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SUMMARY 
 

A number of studies relating to the fundamental operation of CIGS and CdTe solar cells 

were performed during the Subcontract period, and we have worked closely with industrial, 

university, and NREL partners to evaluate specific cells.  In addition, we have expanded 

our LBIC (light-beam-induced-current) capabilities and the formalism needed to evaluate 

spatial non-uniformities, and we have analyzed the effective efficiency to be expected from 

commercial thin-film modules. 

 

The fundamental work on CIGS cells included a detailed analysis of grain-boundary effects 

using two-dimensional modeling.  It showed that the relatively benign effects observed are 

best explained by a decrease in the valence band edge in the vicinity of the grain boundary.  

A second project, which followed earlier work relating spatial grading of CIGS to 

performance, showed the increasing importance of an electron reflector at the back of the 

CIGS absorber as it is made progressively thinner.  A third project generalized earlier work 

on the window/absorber conduction band offset to show that there is a general rule 

governing when a “spike” leads to a distortion of the current-voltage curve. 

 

The CdTe studies included calculations of what could be done to increase voltage above 

current levels, the analytical consequences of small absorber lifetimes, and an explanation 

of how different combinations of absorber lifetime and back-contact barrier lead to 

different common features seen with CdTe cells.  Additional projects extended stability and 

uniformity studies to focus on performance differences among cells with various back 

contacts and yielded a reasonably convincing explanation of the 1.456-eV 

photoluminescence peak from CdTe as a copper-oxygen donor complex about 150 meV 

below the conduction-band minimum. 
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INTRODUCTION 
 

The work reported here embodies a device-physics approach based on careful 

measurement and interpretation of data from CuIn1-xGaxSe2 (CIGS) and CdTe solar cells.  

The project goals have been to (1) reliably and quantitatively separate individual 

performance loss mechanisms, (2) expand the tools available for such measurement and 

analysis, (3) refine the physical explanations for performance losses, and (4) suggest 

fabrication approaches or modifications that can reduce these losses.   

 

The experimental and analytical work for this project was largely done by a dedicated 

group of research students.  The eight students who completed their PhD degrees during 

the Subcontract period have all actively contributed to the photovoltaic community since 

their graduation: 

Alex Pudov, Nanosolar (CIGS) 

Markus Gloeckler, First Solar (CdTe)  

Samuel Demtsu, SoloPower (CIGS), PrimeStar (CdTe) 

Caroline Corwine, Advent Solar (thin Si) 

Tim Nagle, CSIRO Australia (dye sensitized) 

Ana Kanevce, NREL (HIT, multijunction III-V) 

Jun Pan, CSU (CdTe, CIGS) 

Alan Davies, AVA Solar (CdTe) 

The titles of their theses, the other students involved, and the Subcontract publications 

and presentations are all listed in the final section of the report.  In addition to the new 

group of PhD scientists, we are very pleased that former PhD graduates Ingrid Repins 

and Jennifer Granata have now joined the photovoltaic programs at NREL and Sandia 

respectively. 
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BASIC CIGS STUDIES 
 
CIGS Grain Boundaries.  Probably the most important CIGS subcontract project was 

the calculations to show why grain boundaries in CIGS cells are sufficiently benign to 

allow the large voltages and efficiencies observed.  Markus Gloeckler, in collaboration 

with Wyatt Metzger at NREL, modeled the CIGS grain boundary (GB) by a thin layer 

located between two uniform regions of CIGS material.  The results summarized here 

were published in the Journal of Applied Physics 98, 113704 (2005).   

 
Figure 1 below shows the basic structure used for simulation of vertical GBs.  The mesh 

spacing used for numerical solutions of the Poisson equation was varied so that it is finer 

in regions where rapid changes in parameters are expected.  The GB region was modified 

in various ways, but a baseline three-layer (ZnO/CdS/CIGS) structure was assumed 

otherwise, and the GB differed from the surrounding material only by the presence of 

additional defects or by an expansion of the band gap.  The results were not sensitive to 

the width of the GB layer so long as it is in the range of 2 to 50 nm.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Simulation mesh used for CIGS vertical grain-boundary calculations. 
 

Three physical types of columnar GBs, as well as combinations, were considered: an 

increased density of defects at a neutral GB, a charge sheet at the GB, and an expansion 
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of the valence band in the GB region.   In all cases, a spacing of 1 micron between GBs 

was assumed.  In the first case, the GB recombination velocity Sgb was used as the 

primary parameter.  The simulation results in Fig. 2 show a decline in all parameters, but 

the most dramatic is in voltage.  The conclusion is that Sgb must be the order of 1000 

cm/s or less for neutral GBs to be benign.  This would imply nearly complete passivation, 

which seems unlikely for GBs in CIGS.  The results shown in Fig. 2 are in good 

agreement with those of Taretto et. al. [Thin Solid Films 480-481, 8 (2005)]. 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

Figure 2.  Effect of neutral GB recombination on columnar GBs.  Lower limit of Sgb 
is the absence of GBs. 

 

The second GB possibility explored was a sheet of positive charge, and hence a potential 

φgb, created by GB defects.  This scenario is appealing, because it implies hole repulsion 

from the GB region, and hence larger current collection.  In fact, we predict a current 

increase of as much as 4 mA/cm2 for charge potentials above 0.4 eV.  The counterpoint, 

however, is that as the GB potential is increased, the quasi-Fermi levels for electrons and 
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holes become closer to each other, or equivalently, there is an increasing region where n 

and p approach the same order of magnitude.  This situation will substantially increase 

forward recombination and reduce the open-circuit voltage.  Physically, the same 

potential that assists collection by channeling the photogenerated electrons and holes will, 

in forward bias, provide channels for electrons and holes to flow in the opposite direction, 

allow greater recombination, and hence increase the forward current and reduce VOC. 

 

The dual effects of the charge potential on collection and forward-current enhancement 

are shown in Fig. 3.  The top reference line is the baseline with no GBs.  The lower 

reference line corresponds to a GB recombination velocity Sgb of 105 cm/s and no charge 

potential.  As φgb increases, the voltage (upper left) goes down and somewhat later the 

current (upper right) goes up.  The fill-factor (lower left) changes very little.  The 

combined effect on efficiency (lower right) is an initial decrease from the neutral 

recombination value and a latter increase as the collection effect becomes significant.  

Efficiency, however,  never approaches the GB-free, or GB-benign, condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Current-voltage parameters as a function of GB charge potential assuming 

Sgb is 105 cm/s. 
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The possibility of a valence-band expansion near CIGS GBs was the third major scenario 

considered.  There is both experimental [Hetzer et.al., APL 86, 162105 (2005)] and 

theoretical [Persson and Zunger, PRL 91, 266401 (2003)] evidence for such an increase 

as a result of copper depletion near CIGS GBs.  As implied in Fig. 4, holes will be kept 

away from the GB, but additional electrons near the GB that would enhance the forward 

current will not be present.  The simulated results for the solar-cell parameters are shown 

in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
 
 
Figure 4.  Current-voltage parameters as a function of valence band expansion ΔEV. 

 
The two reference lines from Fig. 3 are also used in Fig. 4.  In this case, the voltage and 

fill-factor increase significantly as the valence-band hole barrier is increased until they 
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saturate at the GB-free values for ΔEV greater than 0.3 eV.  When ΔEV = 0, voltage and 

fill-factor vary significantly with Sgb, but as ΔEV is increased, they converge to the GB-

free value of Sgb and yield very nearly the GB-free efficiency.  The current is always 

slightly lower, because fewer electron-hole pairs are generated in the expanded band-gap 

region near the GBs, but the net result is high efficiency. 

 

If there is both a charge sheet and an expanded band gap at the GB, the ΔEV curves in 

Fig. 4 are modified, but only slightly, by the charge sheet.  Hence, the expanded band gap 

is the likely explanation for the benign character of grain boundaries in CIGS solar cells, 

and the degree of neutral-GB recombination and magnitude of the charge potential are 

predicted to play relatively minor roles. 

 

Thin CIGS Absorbers.   There are several advantages to reducing CIGS absorber 

thickness.  However, one would generally expect the efficiency to decrease at smaller 

absorber thicknesses.  Several groups have shown this to be the case for CIGS cells 

[Negami et al, Proc. 2nd WCPEC (1998) p. 1181; Lundberg et al, Prog. Photovoltaics 11, 

77 (2003); Ramanathan et al, Proc. 4th WCPEC (2006) p. 380].  Simulations carried out 

by Ana Kanevce (Fig. 5) showed decreases in the solar-cell parameters at small 

thicknesses.  Her baseline case is based on Ramanathan’s 1-µm result and is shown with 

circles.  The minority-carrier lifetime in the absorber was taken to be 1 ns and the hole 

density 2 x 1016 cm-3.  At thicknesses less than 1 µm, all three solar-cell parameters 

decrease, and the rate of the decrease becomes steeper for thickness below 500 nm.  

 

The calculated performance with an order of magnitude lower lifetime (squares in Fig. 5) 

has lower efficiency at 1-µm and higher thicknesses, but a less pronounced thickness 

dependence except at the extremely low thicknesses (< 400 nm).  Variations in minority-

carrier lifetime affect thicker devices more strongly than thin ones due to their larger 

recombination volume.  A smaller hole-density (dots in Fig. 5) also decreases the voltage, 

but it increases the current by about the same fraction.  Below 500 nm, the calculated 

efficiency is be nearly independent of lifetime and hole density. 
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Figure 5. Calculated impact of absorber thickness on high-efficiency cell parameters 
(circles).  Corresponding results with reduced lifetime (squares) and reduced carrier 
density (dots) also shown. 
 
Earlier, Gloeckler and Sites [J. Appl. Phys. 98, 103703 (2005)] showed that a key 

strategy for CIGS cells with absorber thicknesses below 1 μm is to limit back-contact 

recombination, which can be accomplished by an appropriate choice of back-contact 

material, surface modifications, or inclusion of grading in the Ga to In ratio.  Fig. 6 shows 

that the inclusion of a simple electron reflector should substantially increase Voc for thin 

devices.  The electron reflector reduces the dominant minority-electron recombination at 

the back contact by keeping electrons away from it.  

 

The dashed lines in Fig. 6 are for a constant band-gap absorber, and are similar to the 

baseline circles in Fig. 5.  As seen in Fig. 6, efficiency is increased to essentially the same 

curve whether the reflector is formed by a band-gap expansion (increased Ga) localized 

at the back contact, or whether band-gap grading is spread over half or all of the absorber.  

(There is, however, a tradeoff between current and voltage when the average band gap is 

increased.)  The recombination rate should be reduced by the same factor as the 

suppression of electron concentration, exp(−∆E Ba/kT), where ∆E Ba is the band-gap 
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increase at the back contact.  A back grading with a band-gap increase greater than 0.2 

eV reduces recombination by a factor greater than 103.  In this situation, Voc is again 

limited by bulk recombination, and a larger barrier height does not further increase 

efficiency.  As the absorber is thinned, the bulk volume and hence the bulk recombination 

decreases, and Voc may actually be larger than that of thick devices. 

 
Figure 6.  Performance parameters for the three grading profiles in comparison 

with an ungraded absorber (dashed line).  ΔEBa = 0.2 eV. 
 

Another aspect of thin CIGS layers is the possibility of back-side illumination.  With 

illumination from the rear, the absorber thickness needs to be less than 1 μm for 

reasonable efficiency.  Nakada et al [Proc. 20th EPSEC, 2005, p. 1736] showed 

experimentally that such efficiencies can in fact be achieved when a transparent back 

conductor is combined with a thin absorber.  The major difference between illumination 

from the front and the back is the distribution of photogenerated carriers within the cell.  
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With front illumination, generation occurs primarily within the space-charge region 

(SCR), but with back illumination, most carriers are generated in the bulk part of the 

absorber, and most of those close to the back contact.  Hence, back-contact 

recombination can be a very significant loss.  That loss, however, can be significantly 

decreased through the choice of back-contact material and/or by increasing the Ga/In 

ratio, and hence the band gap, at the back of the device to produce the electron reflector. 

 

Figure 7 shows Ana Kanevce’s comparative simulations of standard solar-cell parameters 

for front and back illumination (circles and dots).  The simulation parameters were taken 

from those of a high-efficiency thick cell with a 0.2-eV back-contact electron barrier.  

Also shown in the efficiency plot are the data reported by Nakada et al for front and back 

illumination.  The dashed-line fits to that data would require that the absorber lifetime be 

reduced by a factor of ten from that of high-efficiency thick cells. 
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Figure 7.  Variation in calculated J-V parameters with absorber thickness for front 
(circles) and back (dots) illumination.  A back electron reflector is assumed.  
Experimental efficiency for front (open triangles) and back (filled triangles) 
illumination fit by dashed lines. 
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Three general features to note in Fig. 7 are (1) the shape of the experimental data, 

particularly the back-illumination efficiency peak near 0.7 µm, is similar to that seen in 

the calculations, (2) the very thin-film limit (below 0.2 μm), where the front- and back-

illumination curves converge to the same values, and (3) the very large front/back-

illumination difference seen in current for cells thicker than 0.5 µm.   

  

Conduction-Band-Offset Rule.  Ana Kanevce, with assistance from Markus Gloeckler, 

deduced the basic condition, and a very simple rule, governing when a positive 

conduction-band offset (“spike”) leads to a distortion of the current-voltage curve.  This 

work, which built on Alex Pudov’s thesis work [A.O. Pudov, A. Kanevce, J.R. Sites, F. 

Hasoon, and H. Al-Thani, J. Appl. Phys, 97, 064901 (2005)], was presented at the Spring 

2005 MRS meeting [MRS Proc. 865, 221 (2005)]. 

 

Figure 8 shows the band diagram of a CdS/CIS cell at zero bias, though the discussion 

could apply equally well to other windows and absorbers. Two features are critical: the 

conduction-band offset (CBO) ∆Ec and the splitting of the Fermi level under illumination 

into EFn for electrons, EFp for holes.  Hole current has little influence on J-V distortion, 

and hence only the conduction band and quasi-Fermi level for electrons were analyzed.   
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Figure 8.  Band diagram for CdS/CIGS under illumination at zero bias. 
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Assuming thermionic emission across the CdS/CIS interface, the electron current density 

can be calculated by integrating over the product of carrier density and carrier velocities 

in the direction of transport vx .  The carrier densities are similar to the thermal velocity, 

so the integral can be simplified: 

   th
E

xn qnvdnvqJ
c

≈= ∫
∞

  ,      

where vth is the thermal velocity of electrons ~107 cm/s, q is the elementary charge, and n 

is the free carrier density given by: 

  ]exp[
kT

EE
Nn Fnc

c
−

−= .      

Nc is the effective density of states in the conduction band, k is the Boltzmann constant, 

and T is the absolute temperature.  Thus, at a fixed temperature, the maximum electron 

current through the junction is determined by n(CdS) and therefore by the energy 

difference between the conduction band and quasi-Fermi level for electrons in the CdS 

close to the interface with CIS or CIGS.  An increase of this energy difference will result 

in fewer free electrons, and hence in a possible current limitation. 

 

A typical photocurrent density achieved for CdS/CI(G)S cells is JL = 32 mA/cm2.  

According to equation (1), the minimum carrier density to provide the current flow would 

be n = 2x1010 cm-3, which corresponds to a 0.48-eV difference between the conduction 

band and the quasi-Fermi level.  If Ec - EFn exceeds this value, which is more likely for 

CIS or for small Ga concentration, additional drift fields are required to insure carrier 

transport across the barrier.  This effectively places the main junction in forward bias, 

which reduces the CI(G)S depletion width and the current collection.  For a large Ec - EFn 

difference, the transport becomes severely limited and collection effectively goes to zero.  

The 0.48-eV value depends on the particular choice of parameters used in the model.  A 

different effective mass, for example, will alter the 0.48-eV value, but only weakly, since 

it appears in a logarithmic term.  Similarly, the dependence on JL is weak.   At lower 

temperatures, however, the value of Ec - EFn that leads to the J-V distortion will be 

proportionally smaller. 
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EFn at the CdS/CI(G)S junction will depend in large part on the thickness and defect 

density of the CdS layer.  As a concrete example, Fig 9 shows the calculated J-V curves 

from a CIS cell assuming a CdS/CIS band offset of 0.4 eV.  As the CdS defect density is 

increased from the 1016 to the 1017 cm-3 range, the 0.48-eV line is crossed, and the 

distortion becomes severe.  The bottom part of Fig. 10 divides the defect-density/CdS-

thickness plane into three regions with reductions in VMP the order of 0, 0.05, and 0.45 V. 
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Figure 9.  J-V dependence on CdS defect density (top); Variation in qualitative 
amount of distortion with NAt (midgap acceptor trap density in CdS) and CdS 
thickness (bottom). 
 
High-Effiency CdZnS/CIGS.  Ana also worked with Raghu Bhattacharya of NREL on 

the analysis of CIGS cells that that were fabricated with a solution-grown CdZnS buffer 
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layer.  The best of these cells achieved 19.5% efficiency, equal to that achieved with 

NREL’s standard CdS buffer on an absorber from the same depostion.  At short 

wavelengths, the CdZnS buffer did achieve current about 2 mA/cm2 higher than the CdS 

buffer, but it had slightly less collection in the longer-wavelength region.  The CdZnS 

buffer also produced a slightly higher A-factor (1.5 vs. 1.3) both light and dark, and its C-

V curve was slightly less well behaved and indicated a smaller CIGS carrier density near 

the junction.  A more complete report can be found in Bhattacharya et al, Appl. Phys. 

Lett. 89, 253503, (2006). 

 

Laser-Assisted Deposition.  A three-way collaboration with Tokio Nakada of Aoyama 

Gakuin University, Sho Shiraka of Ehime University, and Ana Kanevce at CSU explored 

several aspects of CIGS cells fabricated at AGU with laser-assisted deposition (LAD) of 

the absorber layer.  Sho and Ana analyzed the impact of LAD on current-voltage, 

capacitance-voltage, and LBIC (light-beam-induced-current) measurements.  Two LAD 

and one non-LAD cells which exhibited the best solar cell performance among 10 cells 

fabricated on one substrate were selected for more detailed analysis.   

 

The conversion efficiencies of the best cells were in the 15-16% range, and the band gap 

varied between 1.21 and 1.27 eV.  The series resistance in all cases was below 1 Ω-cm2, 

and the leakage was below 1 mS/cm2.  The diode quality factors were between 1.65 and 

1.9 with a lower A-factor and less QE loss in the red when the band gap was smaller.  All 

of the cells experienced dark/light crossover in their current-voltage curves, but the 

crossover was considerably diminished when the dark curves followed a light soak of 1 

minute.  In this case, the full crossover was restored after 30 minutes in the dark.  In 

general, the performance of the LAD cells was similar to the non-LAD cells.  

Capacitance-voltage measurements showed hole densities in the high 1015 cm-3 range 

with no systematic difference between LAD and non-LAD fabrication.  LBIC also 

showed no significant differences in the LAD cells.  Although obvious LAD effects were 

not observed with this cell set, research in this area will continue and will likely involve a 

more aggressive approach to LAD. 
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BASIC CdTe STUDIES 
 
Voltage Deficit.  The highest reported efficiency for thin-film CdTe cells lags that of 

thin-film CIGS solar cells by more than 3%.  Based on band-gap considerations, one 

would predict a 3% difference in the opposite direction.  The lower CdTe efficiency is 

primarily the result of a much larger voltage deficit between CdTe cells and crystalline 

cells of similar band gap.   

 

Figure 10 compares J-V curves from record-effiency CIGS and CdTe cells with those of 

high-efficiency single-crystal Si and GaAs.  The Si and GaAs curves were 

mathematically adjusted slightly (30-40 mV in voltage and about 1 mA/cm2 in current 

density) for consistency with the CIGS and CdTe band gaps.  

                        

                         
Figure 10.  J-V Comparison of record CIGS cell with high-efficiency Si, adjusted 

slightly for band gap (top).  Similar comparison of CdTe with GaAs (bottom). 
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The salient feature of Fig. 10 is the 230-mV voltage deficit for CdTe compared to the 30 

mV deficit for CIGS.  The CIGS voltage deficit is in fact remarkably small, and our 

explanation for the near-single-crystal behavior was discussed above.  If it were possible 

to reduce the CdTe deficit to that of CIGS, the CeTe cell efficiency would increase by 

about 5% to approximately 22%. The obvious question is what might be done to 

significantly reduce the CdTe deficit. 

 

Two distinctly different approaches for increasing CdTe voltage, which will be referred 

to as the “n-p” and the “n-i-p” strategies and depicted in Fig. 11, were examined.  Figure 

11a shows the band diagram of a CdTe solar cell with a thin n-CdS window layer.   

 
Figure 11.  (a) Typical CdS/CdTe band diagram with and without a back-contact 
barrier.  (b) Significantly higher hole density.  (c) Lower density with and without 
an electron reflector. 
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The low CdTe hole density (2x1014) in Fig. 11a is typical of today’s cells and makes the 

CdTe absorber intermediate between i-type (intrinsic) and p-type.  As a consequence, the 

depletion region extends over a large fraction, but not necessarily all, of the CdTe 

thickness.  The possibility of a significant back-contact barrier Φb is indicated by the 

dashed line.  Figure 11b, where the hole density is increased to 2x1017, is the classic n-p 

hetero-junction.  It is similar to what one would find with n-on-p GaAs.  In contrast, Fig. 

11c lowers the hole density to 2x1013, the CdTe becomes fully depleted, and terminology 

used here is n(CdS)-i(CdTe)-p(back of CdTe).  This configuration can also lead to high 

voltage, but of major importance in this case is the presence of an electron reflector Φe at 

the rear on the absorber.   

 

CdTe-cell voltage was calculated by Jun Pan as a function of the CdTe recombination 

lifetime τ for the three situations shown in Fig. 11.  Figure 12 shows graphically that both 

high lifetime and high carrier density would be required for a high voltage in the n-p 

configuration.  Physically, a reduction in the density of defects could be the key to 

improvements in both: increased lifetime through a smaller number of recombination 

centers and increased carrier density through a smaller number of compensating states.   

 
Figure 12.  CdTe n-p cell needs major increases in both carrier density and lifetime. 

 
Calculated voltages for the p = 2x1013 fully-depleted absorber configuration (Fig. 12c) 

are shown in Fig 13.  In this case, a conduction-band barrier near the back surface, often 
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referred to as an electron reflector, is critical to reduce voltage-limiting recombination at 

the back surface.  Without this increase, denoted Φe, the voltage is slightly lower than 

CdTe with a typical 2x1014 carrier-density, but with even a small back reflector (0.2 eV), 

the voltage should increase significantly.  Higher values of Φe lead to only modest 

additional improvement, and the choice of thickness and carrier density of the reflector 

layer lead to only minor variations in the J-V curves. 

 
Figure 13.  CdTe n-i-p requires a back electron reflector and modest lifetime. 

Figure 13 shows that when the electron-reflector barrier is present, the lifetime need not 

be particularly high.  One possibility for creating such a barrier is to add a layer of ZnTe, 

or perhaps CdZnTe, with an expanded gap in the conduction-band direction.  A potential 

difficulty, however, is that any recombination at the CdTe/ZnTe or other reflector 

interface will compromise the advantage of keeping electrons away from the metal 

interface.  If an electron barrier is applied to CdTe that is not fully depleted, the benefit is 

smaller, because one not have field collection throughout. 

 

Figure 14 summarizes the two approaches to increasing CdTe voltage.  The simulated n-p 

J-V curve corresponds to very substantial increases in CdTe lifetime and hole density.  

As shown, the n-p curve would have a voltage of 1080 mV and an efficiency of 22% 

even if current losses in today’s record cell were not reduced.  The n-i-p simulation yields 

a somewhat similar J-V curve with a voltage of 1030 mV and an efficiency of 21% at a 

moderate lifetime of 2 ns.  It does require an electron reflector the order of 0.2 eV in 
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height near the back contact.  It may well be the more promising strategy for improving 

voltage and performance, since it should not require a major improvement in the quality 

of thin-film CdTe to reach one volt and 20%. 

 
Figure 14.  Comparison of record-cell J-V curve with possible major improvements 

using n-p and n-i-p strategies 
 

Absorber Lifetime.  The minority carrier lifetime of CdTe, which was the key parameter 

for the voltage calculations shown in Figs. 12 and 13, also has a strong influence on the 

solar-cell fill-factor (Fig. 15).  From Jun Pan’s calculations, the short-lifetime collection 

of photogenerated carriers, even those generated within the depletion region’s electric 

field, is increasingly incomplete in forward voltage where the field is reduced.  At higher 

lifetimes, essentially all carriers generated in the depletion region will be collected, and 

hence the dependence of collection on voltage becomes very small. 

 

One analytical consequence of the low-lifetime curves in Fig. 15 is that they are no 

longer exponential, and the calculation of a well defined diode quality A fails.  If one 

ignores the non-exponential behavior and attempts to calculate A, the voltage-dependent 

collection inherently overestimates its value.  The result is shown in Fig. 16 where A = 1, 

light and dark, for large lifetimes where the forward diode current results from thermionic 

emission.    At smaller lifetimes, bulk recombination becomes significantly larger, and 

the A-factor should transition to a Shockley-Reed-Hall value of 2, or slightly less if the 
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distribution of recombination states varies though the absorber.  This is the case in the 

dark, where the J-V curve is unaffected by changes in photocarrier collection with 

voltage.  In the light, however, the voltage-dependent-collection effect on the J-V curves 

yields artificial A-values well above 2 for the very short lifetimes and artificially 

enhanced A-values for typical CdTe-cell lifetimes. 

                   
Figure 15.  Calculated J-V for typical-carrier-density CdTe as a function of 

minority carrier lifetime, again referenced to GaAs prediction. 
 

      
Figure 16.  Artificial enhancement of A-factor in the light at small lifetimes. 
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Experimental curves from cells with different CdTe lifetimes are shown in Fig. 17.  The 

measurements were made by Samuel Demtsu working in collaboration with David Albin 

at NREL.  In this case, the lifetime variations result from different amounts of copper 

used in the formation of the back contact.  There is, however, more than one effect seen 

in Fig. 17.  With no copper at all, the back-contact barrier is significant, and thus the 

curve rolls over in the first quadrant and the fill-factor is reduced.  With a small amount 

of copper, the back barrier is reduced, and the J-V curve is quite good.  With additional 

copper, however the absorber lifetime is reduced, and the fill-factor is again smaller. 

        
Figure 17.  CdTe J-V curves for cells with different amounts of back-contact copper. 

 

Reasonable values for experimental lifetimes can be deduced from time-resolved 

photoluminescence (TRPL) measurements.  TRPL measurements from the same cells 

depicted in Fig. 17 were made by Wyatt Metzger at NREL and are shown in Fig. 18.  

Room-temperature capacitance-voltage measurements, also made on the same cells, 

showed an increase in net carrier density and a decrease in depletion width with increased 

amounts of Cu.  Hence, we conclude that the use of copper helps the cell by reducing the 

back barrier, but it also introduces additional acceptors accompanied by a decrease in 

hole lifetime.  A minimal amount of copper appears to be optimal for efficiency. 
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Fig. 18.  Normalized CdTe TRPL decay curves as a function of the Cu amount. 

 

Non-standard J-V Features.  Jun Pan and Markus Gloeckler [J. Appl. Phys., 2006] 

investigated the combined effects of the back-contact barrier φb and variations in absorber 

carrier density.  They showed that competing mechanisms can alter the J-V 

characteristics in two different ways.  One is a majority-carrier (hole) limitation to 

forward current that also reduces fill-factor.  The second is a high minority-carrier 

(electron) contribution to the forward current that results in reduced open-circuit voltage.  

CdTe solar cells are particularly prone to the latter, since the combination of a wide 

depletion region and impedance of light-generated holes at the back contact increases 

electron injection at the front diode.  Characteristic J-V curves for four combinations of τ 

and φb are shown in Fig. 19. 

 

Variations in J-V curves with carrier lifetime in the absence of a significant back barrier. 

Fig. 19(a) and (b), similar to Fig. 15, have a straightforward interpretation.  In Fig. 19(a), 

low lifetime results in more recombination in the space-charge region (SCR) and, 

therefore, a higher forward current and hence lower Voc and fill factor.  Larger CdTe 

lifetimes will both reduce the forward current due to SCR recombination and increase the 

forward flow of electrons to the back contact.  The net result, shown in Fig. 19(b), is a 
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significant increase in fill factor, with A approaching 1, but little effect on voltage. 

 
Figure 19. Calculated J-V curves for increasing and decreasing CdTe lifetime by a 
factor of ten and varying back-contact barrier.  Baseline (BL) shown for reference. 

 

Current-voltage curves similar to those shown in Fig. 19(c) are frequently observed for 

CdTe solar cells, and are attributed to impedance of hole current by the back barrier.  The 

dark curve is nearly flat, because the hole current is limited by the Schottky back contact.  

The light curve appears relatively normal in the power quadrant, but with some loss in fill 

factor.  Above Voc, the light curve is also nearly flat.  Commonly, however, the light 

curve saturates at a higher current than the dark curve, resulting in a crossover of light 

and dark J-V curves.  The current limitation of both dark and light curves in the first 

quadrant is often referred to as rollover. 

 

The illuminated J-V curves shown in Fig. 19(d) are somewhat counterintuitive, because 

they show a lower Voc even though the lifetime is very high and the absorber is not fully 

depleted.  Voc decreases further with still higher back-barriers (also shown at φb = 0.6 eV 
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and 0.7 eV), and the J-V curves show substantial crossover between light and dark 

curves. For both dark and light conditions, the quasi-Fermi level for electrons is much 

closer to the conduction band than it is for low CdTe lifetime.  This simply means that the 

electron density is high throughout the CdTe, and one can expect enhanced electron 

current.  The total current of the diode is dominated by the back-contact electron 

recombination current, which increases with a larger barrier and reduces Voc.  For larger 

barriers, in fact, the incremental reduction in Voc is equal to the increase in φb.  Overlap of 

front and back space-charge regions will always enhance electron current, but it is not a 

requirement for substantially increased forward current.   

 

CdTe Stability.  Samuel Demtsu and Alan Davies, in collaboration with David Albin 

and Joel Pankow at NREL, [Solar Energy Mat. Solar Cells, 2006] investigated the 

stability and performance of CdS/CdTe solar cells made using four different back contact 

structures.  Two device sets were made with Ag and Ni deposited on a Cu-doped graphite 

layer.  For the other two sets, the graphite layer was removed before the application of the 

Ag or Ni.  Figure 20 shows the changes in parameters when a typical cell in each 

category was held for extended periods of time at 100°C under open-circuit bias and one-

sun illumination. 

 

Devices made with graphite/Ag and graphite/Ni back contacts showed similar initial 

performance, and modest degradation under stress.  In the presence of a graphite layer, no 

measurable difference in performance or stability was seen between the use of Ag or Ni 

as a secondary contact.  In this configuration, the graphite paste behaves like a diffusion 

barrier. In the absence of the graphite layer, devices made with Ni-only and Ag-only back 

contacts, had significantly smaller FF initially, and showed much faster degradation than 

those with the graphite layer.  Degradation was predominantly due to a decrease in FF.  

For the Ag-only back contact device, diffusion of Ag from the back contact resulted in 

higher CdTe doping concentrations before and after stress.  Fast Ag diffusion along grain 

boundaries also contributed to shunt formation and increased the micro non-uniformity.  

For Ni-only devices, the Ni alloyed with the Te-rich CdTe surface forming Ni3Te2.  
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Though the Ni3Te2 intermetallic layer helps minimize Ni diffusion, shunting can result 

from the formation of micro non-uniformities in these devices, relative to the more stable 

graphite-layer devices. 

 
Figure 20.  J-V parameters vs. stress time at 100°C, one sun, and open-circuit 

voltage for cells made with four types of back contact. 
  

Light-beam-induced current (LBIC) measurements before and after stress showed little 

change in spatial uniformity for devices with a graphite layer, but they did show 

increased variations of 6% and 2% respectively for the Ag-only and Ni-only devices.  

This increase in non-uniformity reflects the formation of micro non-uniformities when 

these devices were stressed.  The poorer collection of carriers is likely explained by 

ohmic micro-shunts, or possibly by increased recombination due to larger defect 

concentrations in the CdTe and CdS layers.   
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Thin CdS.  Several thin-film CdS/CdTe solar cells were fabricated with Prof. Sampath’s 

in-line CSS pilot deposition line at Colorado State University.  Quantum efficiency 

measurements were performed by Alan Davies to ascertain CdS layer thicknesses, 

identify the degree of CdS/CdTe intermixing (small), and estimate the absorber band-gap 

(about 1.47 eV for all of the cells).  QE curves for eight devices (Fig. 21) show the 

variation in CdS thickness among thedevices sampled.  From the QE data in the 400-500 

nm range, we estimated optical CdS thicknesses ranging from about 10 to 240 nm.  Also 

evident from QE curves is a modest decrease in collection of photogenerated carriers in 

the thinner CdS cells for wavelengths near the band-gap.  This decrease can reasonably 

be attributed to a shorter electron lifetime for thin-CdS devices 

Figure 21:  Variation of CdS/CdTe QE response with CdS thickness. 
 

Figure 22 shows all three J-V parameters for the same cells used for the Fig. 22 QE 

curves.  Efficiencies, which are between 10 and 12% for devices with thicker CdS, fall 

into the 3 to 6% range once the CdS thickness is significantly below 100 nm.  

Immediately evident is the increase in Jsc with thinner CdS resulting from the increased 

transmission as CdS is thinned.  Also obvious is the sharp drop in VOC and increase in Jo 

between 100 and 50 nm.  As CdS thickness decreases, CdS pin-hole formation is likely to 
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become more prevalent, and consequently Jo and VOC would approach values that may 

correspond to a SnO2/CdTe photodiode. 

Figure 22:  J-V parameters, plotted against CdS layer thickness, show overall 
performance loss below 100 nm. 

 

The concept of pinholes exposing the CdTe directly to the SnO2 window layer strongly 

suggests that the thin-CdS cells should have a significantly less uniform photovoltaic 

response.  This predicted contrast in uniformity is clearly seen in the Fig. 23 LBIC scans, 

which show a broadening of local QE distribution by about twenty times. 

Figure 23.  LBIC comparison of thin and intermediate-thickness CdS. 
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Photoluminescence (PL).  Caroline Corwine, through a series of careful measurements 

in collaboration with Tim Gessert and others at NREL, has convincingly pinned down the 

physical origin of the key 1.456-eV PL line commonly seen with thin-film CdTe cells.  

Parts of this work were published in Appl. Phys. Lett. 86, 221909 (2005) and presented at 

the Spring 2005 MRS Meeting.   

 

The top two panels of Fig. 24 show the PL signal from CdTe cells made at NREL with 

and without the CdCl2 processing step.  Structure nearer the band gap is not shown, and it 

did vary between the two cells.  However, the 1.456-eV line, and a series of its phonon 

replicas, was very similar between the two thin-film cases shown.  Furthermore, the 

energy of this peak was quite constant as the excitation energy was varied by more than 

an order of magnitude.  Such intensity-independence is a characteristic signature of a 

donor-to-band or band-to-acceptor transition.  In this case the primary PL line implies an 

impurity level approximately 150 meV from one of the bands. 

 

The procedure to identify the 1.456 line was to utilize single-crystal CdTe, where the line 

is not present, and expose a number of such samples to various etches, depositions, and 

annealing gasses.  Special attention was given to the incorporation of copper, chlorine, 

and oxygen, since thin-film CdTe cells typically involve these elements during 

fabrication.  The bottom panel of Fig. 24 is the result when a thin layer of copper was 

deposited, followed by annealing in oxygen.  With this combination, the line of interest, 

the phonon replicas, and the intensity independence very closely replicate the thin-film 

spectra over the range shown.  Other combinations of Cu, Cl, and O failed to match the 

thin-film results.  Our opinion is that previous attribution of the 1.456 line to Cl defects 

neglected presence of Cu and O impurities in the cell fabrication process. 

 

Identification of the specific Cu/O defect was assisted by first-principles band-structure 

calculations performed by Jingbo Li at NREL, which identified OTe-Cui as the likely 

defect with an energy 125 meV below the conduction-band minimum.  This assignment 

makes good physical sense in that when oxygen is present during annealing, it is likely to 
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substitute for Te, and when copper diffuses through CdTe, it is likely to so interstitially.  

Furthermore, the energetics should favor the OTe-Cui complex over the individual defects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24.  PL specta focused on the 1.456-eV peak and its phonon replicas.  NREL 
cells (top, middle), single-crystal CdTe exposed to C and O (bottom). 

 

Current Transients.  Alan Fahrenbruch investigated the current transient response to 

voltage and illumination steps applied to CdS/CdTe cells.  Results were presented at the 
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Spring 2005 MRS Meeting.  The cells were obtained from Sampath at CSU, Gessert at 

NREL, and McCandless and Hegedus at IEC and included normal as well as abnormal 

devices.  A typical result is shown in Fig. 25.   

 

The initial measurement followed a dark soak at zero bias for several hours.  All the cells 

showed dark forward-bias transients, but the magnitude and direction depended on cell 

preparation.  In every case, the transients were reversible, and the recovery was not 

exponential, but was fit well by stretched exponentials (abbreviated SE in Fig. 26).  Bias 

and light induced transients were small for the better behaved cells, those without 

rollover or cross-over, and the effect of these transients on efficiency was small.  

Abnormal devices with non-optimal Cu, however, showed much larger transients than 

those depicted in Fig. 25.   
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Figure 25. Transient current response following a positive or negative voltage step. 
 

Similar transients have been observed by McMahon [Proc. 29th IEEE PV Specialists 

Conf., 2002, pp. 768-771] and by del Cueto and Osterwald [DOE Solar Program Review, 

2004].  They have important implications for the measurement of cell efficiency and 

stability, and they provide clues about the current transport mechanisms.  A possible 

mechanism involves modulation of the junction barrier profile by changing the charge on 

deep acceptors, giving a change in the effective junction barrier height.   
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GENERAL STUDIES 
 

Non-uniformity Analysis.  The relationship between small-area non-uniformities and 

performance at the module level is clearly important to PV technology.  Ana Kanevce, 

Galym Koishiyev, and Marko Topič visiting from the University of Ljubljana in Slovenia 

have all contributed to this work.  We found it important to first adopt a common 

terminology, and Figure 26 below gives a schematic representation of our general 

strategy. 
module subcell microcell

 
Figure 26.  Terminology used for non-uniformity analysis. 

 
The assumption is that most of a subcell, similar in size to a typical laboratory test cell, is 

uniform and consists of microcells with common, well-defined parameters.  A subcell can 

be analyzed experimentally by LBIC down to the micron scale to determine the existence 

of small, but potentially troublesome, microcells consisting of local shunts, weak-diode 

areas, or areas of significantly reduced lifetime.  In some cases, such defects can impact a 

much larger area than their physical extent.  The combination of LBIC at different 

voltages and PSpice modeling appears to be sufficient to connect the parameters of the 

defective microcells with the J-V curve of the subcell.  Such a J-V curve does not in 
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general follow a simple equation, and the PSpice result must be retained as a data file.  It 

can, however, with a second level of PSpice modeling be used to calculate the J-V curve 

of the module and be used for direct comparison with the measured performance. 

 

Physical non-uniformities of various types can also produce variations in the local 

photovoltage and shunting.  For a non-uniform device, the equivalent circuit for a single 

diode can be replaced with a network of diodes that may be individually defined.  

Numerical simulations performed by Ana Kanevce used a 10 x 10 diode network, part of 

which is shown in Fig. 27.  The CIGS baseline “strong diode” is 1 µm2 in area and 17% 

efficient.  The back-contact resistance was assumed to be negligible.  The resistance R 

due to between the individual diodes in the array the transparent-conductive-oxide (TCO) 

front-contact should be proportional to the series resistance Rs of the solar cell as a 

whole.  For the array illustrated here, an individual resistance of R = 3 Ω corresponds to 

series resistance of Rs = 1 Ω-cm2 for the whole cell. 

 

 

 

 

 

 

 

 

 

 

 
Figure 27.  Schematic of diode network model.  Single weak diode and shunt are 

highlighted. 
 

If series resistance were neglected, a nonuniform device would be a network of parallel-

connected diodes with no voltage drop between adjacent diodes.  The total current 

generated by the device would be the sum of the currents through individual diodes: 

Grid  
resistance 

TCO resistance 

Back 
contact 
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The diode quality factor A was assumed to have the same value for all the diodes, and the 

light-generated current IL was assumed to be uniform throughout the device.  Voc for the 

entire device is a function of the difference between the strong Vocs and the weak-diode 

Vocw voltage, ocwocsoc VVV −=∆ , and of the ratio a of  the weak-diode area Aw to the total 

device area At:  
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When series resistance is finite, J-V curves cannot be calculated analytically without 

approximation, but they can be calculated numerically.  In the small Rs limit, numerical 

methods give the same results as those obtained analytically.   

 

If TCO resistance is significant, it introduces a voltage drop across the TCO and thus 

isolates the lower-voltage area.  Voltage maps ∆V(x,y) = VS(x,y) –VW(x,y) are shown in 

Fig. 28 for a small and a large value of RS.  VS(x,y) is the voltage of a uniform diode, and 

VW(x,y) is the voltage of 4% of the diodes with Voc reduced by 0.4 V from its baseline 

value of 0.64 V.  Although the sheet resistance in the TCO can isolate the weaker voltage 

areas and prevent them from dominating the entire device, it also reduces the fill-factor 

by a larger amount, and hence the cell’s efficiency is always smaller when RS is larger. 

 
Figure 28.  Voltage maps of two solar cells with different RS.  Length shown is often 

referred to as screening length. 
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The impact of a weak diode on device performance is linear in voltage and logarithmic in 

the area ratio to a first approximation.  The calculated constant efficiency curves for a 

high-quality CIGS cell (17% baseline again) are shown in Fig. 29.  Areas less than 10% 

of the total device area with voltage deficits less than 100 mV decrease the device 

efficiency less than 1% and can therefore be neglected. 

 
Figure 29.  Efficiency dependence on ∆Voc and weak area (baseline efficiency 17%). 

 
Since the weak diodes pull down the voltage of the nearest neighbors, the distribution of 

the weak diodes, as well as their area and ΔV, could affect the device voltage.  

Calculations for a device with a total 4% weak-diode area showed the smallest voltage 

reduction when the diodes were clustered towards a corner of the device and the largest 

when they were scattered throughout the device.  The maximum-power point, and thus 

the device efficiency, however, is nearly independent of the weak diodes’ distribution. 

 

Distributed Sheet Resistance.  The single-value RS used in Fig. 28 is an approximation 

of the distributed series resistance, which can yield J-V curves significantly different 

from the single-parameter approximation for the cell geometries commonly found in 

gridless thin-film modules.  In general, the lateral voltage drop across the TCO layer 

requires a two-dimensional calculation.  Such calculations have been done by Galym 

Koishiyev, also using PSpice and assuming a parallel array of small cells as shown in 

Fig. 30.  
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Figure 30.  Current distribution in thin-film-module cell geometry. 

 
Of significant practical interest is how the fill-factor of a module-geometry cell will 

change with TCO sheet resistance ρS and length L of the cell.  Results with parameters 

corresponding to typical amorphous silicon cells, high-quality CIGS, and ideal solar cell 

are shown in Fig. 31 [submitted to SOLMAT].  When the resulting fill-factor is compared 

to that found in the absence of TCO resistance and is plotted against the dimensionless 

quantity x = ρSL2JSC/VOC, a nearly universal relationship is found.  The value of x will be 

0.5 or less for most practical situations.  In this range the proportional fill-factor reduction 

will be nearly linear with sheet resistance, the square of cell length, and the JSC/VOC ratio.  

It will be slightly larger when a cell is closer to being ideal.  

 
Figure 31.  Quasi-universal dependence of fill-factor on module cell parameters. 
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Effective Module Efficiency.  A joint project with Marko Topič and Kristijan Breel at 

the University of Ljubljana in Slovenia [Prog. in Photovoltaics, 2007] calculated the 

effective efficiency of PV modules averaged over a year under field conditions.  In the 

absence of variations in temperature or illumination spectrum, and when the series 

resistance and the leakage conductance in a PV module are negligible, the module 

efficiency increases roughly logarithmically with solar irradiation. The primary variation 

is the open-circuit voltage VOC and its direct effect on the fill-factor.  The upper curve (a) 

in Fig. 32 shows the calculated efficiency vs. irradiance dependence for a Wurth Solar 

CIGS module based on the manufacturer’s data sheets.  The other three curves in Fig. 32 

show the modifications to curve (a) as the module’s temperature coefficient, effective 

series resistance, and effective leakage conductance are sequentially added to the 

calculation. 
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Figure 32.  Dependence of conversion efficiency on irradiance for a Wurth CIGS 
module.  (a) Constant cell temperature, (b) cell temperature proportional to 
irradiance, (c) addition of series resistance, and (d) addition of leakage conductance. 

The increase in module temperature with irradiance, compared to the ambient 

temperature, is generally very linear and has essentially the same rate for a wide range of 

technologies. This temperature coefficient dTc/dP is approximately 30ºC/kW-m-2.  The 

temperature effect (curve (b) in Fig. 32) therefore reduces η(P) by an amount nearly 
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proportional to irradiance.  The effective series resistance Rs per cell and the effective 

leakage conductance Gsh were deduced for Wurth Solar’s WS75 modules.  Curve (c) 

demonstrates that Rs has a larger effect at higher irradiance.  Gsh per cell, on the other 

hand, reduces the module efficiency in inverse proportion to irradiance. Using Gsh ≅ 1 

mS/cm2 deduced from the slopes of current-voltage characteristics at low voltages, curve 

(d) is calculated.  The overall result is that the maximum efficiency for this module 

should occur in the neighborhood of one-half sun (η = 10.2 % at P = 580 W/m2).  The 

details of the curves shown in Fig. 32 will vary with the technology employed and with 

the values of dTc/dP, δ, effective Rs and Gsh for the specific module fabricated, but the 

general form of such curves will be similar to those of Fig. 32.  The simulation of the a-Si 

and CdTe modules was slightly more complicated than for CIGS, because the effective 

Gsh increased significantly with irradiance. 

 

The annual effective efficiency ηeff can be calculated as a ratio of integrated available 

electrical energy generated in a year divided by the integrated solar energy.  The process 

formally requires site-specific temperature and irradiance data, but the result does not 

depend strongly on the site selected.  In general, ηeff is smaller ηSTC, the often-specified 

efficiency corresponding to one sun and 25°C, and the ratio can vary as much as 10% 

among modules.  We conclude that an approximate value of ηeff, the module efficiency at 

one-half sun, should be considered as a suitable parameter for comparing module output. 

 

Barrier Heights.  Graduate student Galym Koishiyev has developed relatively 

straightforward J-V analysis techniques to determine two types of barrier heights: the 

hole barrier due to the back contact and the electron barrier between window and 

absorber.  In the first case, where current is limited above VOC, we determine the current 

at which the J-V curve changes from positive to negative curvature.  In the data from a 

CIGS cell fabricated by Neelkanth Dhere’s group at FSEC (Fig. 33), this transition 

occurs at approximately 20 mA/cm2 for the highest temperature shown and at about 0.5 

for the lowest.  This “turning current” Jt can then be plotted as a function of temperature 

and compared with an analytical expression for the hole barrier height. 
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Figure 33.  Effect of back-contact barrier on CIGS J-V. 

 
When a series of curves is generated with barrier height as the free parameter (Fig. 34), Jt 

follows the curve for 0.44-eV barrier height reasonably well over a significant 

temperature range. 
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Figure 34.  Turning current from Fig. 33 overlaid on that calculated from different 

barrier heights. 
 
A similar approach (not shown here) for the second type of barrier, the electron barrier 

resulting from the conduction-band offset at the window/absorber interface, uses the 

crossover current between dark and light J-V curves.  In this case, the plot of 

experimental crossover current is compared with analytical curves where the electron 
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barrier is the free parameter.  The cells used to test this analysis were CdS/CuInS2, and 

they also were fabricated at FSEC [results presented at the 33rd PVSC]. 

 

An additional strategy to determine barrier heights was pursued by Alan Fahrenbruch.  

He used simple optics and electronics to measure internal photoemission (IPE) in CdTe 

cells by plotting current response to sub-band-gap light vs. the photon energy.  According 

to the Fowler theory, the energy intercept is equal to the barrier height.  Alan looked at a 

number of CdTe cells from various fabricators, including those with good and bad 

contacts and electronically thick and thin cells.  An example is given in Fig. 35.   

 

 

 

 

 

 

 

 

 

 

 
Figure 35.  (QE)0.5 vs. hν  for IEC6 cell (with Cu) and IEC3 (without Cu) at 18°C.  

Points are measured data and curves are for model. 
 

Alan’s results suggest two barriers in parallel: a high one, (~ 0.9 eV) which agrees well 

with the observed UPS values and a low one (~ 0.3 eV) with a much smaller area fraction 

(1 - 4%) which dominates the contact transport and corresponds more closely to the 

values observed for efficient cells.  For thick cells, his IPE results agree well with thermal 

measurements described above. 
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LBIC Measurements.  LBIC measurements by Tim Nagle and Alan Davies have 

continued to provide a direct link between the spatial non-uniformities inherent in thin-

film polycrystalline solar cells and the overall performance of these cells.  LBIC is 

uniquely equipped to produce quantitative maps of local quantum efficiency with relative 

ease.  In our system, spatial resolution of 1 μm at 1-sun intensity, and return to the same 

location after cell other measurements, is routinely achieved.  The LBIC measurements 

demonstrate that several types of effects that alter cell performance can be traced to 

specific local-area features.  Examples of such effects include defects related to edges, 

grids, or scribes, spatial variations in alloying, and local changes due to high-temperature 

stress.  A summary of the CSU LBIC work was presented at the January 2005 PVSC in 

Orlando [J.R. Sites and T.J. Nagle, Proc. IEEE Photovoltaics Specialists Conf. 31, 199-

204 (2005)].   

 

We have had a wavelength range of 638 to 857 nm available with a set of five diode 

lasers operated at room temperature.  The 857 nm laser has been particularly useful, since 

it can be tuned to lower wavelengths by reducing its temperature and hence it can be 

scanned through the CdTe band gap.  The scanning process has been made substantially 

easier during the past year with the construction of a control system based on a Stirling 

cooler by undergraduate Wolfgang Timko during a summer internship.  Other recent 

upgrades have included better signal-to-noise electronics for operation under voltage 

bias, new mounting stages that allow cell transport to other measurement stations, and 

more sophisticated analysis software. 

 

QE Under Light Bias.  During the Subcontract, we very carefully recalibrated our 

quantum-efficiency system, refined the software and procedures for efficient data 

collection, and installed the capability a white-light bias of variable intensity.  Much of 

the QE improvement was done by an undergraduate student, Jacob van der Vliet, who 

compared several reference-cell candidates and made cross-calibrations with reference 

cells measured at NREL.  He also made several improvements to the QE measurement 

protocol and several upgrades to the software used to store and display the QE results. 
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Additionally, Tim Nagle and Alan Davies investigated different light sources and 

controls to apply white bias light during QE measurement.  As with other researchers, 

they found that the QE curve can be affected by the presence of bias light.  In many cases 

as shown in Fig. 36, the change is small, it only affects QE near the band gap, and it 

saturates with a modest amount of bias light.  Nevertheless, it is a real effect that is quite 

reproducible.  Its likely explanation for the Cds/CdTe cell shown is that there is a 

secondary effect from CdS photoconductivity, which leads to a small increase in the 

CdTe depletion width under illumination and hence improves the collection of electrons 

generated deep in the CdTe. 

        
Figure 36.  Small bias-light effect on measured CdS/CdTe QE. 

 
In some cases, however, the effect of bias light can be much more dramatic.  For 

example, a poor-efficiency CIGS yielded the QE curves shown in Fig. 37.  The light-bias 

effect in this case was very large and was not saturated at 5% of standard solar intensity.  

The J-V curve (inset) suggests a large conduction-band offset (“spike”) at the CdS/CIGS 

interface.  Such a barrier would block photogenerated electrons unless there are sufficient 

blue photons absorbed in the CdS to lower the interfacial barrier.    

 

For stronger bias light, we found that six-volt krypton “Mag-lite” bulbs are a suitable 

white-light source with an intensity that can be varied up to half a sun.  Furthermore, they 
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are small enough to be mounted in our QE system without extensive modification.  

Simon Kocur, a visiting student from Regensburg, Germany, designed and built a 

mounting arrangement for Mag-lite bulbs so that the bulb-to-cell distance can now be 

varied over a sufficient range that light-bias intensity can be reproducibly varied from 1% 

to 50% of solar intensity. 

      
Figure 37.  Strong QE dependence on bias-light suggests a large secondary barrier 

in the CdS/CIGS conduction band, an observation supported by the J-V curve. 
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COLLABORATIONS 

During the Subcontract, we worked with CIGS industrial partners ISET, Heliovolt, 

Nanosolar, Solyndra, Miasole, and SoloPower, as well as CdTe partner AVA, in three 

primary areas: (1) measurement and analysis of specific cells in our lab, (2) advice for 

building or refining in-house systems for J-V, QE, and LBIC measurements, and (3) 

transfer of analysis and simulation software and consultation on its use.  In general, the 

results of our work were reported to the companies without public dissemination. 

 

Work with university partners at Aoyama Gakuin University, the University of Ljubljana, 

FSEC, and Sampath’s group at Colorado State, as well as with NREL, was included in 

earlier sections.  

 

In addition to the barrier-height analysis made with FSEC cells, however, we made QE, 

capacitance, and LBIC measurements on several selenide and sulfide cells fabricated at 

FSEC.  These results were included in the FSEC presentation at the May 2008 PVSC, 

where Galym Koishiyev was a co-author.  Similarly, Alan Davies collaborated with 

Victor Plotnikov at the University of Toledo and co-authored Victor’s May 2008 PVSC 

presentation. The Toledo presentation included Alan’s measurements and interpretation 

from a set of Toledo CdS/CdTe cells fabricated with a wide range of CdS thicknesses. 
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