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ABSTRACT 
 
Based on the tank energy balance, net gain into the solar 
storage tank can be inferred from the time derivative of the 
average tank temperature. Using temperature at the tank 
wall under insulation as a surrogate for fluid temperature, 
sensor mounting is simple and the inferred gains are useful 
for solar water heater (SWH) diagnostics. Positive daytime 
gain is compared to solar gain computed from site-specific 
parameters for an assumed clear day. The solar storage tank 
loss coefficient is inferred from temperature decay at night, 
and is compared to the value computed from tank 
description. Larger draws are evident as sharp drops in 
storage temperature. Analyses are embodied in a tool 
validated against directly-measured gains. Inoperative 
single-family SWH are easily detected, signaling need for 
repair. Detection of system control issues and shading are 
exemplified. In large multi-family systems, frequent day-
time draws will bias the comparison to expected solar gain. 
 
1.  
 

INTRODUCTION 

Diagnostic monitoring is taken here as determination from 
short-term data if a solar water heater (SWH) is operating 
correctly. To be routinely applied, it should be inexpensive 
and easy, especially if intended for small domestic SWH. 
Many diagnostic methods exist based on the wide range of 
possible data and allowed expense (1,2); we focus here on 
improving a method based on the solar storage tank surface 
temperatures (3). Tank surface temperature can usually be 
easily accessed, and when insulated it is a good surrogate 
for the nearby fluid temperature. Significant temperature 
rise on some days shows that a SWH is operating. 
Quantitative analysis using the tank as a calorimeter can 
indicate how well the entire system is performing, by 

comparing measured gain to expected operation. In (3), 
daily total net energy gain computed from the tank 
temperature rise was compared to gain computed for site-
specific parameters under no-draw, clear sky conditions. 
However, there are often daytime draws, lowering net gain 
and biasing the comparison. In this paper, the inferred net 
gain and expected clear-day solar gains are compared 
dynamically as rates

 

 throughout the day. If draws are 
detected as low or negative dTtank/dt, then the comparison is 
not done using that period. This minimizes the effect of 
(unmonitored) draws on the comparison of net to expected 
solar gain, and increases the odds of getting some clear-
sky/no-draw conditions during the monitoring. 

The work here is different from previous studies using tank 
surface temperatures (4,5). In those methods, a system 
characterization was derived that allowed accurate 
projection of annual performance. Complete weather data 
including solar incidence is needed. The system must be 
isolated, with no draws. Here, weather data are not needed, 
and the system operates normally with draws. Compared to 
previous diagnostic methods (1,2), the method here is 
simple and low-cost. Compared to (2), this method has 
lower accuracy and diagnostic power. It can be implemented 
in controllers as a software option, notifying the owner 
when performance is sub-par. Another application is low-
cost, large-scale screening via mail-in procedures, locating 
malfunctioning systems to be repaired and yielding overall 
reliability data on systems. Combined with subsequent 
repair data from partnering refurbishment firms, component 
failure rates could also be determined. The analysis 
algorithms are developed in Section 2. The algorithms have 
been embodied in a spreadsheet available for download (6). 
The method is applied to both residential and multi-family 
SWH in Section 3, with conclusions in Section 4. 
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2.  
 

THEORETICAL BASIS 

The “tank-as-calorimeter” method presented here is based 
upon the energy balance shown schematically in Fig. 1. 
With the control volume taken around the tank, the 
instantaneous energy balance is: 
 
dQtank/dt = ∑idQi/dt = dQsolar/dt – dQloss/dt – dQdraw/dt.   (1) 
 
where Qtank is given as CtankTtank,avg, and Ttank,avg  is the 
capacitance-weighted average temperature, and Ctank is 
calculated as ρwtrcp,wtrVtank. Here, dTtank/dt is computed 
directly from differencing the tank temperature data. The 
choice of time step to compute the derivative is user-
controlled, useful to minimize noise when the data interval 
is perhaps too small. Tank loss is computed as  
 
dQtank,loss/dt = UAtank,est(Ttank,avg – Tenv).  (2) 
 
For a practical method, plumbing should not be breached. 
Here, the sensors are to be mounted on the surface of the 
tank, as indicated in Fig. 2. It is important that the sensor be 
under the tank wall insulation to keep its reading close to the 
tank fluid temperature. A simple resistor chain argument 
shows that the difference between the tank wall temperature 
and the tank fluid is typically < 0.1 oC, sufficient for the 
modest accuracy of the method here. Surface-mount sensors 
compared well with immersed sensors in (5). 
 

Tank Energy Balance

TT

Qdraw

Qinternal

Qsolar

.

.

.

Qinternal = Qsolar – Qdraw – Qloss

. . . .
Qinternal = Qsolar – Qdraw – Qloss

. . . .

Qloss

.

 
Fig. 1. Schematic tank energy balance and surface 
temperature measurement. 
 
In using the tank energy balance for calorimetry, the 
problem becomes how to separate the terms in the sum 
(Qsolar - Qloss - Qdraw). By taking dynamic data, times when a 
specific term is dominant can be separated in time, as 
illustrated in Fig. 3. Solar gains are evident as positive 
derivatives, and losses are evident at night. Draws are 
important, and it is clearly desirable to know when they are 
occurring. When the draw is significant compared to the 
tank’s thermal capacitance and the tank is well-mixed, the 
draw manifests as a sharp drop in Ttank,avg, as in Fig. 3 and in 
single-family data below. In most SWH in the U.S., flow 
rates on the tank side are large enough that the tank stays 

well-mixed. Draws can be undetectable at night when 
pumps are not mixing the tank. Draws will be often 
undetected in well-stratified, low-flow systems common in 
Europe, and the data may only show when the thermocline 
passes the sensor location. Draws can be undetectable in 
large multi-family systems where there are frequent draws 
that are in net smaller than the net solar gain into the tank. 

Surface Mount Detail

Tank wall
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Temperature 
probe

Leads
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jacketTank wall
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Temperature 
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Leads

Outer 
jacket

 
Fig. 2. The tank surface probe should be well-insulated.  
 
Table 1 shows expected accuracy of the flux inference. 
Accuracy of ~3% can be attained when Ttank,avg is accurately 
measured and Ctank is well-known (7). The key uncertainty 
is how well one or more surface temperatures represent 
Ttank,avg. In systems with high flow during solar operation 
that are typical in U.S. design, the tank is turned over 
rapidly (Vtank/mdot,tank <~1/hr and is reasonably well-mixed. 
In this case, a single surface temperature represents the 
average to within a few oC, implying about 10% accuracy at 
peak operation. Solar tanks can remain stratified during 
operation, however, as with low-flow systems in Europe 
where (Vtank/mdot,tank <~10 hr). Accuracy degrades severely 
in this case unless 3 or more probes are used.  
 

 
TABLE 1. ACCURACY OF TANK CALORIMETRY  

Measurement δTtank,avg  δQdot,tank/Qdot,tank 
Line-averaging RTD 0.5 oC 3% 

Surface temp, well-mixed 2 oC ~15% 
Surface temp, stratified ~20 oC ~ 100% 
3 Surface temp, stratified 2 oC ~15% 

 

Temperatures on Sunny Day with draws

0:00 6:00 12:00 18:00 24:00

Ttank Solar gain

Draws

Standby 
losses

 
Fig. 3. Schematic tank temperature vs. time, showing 
periods of solar gain, draws, and standby losses. 
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2.1 
 

Parameter inference 

Assuming no draw, Eqn. 1 implies that solar gains are 
dQsolar/dt = dQtank/dt + dQloss/dt. Losses are computed with 
the computed value of UAtank. Pump on/off times are taken 
as the first/last positive dTtank/dt. The tank loss coefficient 
UAtank is inferred from the tank temperature decay at night, 
when no draws are expected. The tank UA is calculated 
from the well-known expression: 
 
UAtank = Ctankln[(T(tbeg)–Tenv)/(T(tend)–Tenv )]/(tend–tbeg)    (5) 
 
where tbeg, tend are beginning and ending times of the decay. 
The user sets an invariant time window for analyzing decay. 
Tenv may be estimated, but it should be measured if more 
precision in inference is needed, as when one wants to 
detect night-time thermosiphoning. Tenv is particularly 
difficult to estimate when the tank is in a garage or other 
unconditioned space.  
 
2.2 
 

Comparison of inferred parameters to expectation 

Useful solar gain on a clear day is calculated as  
 
dQcoll,clr/dt=Acoll[Fr(τα)nKIAM(θ)Icoll.clr–FrUl(Tcoll,in–Tamb)] (4)  
 
where Fr(τα)n/FrUl are the measured collector gain/loss 
coefficients in the well-known collector efficiency equation. 
These values have to be corrected for off-test flow rate, 
series array configuration, piping losses, and heat exchanger 
penalty, as described in (7). These corrections are typically 
not large for small-scale systems, but can become important 
for large, multi-family systems, especially the piping loss 
term. An example is shown in Section 3.3. Table 2 lists 
inputs and data sources for the calculations used here. 
 
Icoll,clr-day  depends on site latitude, longitude, elevation, and 
collector orientation. Calculations here use the methods laid 
out in (8), based on correlations for beam and diffuse 
transmission. Correlation coefficients are gross space-time 
averages, limiting accuracy. Calculations have been checked 
against clear-sky data, and are considered accurate to about 
±10%. If Icoll is measured, that data could be used rather 
than the estimated clear-sky value. Tcoll,in is taken as Ttank,meas 
when the tank is well-mixed. It can be hard to estimate in 
stratified tanks when a single mid-tank probe is used (three 
probes mid/hi/low are best for stratified, low-flow cases, 
with the low sensor taken as Tcoll,in. Computation of Tmains-in 
is provided, so formulae averaging it with the measured Ttank 
can be tested. Tamb for calculating useful energy gain is 
generally not measured; in the tool here one can linearly 
interpolate Tamb from estimates of Tamb,max and Tamb,min. Tamb 
data can be used directly if available. ρgrd is typically set to 
0.2 for grassy foreground or asphalt, 0.3 for concrete, and 
0.8 when fresh snow covers the ground. 

 
TABLE 2:  ANALYSIS INPUTS 

Symbol Parameter Definition Data Source 
System/site/test Inputs  

Acoll  Collector area Label1/Obs2 

Frτα Optical gain constant  Label/SRCC3  
FrUl  Loss coefficient  Label/SRCC 
bo  Constant in IAM formula Label/SRCC 

Vtank  Tank Volume Label/obs 
Htank  Tank Height Obs/spec 
Rtank  Tank insulation R value Specs/obsrv 
θ Collector tilt & azimuth Obs 
L Longitude Map 

Lat Lat Map 
Tamb,high/low  Test lo/hi daytime temps Met data/obs 

ρgrd  Foreground reflectivity See text 
Tamb,month,high/low Monthly average 

min/max ambient temp 
Met data, 
local obs 

Data reduction inputs 
(dTtank/dt)min  Minimum dTtank/dt for 

solar gain analysis 
Trial and error 

tbeg , ∆tUA UA analysis window Trial and error 
∆Tmin  Min. ∆T for UA analysis  Trial and error 

1) Label on the collector often lists collector parameters. 
2) Obs = observation at the site 
3) Solar Rating and Certification Corp., at www.solar-rating.org 
 
The expected values of pump on/off times are taken as the 
start/end of the period where dQcoll,clr/dt is positive. No 
deadbands are accounted for. Inferred values of UAtank are 
compared to expectation based upon 1-D calculation. Utank 
is taken as kins/Lins. The tank surface area Atank is calculated 
based on inputs for Vtank and Htank assuming a cylindrical 
tank. Because of typical uninsulated thermal shorts (piping, 
supports), the actual U value is expected to be ~2X that of 
this simple estimate. Reverse thermosiphoning would show 
up as UA values much larger than this. It would be possible 
to gain further resolution of reverse thermosiphoning by 
valving off the collector for one night to establish the 
baseline for nighttime losses, then differencing that with 
results including the collectors.  
 
 
3. 
 

EXAMPLES: VALIDATION AND DIAGNOSTICS 

The methods above have been embodied in a spreadsheet 
tool available for download (6). In this section, the tool is 
used to analyze data from three different projects.  
 
3.1 
 

Building America test house: method validation  

Detailed data from a residence in Colorado are being 
acquired under the Building America Program (9), and those 
data were used to validate the method. System 
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instrumentation is shown in Fig. 4. Because solar gain was 
measured, the solar gain inferred from tank calorimetry can 
be compared directly. Measured Tenv and Tamb were used in 
the results shown here. Hourly data were used here.  
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Fig. 4. Instrumentation schematic in the Solar Row #2. 
 
Tank sensors were mounted under the insulation on the 
outside surface of the unpressurized pre-heat tank near 
bottom and top of the tank. The tank is well-mixed when the 
solar loop is operating, as shown in Fig. 5. When the solar 
pump is off and there is no space heating or draw, the tank 
bottom decays more rapidly than the top of the tank. 
Possible causes include: convection currents off the tank 
sides/thermal shorts, ground thermal shorts at bottom 
supports, or small night thermosiphoning (although flow at 
night always read zero in the storage-side heat exchanger 
loop). When the pump is off and there is space heating, the 
top/bottom sensors converge, diverging again when the 
space heat is turned off. Similar behavior is indicated upon 
large draw. It is believed that this mixing is caused by 
apparently-strong convection currents set up when there is a 
large heat extraction from the tank. 
 
In Fig. 6, the predicted solar gain (yellow curve) is 
compared with the inferred solar gain (blue circles) over 
eight days corresponding to Fig. 5a. It can be seen that some 
days (2nd day), there are no measured points (indicative of 
irradiance too low to start pumps), and partly-cloudy days 
show gain below the clear-day values. Predictions vary in 
peak height (e.g., clear-day curve for day 2 lower than clear-
day curve day 3) because the collector inlet temperature 
(taken as the lower of the tank sensors) varies, which causes 
efficiency and net solar to vary. The 5th and 6th days are 
clear days, and the model and measurement agree very well. 
 
Measured solar gain is computed as flow-∆T across the 
tank-side heat exchanger loop. This value is compared with 
the inferred gain CtankdTtank/dt + dQloss/dt in Fig. 7. It can be 
seen that the correlation is good. For all data, the regression 

line for inferred gain CtankdTtankdt vs. direct measurement of 
the gain as flow*∆T has slope of .9 and R2 ~.8. 
Disagreement is expected due to neglect of system mass, 
undetected draws, and errors in tank loss calculations. These 
data validate that tank surface temperature data is 
sufficiently accurate for inferring fluxes in the tank.  
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Fig. 5. Summer (top) and winter (bottom) Ttank in Solar Row 
Unit #2. Draw and space heating flows are also shown. 
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Fig. 6. Predicted clear-day solar gain (yellow curve) vs. the 
measured solar gain (blue circles).  
 
UAtank is shown for the entire data set in Fig. 8. Measured 
Tenv data was used. It can be seen that during summer the 
inferred UAtank is quite close to the estimated value based 
upon a 1-D calculation, validating the UA inference. It is 
unusual to have agreement this close, due to un-insulated 
thermal shorts (piping/valving). Typically, the measured UA 
is ~2X the 1D estimation. The result here indicates that the 
thermal shorts are reasonably well-insulated. Note that 
during winter, the UA calculations will usually include 
periods with space heating load, so anomalously-large UA 
values result, as seen in Fig. 7. 
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Solar Gain (2 methods) vs. Time
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Fig. 7. Solar gain as measured by Ctank∆Ttank  and as 
Flowhx∆Thx vs. time. Good agreement is seen. 
 
3.2 
 

SWH diagnostics in New York 

Temperature and inferred flux for four days of data for a 64 
ft2 residential system are shown in Fig. 9. These data alone 
indicate functioning energy delivery: the unit warms up 
significantly on some days. Only two draws appear, both in 
the morning. Fig. 10 shows observed vs. calculated gain. 
Flux comparisons indicate that the unit is gathering most of 
the expected energy. Fig. 11 indicates inferred and 
calculated pump on/off times. The inferred start times on the 
first two days correspond reasonably to predicted values. 
Days 3 and 4 are evidently cloudy, but show shut-down 
close to expected times. By comparing rates, 38 data points 
were attained, as opposed to essentially 2 points using the 
daily total method in (3). With rate comparisons, good 
conclusions can be reached with only several days of data; 
one day of data under mostly-clear conditions is sufficient in 
the extreme. 
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Fig. 8. Tank UA on successive nights, with value during 
summer near the 1-D calculation.  
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Fig. 9. Temperature and solar flux (computed and 
measured) for 4 days for a small system in New York. 
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Fig. 10. Measured vs. predicted solar flux for a residential 
system in upstate New York. 
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Fig. 11. Pump start/stop times, predicted and inferred. 
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A large SWH at Saranac Lake, NY on a 9-story multi-
family building was monitored, with schematic in Fig. 12, 
and collectors and tank shown in Fig. 13. The system has 48 
4X8 collectors (Anet = 1368 ft2) in 8 strings in series and up 
to 8 collectors in a single string. The pressurized storage 
volume is 1389 gal. The piping run is about 250 ft. A 
schematic of the system is shown in Fig. 12. It is a glycol 
system with external doubly-pumped load-side heat 
exchanger. This case illustrates that the method applies to 
large-scale systems. However, there are additional issues 
with frequent, relatively-small daytime draws that reduce 
accuracy (unless draw data are taken), and piping runs in 
large systems that significantly impact losses. 
 

∆ctrl

Heat exch.

Cold inlet

Hot outlet

Solar Storage Tank

Collectors

TT

T

TT

TT

TT

SS
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Fig. 12. Schematic of the Saranac Lake SWH. Temperatures 
are indicated by “T”, status with “S”. The red temperature 
sensor on right side of tank wall was used for calorimetry. 
 

Collectors

Tank

 
Fig. 13. Saranac Lake SWH. Top: Tank in the basement, 
showing logger/sensor position. Bottom: one string of six 
collectors in parallel on the roof. 
 
Collector gain and loss coefficients as printed on the 
collector labels are given in Table 4. The multipliers for the 
off-test flow rate, series connections, piping, and the heat 
exchanger penalty (8) are also shown in the table. εhx was 
estimated at 0.5. The largest correction is a factor of 1.72 for 
piping. The corrections reduced the gain by 10% and 
increased the losses by 84%. The system corrections to 
collector parameters are especially important for large 
SWH.  

 
TABLE 4: CORRECTIONS TO SOLAR GAIN 

Gain: 
orig.1 

Loss: 
orig2 

Fflow
1 

[-] 
Farray

1 
[-] 

Fpipe
1 

loss 
Fpipe

1 

gain 
Fhx

1  Fgain: 
corr1,3 

Floss: 
corr2,3 

.781 .8 1.01 0.95 1.72 .995 .91 0.712 1.26 
1) Unitless; label value 
2) Units of Btu/hr-ft2-oF; label value 
3) Corr = Correction after applying the four factors. 
 
Fig. 14 shows the tank temperatures and solar gains for an 8 
day stretch during Oct. 2008. The temperature data show a 
clear rise mid-day on four of the days. The corresponding 
solar gain is shown as blue circles in the bottom part of Fig. 
14. It can be seen that the collected energy is ~60% below 
the expectation. Fig. 15 shows the pump start/stop times. 
The inferred values indicate late start-up each morning. 
Piping/fluid mass warmup and consistent morning clouds in 
the cloudy area could both be factors. 
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Fig. 14. Tank temperature and solar flux (computed and 
measured) for 8 days for a large system in New York. 
 
Additional data channels can help to resolve uncertainties 
that arise from using a single sensor. The channels shown in 
Fig. 12 in black font were installed to help explain the 1-
channel calorimetry data, data shown in Fig. 16. The tank 
data clearly show that the tank is well-mixed once the heat 
exchanger pump turns on. This was surmised based upon 
the specified 50 gpm flow rate at the heat exchanger (~2.3 
turnovers/hr). The data also indicate that there were draws 
all day long, because Tmains never rose above 40 oF. Only for 
~2-5 AM did Tmains show any rises toward Tenv. Draw 
energy lowers net energy, so its effect is indistinguishable 
from “low” Qdot,solar. There are few times without draws and 
they cannot be seen as discrete events, as occurs with draws 
in single-family data, reducing accuracy. With large, multi-
family systems, draw flows should be monitored and 
subtracted out of the energy balance, if a valid comparison 
with the expected solar gain is desired. 
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Fig. 15. Pump start/stop times (inferred and calculated) for 
the Saranac Lake multi-family SWH. 
 

 
Fig. 16. Multi-channel data for one day on the multi-family 
Saranac Lake SWH. 
 
3.3 
 

SWH Field Testing using tank as calorimeter 

Field monitoring was conducted on ten installations of a 
new SWH to detect and resolve any malfunctions (10). 
Inoperative systems were easily detected in two cases, as 
Ttank(t) never fluctuated more than a few oC. The circulation 
system failures were identified and fixed, with appropriate 
changes in the system manuals. In cases where pumps run 
appropriately but there is no actual flow, one can be fooled 
into thinking the SWH is functioning properly.  
 
Fig. 17 shows data from a properly-operating system. The 
temperature data show that the system is collecting energy 
properly. However, the flux data in Fig. 17b shows that the 
system energy collection is quite low in morning. Fig. 18 
shows that the pump operates as expected, pointing to 
morning shading issue; this can also be seen directly in the 
temperature data in Fig. 17a, evident as the relatively slow 
temperature rise in the mornings.  
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Fig. 17. Tank temperatures (top), and measured and 
computed clear-day net power to tank (bottom) for SWH #9. 
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Fig. 18. Pump start/stop times for SWH #9.  
 
Data on several of the systems showed unexplained early 
shut-down of the pump. Two examples are shown in Fig. 
19, where shutdown appears early every day. This behavior 
is being investigated, possibly related to the collector outlet 
temperature sensor being “glued” to the roof near the 
collector, rather than stably fixed under insulation on the 
outlet manifold. 
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Fig. 19. Pump start/stop times for two SWH in Florida.  
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4.  
 

CONCLUSIONS  

The simple calorimetric method here appears useful for 
diagnosing SWH operations. It works well when the solar 
tank is well-mixed during solar operation, so that the 
measurement at one point on the wall represents the average 
tank temperature. With highly-stratified systems, multiple 
sensors must be used to get a more-accurate measure of 
Ttank,avg. An available spreadsheet tool (6) was developed 
that embodied the analysis method. The method was 
validated with direct solar gain data, with high correlation 
between direct and inferred solar gain (R2=0.8). 
Malfunctioning systems are easily detected because 
fluctuations in Ttank are very low. Shading and control issues 
with operating systems can be detected. The method could 
be embedded in controllers for continuous diagnostics, and 
could be used in a large-scale program to identify non-
performing systems and gather reliability data. 
 
Future software work includes: i) producing a user-friendly 
version of the software if there is sufficient interest; ii) 
investigating large-scale mail-in projects in collaboration 
with SWH maintenance and repair firms; and iii) potential 
collaboration with controls manufacturers. 
 
 

 
5. NOMENCLATURE 

A Area 
Symbols 

cp Heat capacity at constant pressure 
C Capacitance of tank (water + walls + instruments) 
F Heat removal factor of the collector 
K Incidence angle modifier 
Q Thermal energy 
t Time 
T Temperature 
U Unit area conductance 
α  Short-wave absorptivity of the absorber 
∆  Difference 
ε Effectiveness of the heat exchanger 
θ  Orientation vector (embodies both tilt and azimuth) 
τ Transmission of the glazing(s) 
 

amb Ambient  
Subscripts 

avg Average 
beg Beginning of a time interval 
clr Clear day, assumed for expectation calculations 
coll Collector 
dot Denotes time derivative of the variable 
end End of a time interval 
env Environment of the tank 
hx  Heat exchanger 
i Index for data points 

IAM Incidence angle modifier 
loss Loss from the tank walls 
mod Model 
n Normal to the collector plane 
r Heat removal 
tank Solar storage tank 
useful Useful energy exiting the collector 
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