Evaluation of Four Imaging Techniques for the Electrical Characterization of Solar Cells

2008 Fall MRS
Steve Johnston
Greg Berman
Nathan Call
Richard Ahrenkiel

Sponsored by
Material Research Society

December 3, 2008
Boston, MA USA
Outline

• Introduction – development of techniques

• Minority-Carrier Lifetime
 • Photoconductive Decay
 1) Photoluminescence (PL) Imaging
 2) Carrier Density Imaging (CDI)

• Diffusion Length – Finished Cells
 3) Electroluminescence (EL) Imaging

• Shunt Detection – Finished Cells
 4) Dark Lock-In Thermography (DLIT)

• Summary
Development of mapping & imaging

Microwave Conductivity Decay (lifetime in Ge; 1959)

Semiconductor Physics Laboratory, Inc. (Semilab) 1989, >700 systems.

Quasi-Steady-State Photoconductance

Photoluminescence in Si

Then imaging, T. Trupke, R. Bardos, et al. ~2006.

BT Imaging, 2008

Carrier Density Imaging: S. Glunz, W. Warta, et al. first mapping with detector since mid-1990s, then camera imaging, M. Bail et al. in 2000.

AESCUSOFT GmbH Automation, 2002; with alliance partner: Fraunhofer Institute for Solar Energy Systems

Electroluminescence Imaging: T. Fuyuki et al. 2005

Shunt Imaging: Breitenstein, O. since mid-1990s

AESCUSOFT GmbH Automation, 2002
Lifetime Measurements by μ-PCD

• A pulse of laser light creates excess carriers

• The increased carriers change the conductivity of the semiconductor

• Microwave reflection is dependent on the conductivity of the semiconductor

• Measure the time constant of the decay in conductivity

\[R = - \frac{d\delta n}{dt} = \frac{\delta n}{\tau} \]
\[\delta n = \delta n_0 e^{-t/\tau} \]
Photoconductive decay transients on silicon sample

Excitation wavelength ≈ 1000 nm
Injection level ≈ 10^{16} \text{ cm}^{-3}
Semilab Lifetime Mapping
Photoluminescence (PL) Imaging

• Excite excess carriers with light, $h\nu > E_g$ (810 nm), use filters to block reflections.
• Measure PL, i.e. portion of recombination that is radiative recombination, $h\nu \sim E_g$ (~1150 nm).
• Si CCD camera cooled to -75°C.
• 1024 x 1024 array of 13 μm square pixels.
p-type CZ Si, 200 Ω-cm, ~6x10^{13} \text{ cm}^{-3}, 310 \ \mu\text{m} \ \text{thick}

Image acquired in as little as 1 second, longer for shorter lifetimes and poor surface passivation
mc-Si with thermal oxide

Semilab map

PL image
n-type, CZ, 1-10 Ω-cm, \(\sim 10^{15} \text{ cm}^{-3}\), 500μm, both sides polished
Carrier Density Imaging

- InSb infrared camera cooled to ~76 K
- Spectral response from 3.6 to 5.1 μm
- 640 x 512 array of 15 μm square pixels
- 100 Hz frame rate
- Lock-in detection, similar to averaged subtractions of dark background image from lit absorption image

- Free carrier absorption or emission of infrared radiation
- For absorption, hot plate is black body source:
 - high emissivity with flat black high-temperature paint,
 - ~50° to 100°C
 - Square pulse 1-30 Hz
 - ~30 W of 810nm laser diode excitation
p-type CZ Si, 200 Ω-cm, $\sim 6 \times 10^{13}$ cm$^{-3}$, 310 μm thick

Image acquired in approximately 15 seconds, (\sim 1 sun intensity of light turned on and off at \sim 20 Hz, camera: 100 frames per second), longer acquisition time for shorter lifetimes and poor surface passivation

PL image

CDI (IR) image
n-type, CZ, 1-10 Ω-cm, ~10^{15} \text{ cm}^{-3}, 500 \mu\text{m}, \text{both sides polished}

Semilab lifetime map

Lifetime to CDI correlation

Carrier Density Image (IR camera)
Electroluminescence Imaging

- Si CCD camera cooled to -75°C
- 1024 x 1024 array of 13 μm square pixels
- Collect PL when forward biasing the cell
- With sample and camera in dark, and no filters, EL data collection in ~1 sec.
EL – diffusion length comparison

Electroluminescence, 1 s exposure time

Semilab – LBIC scan, ~12 hour scan time, collect reflection, IQE data, too
EL and LBIC comparison

Electroluminescence: 700mV forward bias

Semilab: LBIC

Efficiency

- ~13%
- ~14%
- ~15%
Dark Lock-in Thermography

Sense heat due to current flowing in shunts

- InSb infrared camera cooled to ~76 K
- Spectral response from 3.6 to 5.1 μm
- 640 x 512 array of 15 μm square pixels
- 100 Hz frame rate
- Lock-in detection, similar to averaged subtractions of dark, no-bias background image from biased image
- Use ~1 to 30 Hz for bias pulses
- Total acquisition time of few to ~30 s
- Varying bias for shunt characterization
 - Ohmic-type, Schottky-type, pre-breakdown, and recombination-induced
DLIT for shunting characterization

Characterize shunts using varying voltage and frequency

Zoom in using telescope lens with ~5 μm resolution
Process-Induced Cracking
Schottky-Type Shunts

SEM images
Aluminum Particles

SEM images
Summary

• **Photoluminescence Imaging** uses Si CCD camera
• **Infrared Carrier Density Imaging** uses IR camera
 - Both show good correlation to Semilab microwave reflection lifetime
• **Electroluminescence** compares to LBIC diffusion length maps
• IR camera for **shunt detection** and cell characterization
• Industry has shown interest in these imaging techniques due to their fast measurement speed for characterization and possibly in-line process control.

![Diagram](image.png)

- wafer
- Lifetime image
- surface passivation
- annealing
- Lifetime image
- cell
- Lifetime image

~150mm x 150mm