Historical Overview of Algal Biofuel Technoeconomic Analyses

DOE Algal Biofuels Workshop

Philip T. Pienkos
NREL

December 9, 2008

National Algal Biofuels Technology Roadmap Workshop

University of Maryland
NREL/PR-510-45622
You Are Here

Patents approved; prepare to collect royalties.

Sell stake to oil company.

Low cost feedstock becomes available; begin process development.

Algal biofuels make up significant proportion of renewable fuel portfolio.
Technoeconomic Modeling for Workshop

- Discussions began in August as part of workshop planning process (SNL/NREL/DOE)
- Work began in earnest with meeting at SNL in October (SNL/NREL/NMSU/CSU)
- Establish goal to capture and consolidate all publicly available algal biofuel models
- Use information to help guide roadmapping effort
 - Current state of technology
 - Identify known knowns, known unknowns, and unknown unknowns
 - Provide focus on critical path elements
 - Estimate time and cost to achieve technical milestones
Cast of Characters

- **NREL**
 - Al Darzins
 - David Humbird
 - Phil Pienkos

- **NMSU**
 - Pete Lammers
 - Meghan Starbuck

- **CSU**
 - Bryan Willson

- **SNL**
 - Katherine Dunphy-Guzman
 - Ray Finley
 - Geoff Klise
 - Len Malczynski
 - Ron Pate
 - Amy Sun
 - Cecelia Williams
Acknowledgements

These people did most of the heavy lifting, consolidating information from a variety of models and providing key slides for this presentation:

– **Amy Sun**
– Katherine Dunphy-Guzman
– Cecelia Williams
– Ron Pate
Algal Biofuels TE Modeling & Analysis

Near Term Purpose, Goals & Plans for Algae Roadmap Workshop

• Updated Presentation on Current Status of Algae Biofuels Techno-Economics
• Formulate key questions for workshop breakouts to inform TE modeling & assessment
• Conduct evening session at workshop on Algae TE Modeling & Analysis
 - present and elicit expert comment on strawman TE modeling / analysis purpose, goals, & approach
 - present and elicit expert feedback comments / suggestions on baseline systems/processes diagram
 - present and elicit expert comment on strawman list of system & process evaluation criteria/metrics
 - elicit initial expert evaluation of systems, processes, and pathways based on evaluation criteria/metrics

Longer Term Purpose, Goals and Desired Outcomes for Algae R&D Program

• Assess algal biofuel production scale-up potential, constraints, consequences, preferred paths
 - technical, economic, environmental, policy
 - comparative tradeoffs of alternative technologies/systems/processes pathways
• Understand and quantify impact(s) of proposed R&D strategies using key selected criteria or “objective function” metrics that can be represented as model parameters… use to inform and guide R&D investments and monitor performance of technology, process and applications development
• Project cost (& other performance metrics) of biofuel feedstock and/or biofuels production
• Project cost (& other performance metrics) of co-product feedstock or co-products production
• Inform policy decisions
Elements and Issues for Techno-Economic Assessment of Algae Biomass Feedstock, Fuels, & Co-Products

1. Siting & Inputs
- Geolocation/elevation
- Land characteristics
- Climate/Weather
- Solar Insolation
- Water Sources/issue
 - brackish
 - wastewater
 - produced
 - desal concentrate
 - marine
 - fresh
 - losses, re-use
 - salt build-up
- CO₂ Sources
 - power plants
 - cement plants
 - fermentation/other
- Chemicals/Materials
- Energy/Power Infrastructure

2. Algal Biology S&T
- Species
- Selection & Matching to Growth Conditions
- Characterization
- Performance
- Strain Improvement
- Biomass Growth & Oil Content Optimization
- Photosynthetic organism operation
- Heterotrophic organism operation
- Algae Pathogens, Predators, and Mitigations
- Operations, Monitoring & Maintenance

3. Cultivation Systems
- Photoautotrophic
 - Open Ponds
 - lined
 - unlined
 - raceway
 - wastewater treatment
 - Closed PBRs
 - horizontal tube
 - vertical tube
 - vertical planar
 - other

4. Harvesting & Dewatering
- Filtering
 - Flocculation/Settling
 - Airlift Flocculation
 - Centrifuge
 - Drying
 - Biological Assist
 - brine shrimp
 - fish
 - Other

5. Extraction & Fractionation
- Extract Processes
 - Solvent
 - Acoustic
 - EM
 - Other
- Separation/Fractionation
 - Membrane
 - Distillation
 - Centrifuge
 - Other
- Intermediate Products
 - TAG Oil
 - Other Lipids
 - Polar
 - Neutral
 - Carbohydrates
 - Proteins
 - Other Compounds
 - Water
- Direct secretion of EtOH or hydrocarbon fuel precursors into growth medium, avoiding Harvest & Dewatering steps

7. Policy & Regulatory
- Taxes
- Incentives
- Permitting
- Environmental Impact
- Health & Safety
- Algae Control & Regulation
- Other

8. Systems Integration & Interdependencies

6. Conversion Processes Biofuels, Co-products, & Services
- Conversion Processes
 - Biochemical
 - Thermochemical
 - Digestion
 - Hydrotreat/Refine
- Fuels
 - Biodiesel
 - Green diesel
 - Aviation
 - Gasoline-like
 - EtOH
 - Biogas/methane
 - Other
- Co-Products
 - Feed
 - Fertilizer
 - Chemicals
- Services
 - Carbon capture
 - Water treatment
Comparative TE analysis results depend on metrics used

- Minimize **Capital Costs** per unit of biofuel
- Minimize **Operating Costs** per unit of biofuel
- Maximize Biofuel **Production Yield**
- Minimize net **GHG Footprint** per unit of biofuel produced
- Maximize net **Energy Balance**
- Minimize net **Water Usage**
- Minimize **Land Footprint** per unit of biofuel produced
- Minimize **Time Required** to reach desired production volume
- Minimize **Investment** Needed to reach desired prod. volume

\[
\text{Total Production Cost $/gal}
\]
Precedent for DOE: H2A

• President Bush launched the Hydrogen Fuel Initiative in February, 2003 to help ensure U.S. energy security and to reduce greenhouse gas and other harmful emission.

• In response, DOE established the Hydrogen, Fuel Cells and Infrastructure Program
 – Set research priorities and make other important program direction decisions informed by sound analysis
 – Evaluate costs, energy and environmental tradeoffs
 – Consider various pathways toward a hydrogen economy.

• A review of the public information available in this area led to these conclusions:
 – Many excellent analyses had been conducted.
 – Many analyses of the same or similar routes to produce hydrogen appeared to yield different results. Principal discrepancies lie in the basis and assumptions used in the analysis.
H2A Objectives

- Establish a standard format and list of parameters for reporting analysis results for central production, distributed (forecourt) production, and delivery.
- Seek better validation of public analyses through dialog with industry.
- Enhance understanding of the differences among publicly available analyses and make these differences more transparent.
- Establish a mechanism for facile dissemination of public analysis results.
- Work to reach consensus on specific analysis parameters for production and delivery.
H2A Participants

Core Members
Daryl Brown: PNNL
Jerry Gillette: ANL
Brian James: Directed Technologies
Steve Lasher: TIAAX
Johanna Levene: NREL
Margaret Mann: NREL
Dan Mears: Technology Insights
Marianne Mintz: ANL
Joan Ogden: UC, Davis
Marylynn Placet: PNNL
Matt Ringer: NREL
Mike Rutkowski: Parsons
Harry Stone: Battelle
Michael Wang: ANL

Key Industry Collaborators
AEP
BOC
BP
Chevron
Eastman Chemical
Entergy
ExxonMobil
Ferco
Framatome
General Electric
Praxair
Stuart Energy
Thermochem
H2A Analyses

- Original source(s) of all the data (i.e., report title, authors, etc.)
- Basic process information (feedstock and energy inputs, size of plant, co-products produced, etc.)
- Process flowsheet and stream summary (flowrate, temperature, pressure, composition of each stream)
- Technology performance assumptions (e.g., process efficiency and hydrogen product conditions)
- Economic assumptions (after tax internal rate of return, depreciation schedule, plant lifetime, income tax rate, capacity factor, etc.)
- Calculation of the discounted cash flow (the calculation procedure is built into the standardized spreadsheet so that all technologies use the same methodology)
- Results (plant-gate hydrogen selling price and cost contributions in $/kg H2, operating efficiency, total fuel and feedstock consumption, and emissions)
- Sensitivity of the results to assumptions (e.g., feedstock cost, co-product selling price, capital cost, operating costs, internal rate of return, conversion efficiencies, etc.)
- Quantification of the level of uncertainty in the analysis
H2A Production Technologies

• Central Production of Hydrogen
 – Coal Gasification: Hydrogen Production
 – Coal Gasification: Hydrogen and Electricity Production
 – Natural Gas Hydrogen Production
 – Biomass Gasification Hydrogen Production
 – Nuclear Energy Hydrogen Production
 – Wind Electrolysis Hydrogen Production

• Forecourt Production of Hydrogen
 – Natural Gas Reforming
 – Electrolysis
 – Reforming of Ethanol sourced from biomass
 – Reforming of Methanol sourced from biomass
Source Material for TE Models

<table>
<thead>
<tr>
<th>Source</th>
<th>Authors</th>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NREL</td>
<td>Matt Ringer</td>
<td>2008</td>
<td>Analysis completed for this exercise</td>
</tr>
<tr>
<td></td>
<td>Bob Wallace</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phil Pienkos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMSU</td>
<td>Meghan Starbuck</td>
<td>2008</td>
<td>Analysis completed for this exercise</td>
</tr>
<tr>
<td></td>
<td>Pete Lammers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solix</td>
<td>Bryan Willson</td>
<td>2008</td>
<td>2nd Bundes-Algen-Stammtisch</td>
</tr>
<tr>
<td>Seambiotics</td>
<td>Ami Ben-Amotz, Israel</td>
<td>2007-2008</td>
<td>Algae Biomass Summit</td>
</tr>
<tr>
<td>Sandia</td>
<td>Ben Wu</td>
<td>2007</td>
<td>Analysis completed for this exercise</td>
</tr>
<tr>
<td>Bayer</td>
<td>Ulrich Steiner</td>
<td>2008</td>
<td>European White Biotechnology Summit</td>
</tr>
<tr>
<td>General Atomics</td>
<td>David Hazlebeck</td>
<td>2008</td>
<td>Algae Biomass Summit</td>
</tr>
<tr>
<td>California Polytechnic Institute</td>
<td>Tryg Lundquist</td>
<td>2008</td>
<td>Algae Biomass Summit</td>
</tr>
<tr>
<td></td>
<td>E. Belarbi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F. Fernandez</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. Medina</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y. Chisti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of California</td>
<td>John Benemann,</td>
<td>1996</td>
<td>PETC Final Report</td>
</tr>
<tr>
<td></td>
<td>William Oswald</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Standardized Cost Comparison

- Average = $109 USD/gal
- Variability is wide, Std. Dev. = $301 USD/gal

PER GALLON Triglyceride Production Cost

USD/gal

NREL
- current
- aggressive
- max yield

NMSU
- 1 acre, current vs. best
- 2,000 ha current vs. best

Solix:
- current, Phase I
- Phase II

General Atomics:
- low vs. high

Seambiotic/IEC:
- waste-heat coupling

Bayer:
- "WOS" PBR

Cal Poly:
- WWT+ algal oil

Sandia:
- pond vs. PBR

France,
- ground tubes vs. double tubes

Benemann (1996), 30g/m2/d
Benemann (1996), 60g/m2/d
NREL - current
NREL - aggressive
NREL - max
NMSU - 1ac, current
NMSU - 1ac, best
NMSU - 2000ha, current
NMSU - 2000ha, best
Solix - current
Solix - PI
Seambiotic/IEC, Israel
Bayer AG, "WOS"
General Atomics, low
General Atomics, high
Cal Poly, Case 1
Sandia - Raceway
Sandia - PBR
Molina Grima et al. (2003)
Tapie & Bernard (1987)
Inherent Assumptions Vary Widely

<table>
<thead>
<tr>
<th>SCENARIO</th>
<th>Reactor Type</th>
<th>Lipid yield (wt% of dry mass)</th>
<th>Areal Dry Algae Mass Yield (g/m²/day)</th>
<th>Loan Period (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benemann per ha basis</td>
<td>open pond</td>
<td>50%</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>Benemann per ha basis</td>
<td>open pond, max</td>
<td>50%</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>NREL Current Case</td>
<td>open pond</td>
<td>25%</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>NREL Aggressive Case</td>
<td>open pond</td>
<td>50%</td>
<td>40</td>
<td>15</td>
</tr>
<tr>
<td>NREL Maximum Case</td>
<td>open pond</td>
<td>60%</td>
<td>60</td>
<td>15</td>
</tr>
<tr>
<td>NMSU current yield</td>
<td>open pond</td>
<td>35%</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>NMSU highest yield</td>
<td>open pond</td>
<td>60%</td>
<td>58</td>
<td>20</td>
</tr>
<tr>
<td>Solix Current</td>
<td>hybrid</td>
<td>16% - 47%</td>
<td>0 - 24.5</td>
<td>unk</td>
</tr>
<tr>
<td>Solix Q2, 2009</td>
<td>hybrid</td>
<td>16% - 47%</td>
<td>30-40</td>
<td>unk</td>
</tr>
<tr>
<td>NBT, Israel Dunaliella</td>
<td>open</td>
<td>35%*</td>
<td>2</td>
<td>unk</td>
</tr>
<tr>
<td>Seambiotic/IEC, Israel</td>
<td>Best Yield</td>
<td>35%*</td>
<td>20</td>
<td>unk</td>
</tr>
<tr>
<td>Sandia Raceway&PBR</td>
<td>both</td>
<td>35%</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Bayer Tech Services</td>
<td>PBR</td>
<td>33%</td>
<td>52</td>
<td>10</td>
</tr>
<tr>
<td>Bayer Tech Services</td>
<td>PBR</td>
<td>33%</td>
<td>110</td>
<td>10</td>
</tr>
<tr>
<td>General Atomics</td>
<td>open/hybrid</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
</tr>
<tr>
<td>Molina-Grima et al.</td>
<td>26.2 metric ton/annum</td>
<td>75 0.8 m³ outdoor T-PBRs</td>
<td>10%</td>
<td>unk</td>
</tr>
<tr>
<td>Cal Poly, Case1</td>
<td>100 ha</td>
<td>wastewater treatment + digester</td>
<td>25%</td>
<td>20</td>
</tr>
<tr>
<td>Tapie & Bernard</td>
<td>10 ha</td>
<td>T-PBR</td>
<td>35%*</td>
<td>20</td>
</tr>
</tbody>
</table>

* Assumed quantity required to convert from weight-basis to oil-basis
• Cost Uncertainties dominated by uncertainties in Facility and Operating cost estimation.
• Land cost is either not considered or small in most sources relative to Total Capital Cost.
• Co-product credit does not reduce the overall uncertainty in cost estimation.
Cost Reductions (Solix)

<table>
<thead>
<tr>
<th>Production Metrics (current & near-term)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated PAR</td>
</tr>
<tr>
<td>Culture Density</td>
</tr>
<tr>
<td>Volumetric Production</td>
</tr>
<tr>
<td>(≈0.45 “typical” before depletion, ≈0.25 after)</td>
</tr>
<tr>
<td>Lipids (as FAMEs)</td>
</tr>
<tr>
<td>Areal Production</td>
</tr>
<tr>
<td>Production</td>
</tr>
<tr>
<td>Expected productivity by ’09 Q2:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gen 2 Operation</td>
</tr>
<tr>
<td>Gen 3 Operation</td>
</tr>
</tbody>
</table>

Slide used with permission of Dr. Bryan Willson
Conclusions

- Many things have changed since the last major push for algal biofuels
 - The price of oil has fluctuated wildly
 - Energy security is a real issue
 - Climate change is widely recognized as a significant threat
 - Real capital is being raised for algal biofuel commercialization
 - Not many more known knowns but a few more known unknowns

- Technoeconomic modeling is a critical element to determine:
 - Best estimate for current cost of algal biofuel production
 - Fastest road forward to commercialization

- The current state of technoeconomic modeling
 - Is more dependent upon assumptions than on data
 - Results in huge variations in cost estimates and uncertainty
Conclusions, continued

- Modeling for algal biofuel production is extremely complicated
 - Alternative approaches to cultivation, harvest, extraction
 - Different assumptions about input costs and byproduct values
 - Availability of essential resources (sunlight, land, CO₂, and water) vary significantly across the US and models must take these variations into account

- The H2A program for hydrogen production and storage can provide valuable insight and precedent for improved modeling

- The work initiated for this workshop is a step towards the development of a unified model that can be shared with all stakeholders to provide a common metric to measure progress towards the goal of commercialization of algal biofuels.