energy Storage System Performance Targets for PHEVs

<table>
<thead>
<tr>
<th>Characteristics at EOL (End-of-Life)</th>
<th>Unit</th>
<th>Minimum PHEV Battery</th>
<th>Maximum PHEV Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Equivalent Electric Range</td>
<td>miles</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Peak Regen Pulse Power (10°/s)</td>
<td>kW</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Max Current (10 sec pulse)</td>
<td>A</td>
<td>100</td>
</tr>
<tr>
<td>Available Energy for CD (Charge-Depleting) Mode, 10-kW Rate</td>
<td>kWh</td>
<td>3.4</td>
<td>11.6</td>
</tr>
<tr>
<td></td>
<td>Cold cranking power at -30°C, 5 sec, 3</td>
<td>kW</td>
<td>2</td>
</tr>
<tr>
<td>Maximum System Weight</td>
<td>kg</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>Maximum System Volume</td>
<td>Liter</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>CD Life / Discharge Throughput</td>
<td>Cycles/MWh</td>
<td>5,000 / 17</td>
<td>5,000 / 58</td>
</tr>
<tr>
<td>CS HEV Cycle Life, 50 Wh Profile</td>
<td>Cycles</td>
<td>300,000</td>
<td>300,000</td>
</tr>
<tr>
<td>Calendar Life, 35°C</td>
<td>year</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Maximum System Production Price @ 100k units/yr</td>
<td>$</td>
<td>$1,700</td>
<td>$3,400</td>
</tr>
</tbody>
</table>
Multi-Scale Physics in Li-Ion Battery

Requirements & Resolutions

“Requirements” are usually defined in a macroscale domain and terms

- Wide range of length and time scale physics
- Design improvements required at different scales
- Need for better understanding of interaction among different scale physics
Multi-Physics Interaction

Comparison of two 40 Ah flat cell designs
2 min 5C discharge

working potential

working potential

electrochemical current production

electrochemical current production

temperature

temperature
Comparison of two 40 Ah flat cell designs
2 min 5C discharge

- Larger over-potential promotes faster discharge reaction
- Converging current causes higher potential drop along the collectors
- High temperature promotes faster electrochemical reaction
- Higher localized reaction causes more heat generation
Comparison of two 40 Ah flat cell designs
2 min 5C discharge

- Larger over-potential promotes faster discharge reaction
- Converging current causes higher potential drop along the collectors

Electrochemical current production

- High temperature promotes faster electrochemical reaction
- Higher localized reaction causes more heat generation

This cell is cycled more uniformly, can therefore use less active material ($) and has longer life.
Electrode-Scale Performance Model

Charge Transfer Kinetics at Reaction Sites

\[j^{Li} = a_s i_o \left(\exp \left[\frac{\alpha_a F}{RT} \eta \right] - \exp \left[-\frac{\alpha_c F}{RT} \eta \right] \right) \]

\[i_0 = k (c_e)^{\alpha_a} (c_{s,max} - c_{s,e})^{\alpha_a} (c_{s,e})^{\alpha_c} \eta = (\phi_s - \phi_e) - U \]

Species Conservation

\[\frac{\partial c_i}{\partial t} = D_i \frac{\partial}{\partial r} \left(r^2 \frac{\partial c_i}{\partial r} \right) \]

\[\frac{\partial (\epsilon c_e)}{\partial t} = \nabla \cdot (D_e^{\text{eff}} \nabla \epsilon) + \frac{1 - t^o}{F} j^{Li} - \frac{i_e \nabla t^o}{F} \]

Charge Conservation

\[\nabla \cdot (\sigma^{\text{eff}} \nabla \phi_e) - j^{Li} = 0 \]

\[\nabla \cdot (\kappa^{\text{eff}} \nabla \phi_e) + \nabla \cdot (\kappa_D^{\text{eff}} \nabla \ln c_e) + j^{Li} = 0 \]

Energy Conservation

\[\rho c_p \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + q''' \]

\[q''' = j^{Li} \left(\phi_s - \phi_e - U + T \frac{\partial U}{\partial T} \right) + \sigma^{\text{eff}} \nabla \phi_s \cdot \nabla \phi_s + \kappa^{\text{eff}} \nabla \phi_e \cdot \nabla \phi_e + \kappa_D^{\text{eff}} \nabla \ln c_e \cdot \nabla \phi_e \]

- Pioneered by Newman group (Doyle, Fuller, and Newman 1993)
- Captures lithium diffusion dynamics and charge transfer kinetics
- Predicts current/voltage response of a battery
- Provides design guide for thermodynamics, kinetics, and transport across electrodes
- Difficult to resolve heat and electron current transport
To expand knowledge of the impacts of *designs in different scales*, usages, and management on performance, life, and safety of battery systems.

Simply Work?

Extend model domain size up to cell scale to capture macroscopic design features, while maintaining model resolution to capture Li diffusion dynamics in electrode level scale ??? → huge computational complexity and cost
Approach

Multi-Scale Multi-Dimensional (MSMD) Model

- Captures macroscopic electron/heat transports, electrode scale Li diffusion dynamics/charge transfer kinetics in separate domains
- Physically couple the solution variables defined in each domain using multi-scale modeling schemes
- Runs in tolerable calculation time, practical for battery and system engineering design
"Poorly designed electron and heat transport paths can cause excessive spatial non-uniformity in battery physics, and then deteriorate the performance and shorten the life of the battery."

Objectives
Demonstrate the impact of macroscopic design factors on battery …
- **Performance**: B2 abs# 252 (Kim & Smith) ➔ This talk
- **Life**: B2 abs# 255 (Smith & Kim)
Nominal Design – 10C discharge for 30 sec

- Stacked prismatic design
- 140 x 100 x 15 mm³ form factor
- Tabs on a same side
- 20 Ah
- PHEV10 application

- 10C constant current discharge
- soc ini = 90%
- Surface and tab cooling
- h inf = 20 W/m²K
- Tamb = 30°C
- Tin = 30°C

V(t)
OCV(t)
evaluated from volumetric average of composition
Electrical Response – 10C Discharge

Current density field at metal collector foils after 30 sec discharge at mid-plane

Working potential between electrode planes after 30 sec discharge at mid-plane

Al foil

Cu foil
Electrical Response – 10C Discharge

Current density field at metal collector foils after 30 sec discharge at mid-plane

Working potential between electrode planes after 30 sec discharge at mid-plane

Large Overpotential
Thermal Response – 10C Discharge

Temperatures after 30 sec discharge

- $T_{ini} = 30.0 \, ^{\circ}C$
- $T_{avg} = 34.3 \, ^{\circ}C$
- $\Delta T = 2.3 \, ^{\circ}C$

Tini = 30.0 $^\circ$C
Tavg = 34.3 $^\circ$C
ΔT = 2.3 $^\circ$C
Electrochemical Response – 10C discharge

Discharge current density

SOC- \(\text{SOC}_{\text{avg}} \)

\[
\text{soc}(t) \quad [\%]
\]

\[
t \quad [\text{s}]
\]

average soc
maximum soc
minimum soc
Virtual Design Evaluation

Virtual Battery Design

Vehicle Design

Embedded Battery Model

Vehicle Simulator

Multi-Scale Multi-Dimensional Li-ion Battery Model

Vehicle Driving Profile

Battery Power Profile

Battery Responses

Feedback

National Renewable Energy Laboratory

Innovation for Our Energy Future
Alternative Cell Designs

Nominal Design
- 140 x 100 x 15 mm\(^3\)
- Tabs on a same side
- 20 Ah

Small Capacity (SC)
- 3 x (140 x 100 x 5) mm\(^3\)
- Same tab design
- 3 x 6.67 Ah
- Same electrode area/stack layer
- 1/3 thickness
- ~3x surface area

Thin and Wide (TW)
- 200 x 140 x 7.5 mm\(^3\)
- Same tabs
- 20 Ah
- 2x electrode area/stack layer
- 1/2 thickness
- ~2x surface area

Counter Tab (CT)
- 250 x 120 x 7 mm\(^3\)
- Wide-counter tab design
- 20 Ah
- ~2x electrode area/stack layer
- ~1/2 thickness
- ~2x surface area
Thermal Behavior Comparison

Battery Power Profile

mid-size sedan PHEV10 US06 drive

- 15-minute drive (CD + CS)
- $\text{soc}_{\text{ini}} = 90\%$
- Surface and tab cooling
- $h_{\text{inf}} = 20 \text{ W/m}^2\text{K}$
- $T_{\text{amb}} = 30^\circ\text{C}$
- $T_{\text{ini}} = 30^\circ\text{C}$
Temperature Imbalance during CD Drive

@ $t = 6$ min

Nominal

TW

CT

SC

@ $t = 6$ min

T_{avg}(t) [°C]

$\Delta T(t)$ [°C]

t [min]
Temperature Imbalance during CS drive

@ t=15 min

Nominal

TW

CT

SC

Nominal

@ t=15 min

SC

CT

TW

0 5 10 15 t [min]

36 38 40 42 44 46 48

0 5 10 15 t [min]

25 30 35 40 45 50 55

T_{avg}(t) [°C]

ΔT(t) [°C]

$T_{avg}(t)$ [°C]

$ΔT(t)$ [°C]

$T_{avg}(t)$ [°C]

$ΔT(t)$ [°C]
Ah Throughput Imbalance TW vs CT

Ah/m2

V_{oc} [V]

t [min]

V_{oc} vs t

Ah Throughput Imbalance

Ah/m2 vs XY

TW vs CT

National Renewable Energy Laboratory

Innovation for Our Energy Future
Summary

- **Nonuniform battery physics**, which is more probable in large-format cells, can cause unexpected performance and life degradations in lithium-ion batteries.
- A **Multi-Scale Multi-Dimensional model** was used for evaluating large format prismatic automotive cell designs by integrating micro-scale electrochemical process and macro-scale transports.
- **Thin form factor prismatic cell with wide counter tab design** would be preferable to manage cell internal heat and electron current transport, and consequently to achieve uniform electrochemical kinetics over a system.

Engineering questions to be addressed in further discussion include …
- **What is the optimum form-factor and size of a cell?**
- **Where are good locations for tabs or current collectors?**
- **How different are externally proved temperature and electric signals from non-measurable cell internal values?**
- **Where is the effective place for cooling? What should the heat-rejection rate be?**
Acknowledgments

Vehicle Technology Program at DOE
• Dave Howell

NREL Energy Storage Task
• Ahmad Pesaran