

National Fuel Cell Vehicle Learning Demonstration Nears Full Deployment

2009 National Hydrogen Association Conference

Keith Wipke, Sam Sprik, Jennifer Kurtz, Todd Ramsden¹, John Garbak²

April 2, 2009 Columbia, SC

NREL/PR-560-45608

¹NREL, ²US Dept. of Energy

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Fuel Cell Vehicle Learning Demonstration Project Objectives and Targets

•Objectives

- Validate H₂ FC Vehicles and Infrastructure in Parallel
- Identify Current Status and Evolution of the Technology
- Objectively Assess Progress Toward Technology Readiness
- Provide Feedback to H₂ Research and Development

Key Targets		
Performance Measure	2009	2015
Fuel Cell Stack Durability	2000 hours	5000 hours
Vehicle Range	250+ miles	300+ miles
Hydrogen Cost at Station	\$3/gge	\$2-3/gge

Photo: NREL

Industry Partners: 4 Automaker/Energy-Supplier Teams; Gen 2 Fleet Is Now Fully Deployed, Some Vehicles Retired

DOE Learning Demo Fleet Has Surpassed 85,000 Vehicle Hours and 1.9 Million Miles

Majority of Project's Fixed Infrastructure to Refuel Vehicles Has Been Installed – Examples of 4 Types

Total of 90,000 kg H₂ produced or dispensed

Stations added since June 2008: Burbank, Long Beach, Ardsley, LAX-east 20 stations now deployed through Dec.

Refueling Stations Test Performance in Various Climates; Learning Demo Stations Comprise ~1/3 of all U.S. Stations

National Renewable Energy Laboratory

Distribution of Average Ambient Temperature During Vehicle Operation

60 Public Composite Data Products Have Been Published; New Results and Updates Every 6 Months

Ranges of Fuel Economy from Dynamometer and On-Road Data Similar for Gen 1 & 2

Driving Range for Gen 1 and Gen 2 Vehicles: Based on Fuel Economy and Usable H₂

Improved Approach for Calculating Projected Time to 10% Voltage Drop for Stack and Fleet

FC Stack voltage & current polarization fit
FC Stack voltage decay estimate using robust, improved segmented linear fit

- instead of linear fit (follows non-linear decay trends & early voltage decay)
- 3. *Fleet* weighted average using FC Stack operating hour projections and weights (based on data and confidence in fit)

Note, 10% voltage drop is a DOE target/metric, not an indicator of end-of-life

Gen 1 Stack Operating Hours and Projected Time to 10% Voltage Drop

Stack Duty Cycle: Time Fuel Cell Spends at Various Voltage Levels Was Requested by FC Developers

Fuel Cell Stack Trips Per Hour Histogram Provided as Input to FC Durability Protocol Task Force

Average Trips/Hour as a Function of Stack Operating Hour

Comparison of FC System Specific Power and Power Density Between Gen 1 to Gen 2

Power Density Did Not Improve Between Gen 1 and Gen 2 (...same size or larger)

New Analysis of Vehicle Maintenance Data Highlights Areas for Improvement

Hydrogen Fueling Station Maintenance by System Shows ~Equal Responsibility of Major Components

Actual Vehicle Refueling *Rates* from 16,000 Events: Measured by Stations or by Vehicles

Refueling Rates by Year: Highest Number of Fills in 2008; ~1/4 Now Exceed 1 kg/min

Communication H₂ Fills Achieving 35% Higher Average Fill Rate than Non-Communication

Comparison of Fueling Rates for 350 and 700 bar Pressure Fueling Events

On-Site Production Efficiency from Natural Gas Reformation and Electrolysis Compared to Targets

On-Site Hydrogen Production Efficiency vs. Capacity Utilization

Learning Demonstration Vehicle Greenhouse Gas Emissions Using Actual Production Efficiencies and Fuel Economies

Summary

- Learning Demo evaluation is ~80% complete
 - 140 vehicles and 20 stations deployed
 - 1.9 million miles traveled, 90,000 kg H₂ produced or dispensed
 - 346,000 individual vehicle trips analyzed
 - Project to continue through 2010
- Many new technical results since last NHA presentation
 - All but 2 updated since last NHA
 - H₂ production efficiency, compressor efficiency, vehicle GHG emissions
 - 350 vs. 700 bar refueling rates
 - Several new FC stack usage statistics
 - Ambient temperature distribution
 - H₂ fueling station maintenance by system
 - Fuel cell vehicle maintenance by system
 - All new results live on web site today
- Roll-out of 2nd generation vehicles is now complete
- Station deployment nearing completion

Questions and Discussion

Project Contact: Keith Wipke, National Renewable Energy Lab 303.275.4451 keith.wipke@nrel.gov

All public Learning Demo and FC Bus Evaluation papers and presentations are available online at http://www.nrel.gov/hydrogen/proj_tech_validation.html