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Discussion Points

• Discussion of batteries vs. ultracapacitors for 
advanced vehicles 

• Simulation results of HEV fuel economy impact 
from reducing the storage system’s energy 
window 

• 15%-30% HEV fuel economy improvements with 
50-100 Wh ultracapacitors 

• Evaluation of lithium ion capacitors for HEV 
applications 

• Thermal evaluation of a high-voltage 
ultracapacitor module for start-stop applications 
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Strong Attributes of Ultracapacitors Potential Specific Use
High specific power and efficiency Engine assist

Efficient and fast charge acceptance Regen capture

Low resistance Lower cooling needs (less expensive)
Quick response (short time constant) Supporting engine transients

Long anticipated calendar and cycle life Fewer replacements (less expensive)

High specific power at low temperatures (cold starts) Smaller size and less expensive

Weak Attributes of Ultracapacitors Specific Use
Low specific energy Limited “durations” for power draw
High self-discharge Loss of functionality and balance at start 

Quick voltage variation More difficult to control
Low energy density Limited time for running auxiliaries at idle

High cost per unit energy Too expensive currently

The best use for Ucaps are strategies that make engines operate more efficiently 
(idle off, load leveling), frequent use capturing regen energy, and start-stop.

Strengths and Weaknesses of Ultracapacitors
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A Couple of Thoughts

• Taking advantage of an ultracapacitor’s strengths 
while minimizing the impact of its weaknesses to 
make its “value” competitive with batteries

• It should be for a specific application to show 
“value” in terms of “life-cycle cost”

— Fuel economy
— Replacement cost
— Life
— Durability and reliability
— Quality
— Functionality 
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Event How Much 
Energy Needed

Assist:20/30 kW constant power for 15/10 s 83.3 Wh

Accessory: 3 kW constant draw for 1 minute 50

Accessory: 1 kW constant draw for 1 minute 16.7

2% Grade going 35 mph for 1 minute Ŧ 70 Wh
4% Grade going 35 mph for 1 minute Ŧ 170 Wh 
US06 Driving Cycle * 155 Wh

UDDS Driving Cycle * 80 Wh

Ucap Is Energy Limited!
How Much Energy Is Needed for Various Events?

Prius has a 1.4 kWh NiMH battery but capacity is for life margin and warranty.
Vue mild hybrid has a 0.6 kWh NiMH battery.

•Total Energy (at wheels) calculated for 1520 kg vehicle (regen); 50% of energy in 
the cycle’s largest deceleration event
Cold-start capability is expected to dictate the size of batteries, but not the case for Ucap.

Ŧ Note: Engine provides propulsion up a grade, the estimate is for capturing regen 
to hold a 1520 kg vehicle speed going down a grade.
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Potential Use of Ultracapacitors in Light-Duty 
Electric-Drive Vehicles

NiMH and Li-ion: Yes
Ucap: Likely
Ucap + VRLA: Possible

Micro Hybrids (12 V-42 V: 
Start-Stop, Launch Assist)

Li-ion: Yes
Ucaps + high energy Li-ion : Possible 

Plug-in HEV (EV)

NiMH and Li-ion: Yes 
Ucaps: Likely if Fuel Cell is not downsized
Ucaps + (NiMH or Li-Ion): Possible

Fuel Cell Hybrids

NiMH and Li-ion: Yes
Ucaps: Possible 
Ucaps + (NiMH or Li-Ion): Possible

Full Hybrids (150 V-350 V:  
Power Assist HEV)

NiMH and Li-ion: Yes
Ucaps: Likely if engine is not downsized
Ucaps + VRLA: Possible

Mild Hybrids (42 V-150 V: 
Micro HEV Function + 
Regen)

15-25 Wh

25-70 Wh

60-150 Wh

60-150 Wh

5-20 kWh
(50-90 Wh*)

Min energy 
needed

* Energy for a Ucap in combination withLi-Ion 
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Analyzing the Impact of Energy 
Window on Power-Assist HEVs 

• Motivation: Investigate the relation between in-use energy window 
and fuel economy (a request from USABC/FreedomCAR)

• Approach: Simulate a midsize sedan with different component 
power levels and control settings for different drive cycles using 
PSAT 

Midsize Car 
Assumptions

Mass = 1675 kg
Engine = 90 kW
RESS/Motor = 30 kW
Elec accessories = 500 W
Mech accessories = 230 W

FA = 2.27 m2

CD = 0.30
Crr1 = 0.008
Crr2 = 0.00012

Simulated different ES energy content cases 
with the otherwise constant platform values

Constant 30 kW power changing P/E ratio

Smallest ES 
energy

Largest ES 
energy

W
h

Upper threshold

Target level

Lower threshold

Constant SOC-based controls (charge sustaining)

Changing Wh control window tolerance
Source: J. Gonder, Presentation to USABC, July 19, 2007
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Definition of ES Energy Window Use 
(for a drive cycle or event) 

Energy out for electric 
launch/assist
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RESS use indicated by slope of energy line

Energy return from 
charging/regen

“Energy window” defined 
by (max – min) for the 

particular cycle

(not “target window” from 
control strategy)

Charge sustaining 
over cycle

(no net energy use)

Energy Window Used ≤ Available Energy
Source: J. Gonder, Presentation to USABC, July 19, 2007
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US06 Cycle
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On City Cycle (UDDS), Large Fuel Savings 
Result from Hybridization 
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All the charge sustaining (CS) 
tests use windows <200 Wh
(for these vehicles and CS cycles)

Test data analysis seems to validate 
simulation finding of significant hybridization 

benefit in the 50-150 Wh range 

Vehicle Test Results: Battery Energy Use for 
Today’s HEVs under Various Drive Cycles

Prius and Escape Test Data: Tony Markel, NREL
Camry and Accord Test Data: Mike Duoba, ANL
Test Data Analysis: Jaehun Rhee and Jeff Gonder, NREL

Source: J. Gonder, Presentation to USABC, 
July 19, 2007
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2007 Mild Hybrid Dyno Data* Analysis 
Indicates <50 Wh Energy Use for Typical 

Driving—Already Reasonable Ucap Range
Driving Energy Analysis (UDDS cycle example)

Energy window

* Department of Energy-sponsored dynamometer testing
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Mild and Power-Assist Hybrids with Ucaps

• It is possible to use ultracapacitors (with available 
energy of 50-150 Wh) in power-assist HEVs with 
modest fuel economy improvements

— However, acceleration and passing on grade 
performance considerations could be limiting factors

• 15%-30% HEV fuel economy improvements with 
50-100 Wh ultracapacitors 

• A project is underway on a vehicle to demonstrate 
Ucaps in mild hybrids  

— To be discussed in future meetings
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Previous NREL Tests Have Shown That Combining 
Ultracapacitors Filters High Current Transients In Batteries

Source: M. Zolot (NREL Reports and 2003 Florida Capacitor Seminar)

Ultracapacitor module of 8 cells (up to 20V) and two 6.5Ah NiMH module of 14.4V 
(18V max). Ultracap module and battery pack were arranged in parallel to share the 
current load depending on internal impedance.
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• Overall, batteries in the hybrid pack 
experienced no currents larger than 
±40 A, while the batteries in traditional 
pack saw currents up to ±110 A.

• Up to 33% narrower battery SOC 
cycling range was observed in hybrid 
pack; this has the potential to increase 
battery life.

Parallel connection; no DC/DC converter
May not be practical to implement in vehicles.
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Advantages/Disadvantages of
Hybridizing Energy Storage (Ucap + Battery)

Advantages
• Reduced battery currents
• Reduced battery cycling range
• Increased battery cycle/calendar life (to 

what extent?)
• Increased combined power and energy 

capabilities
• Lower cooling requirements
• Better low-temperature performance
Disadvantages
• Complex control strategy
• Larger volume & mass
• Need for electronics for each system
• Increased energy storage cost
• Unknown side effects if directly coupled
• Any need for DC/DC converters adds 

even more cost and complexity
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+
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Source: Continental ISAD,  “New Energy 
Storage Concept,” Proceedings of AABC-04
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• JSR Micro contacted us to express interest in thermal 
characterization of their asymmetric capacitor

• JSR Micro claimed higher energy than C-C Ucaps with the 
same power capability

• We received 3 cells for characterization per USABC 
protocols

Thermal/Electrical Characterization of
JSR Micro Lithium Ion Capacitor (LIC)

Source: www.jmenergy.co.jp/en/product.html
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JSR Micro LIC Cell Characteristics

Cell 1 0.205 2.669 5.5" x 4" x 0.330" 1.58
Cell 2 0.205 2.669 5.5" x 4" x 0.330" 1.62
Cell 3 0.205 2.672 5.5" x 4" x 0.330" 1.6

Impedance (mOhms)
Cell Number 

(#) Mass (kg)
Voltage 
(Volts)

Dimensions 
(inches)

Nominal 2200 F
14 Wh/kg
3.8 V – 2.2 V Source: www.jmenergy.co.jp/en/product.html
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Infrared Thermal Imaging
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Thermal Image and Thermal Lines of 3 
LIC Cells – 100 A Discharge
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Thermal Characterization in NREL Calorimeter  
Lithium Ion Capacitor 2200 F Cells 

•Temperatures: +30˚C
• Profiles:  CC discharge cycles
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Electrical Characterization: 
Lithium Ion Capacitor Cells

• C/1, 10 C, 100 C, and HPPC Testing
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Expected Calendar Life of Typical Current EDLC Technology
Much Better Than Batteries if Stored at Low Voltages
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Thermal Evaluation: 
High-Voltage Ultracap Module

• Tested as part of USABC deliverable
• Eighteen (18) symmetric carbon-carbon ultracapacitors
• Tested under realistic conditions and operation
• Used different power profiles and chamber temperatures
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Thermal Evaluation: 
High-Voltage Ultracap Module

• Continuous US06 cycling for two hours 
• Balancing board did a good job equalizing cells
• Energy drain for balancing could be a concern
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Concluding Remarks
• Ultracapacitors provide opportunity for modest fuel savings in 

hybrid cars
— Idle-off: 5%-10% FE improvement and most likely to be implemented
— Mild and full hybrid: 15%-25% FE improvement, possible
— Plug-in hybrids: possible Ucap combined with batteries; cost??

• Competition from Li-ion is strong; ultracapacitors should 
provide “added value” to compete

— Low-temp performance
— Longer cycle and calendar life

• Asymmetric capacitors such as lithium ion capacitors have 
potential if power and cost are improved

• Thermal issues are important and must be taken into account to 
achieve the desired performance and life

• Lower cost is the key for increased market growth in automotive
• Micro and mild hybrids provide biggest opportunity for Ucaps in 

the short term; will be accelerated by new CAFÉ mandates
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